Supplementary Materials

1. H-NMR

部

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2a.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 b}$.

Figure S3. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 c}$.

Figure S4. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2d.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2e.

Figure S6. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 f}$.

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 g}$.

Figure S8. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 h}$.

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 i}$.

Figure S10. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 j}$.

Figure S11. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 k}$.

21

Figure S12. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 I}$.

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 m}$.

Figure S14. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 n}$.

Figure S15. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 0}$.

Figure S16. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 p}$.

Figure S17. ${ }^{1} \mathrm{H}$-NMR spectrum of compound 2q.

Figure S18. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 r}$.

Figure S19. ${ }^{1} \mathrm{H}$-NMR spectrum of compound 2 s.

Figure S20. ${ }^{1}$ H-NMR spectrum of compound $\mathbf{2 t}$.

Figure S21. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 u}$.
1H-LM-III-P7-f1-120705
$\stackrel{8}{1}$

(1H-LM-IILP7-f1-120705,

2v

$\stackrel{\square}{\square}$	T		\%

Figure S22. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 v}$.

Figure S23. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of compound 2w.
1H-LM-III-P33-f1-120823
等

> 1H-LK-III-P33-f1-120823 2835\% Sil?

2x

Figure S24. ${ }^{1} \mathrm{H}$-NMR spectrum of compound $\mathbf{2 x}$.

Figure S25. ${ }^{1} \mathrm{H}$-NMR spectrum of compound 2y.

2. C-NMR

Figure S26. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 a}$.

Figure S27. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 b}$.

Figure S28. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 c}$.

Figure S29. ${ }^{13} \mathrm{C}$-NMR spectrum of compound 2d.

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 e}$.

Figure S31. ${ }^{13} \mathrm{C}$-NMR spectrum of compound 2 f .

Figure S32. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 g}$.

Figure S33. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 h}$.

Figure S34. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 i}$.

Figure S35. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 j}$.

Figure S36. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 k}$.

Figure S37. ${ }^{13} \mathrm{C}$-NMR spectrum of compound 21 .

Figure S38. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 m}$.

Figure S39. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 n}$.

Figure S40. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 0}$.

Figure S41. ${ }^{13}$ C-NMR spectrum of compound $\mathbf{2 p}$.

Figure S42. ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum of compound $\mathbf{2 q}$.

Figure S43. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 r}$.

Figure S44. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 s}$.

Figure S45. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 t}$.
13C-LM-III-P2-f1-120628

2u

Figure S46. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 u}$.

Figure S47. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 v}$.

Figure S48. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 w}$.

Figure S49. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 x}$.

Figure S50. ${ }^{13} \mathrm{C}$-NMR spectrum of compound $\mathbf{2 y}$.

3. HR-MS

User Spectra

Peak List

m / z	z	Abund
118.1241	1	123911.5
130.16	1	523782
468.9557	1	266677.5
470.9537	1	444060.7
472.9508	1	205094.7
598.1097	1	161127.4
600.1081	1	272552.1
602.1055	1	121480.7
960.8835	1	133528
962.8829	1	185235.3

Figure S51. HR-MS spectrum of compound 2a.

User Spectra

Peak List
m / z I 142.1597 678082.6 159.1854 1867007 609.1153 1 8225942.5 610.116 1 3282837.8 611.1149 1 10883353 611.3984 682827.1 612.1142 5100877 613.1104 1 7212181.5 614.1108 1 2559866.5 615.167 1 1506750.1

Figure S52. HR-MS spectrum of compound 2b.

User Spectra

Peak List

$\boldsymbol{m / z}$	z	Abund
539.0364	1	6839567.5
540.0376	1	2056720.6
541.0354	1	9539774
541.2309		842799.8
541.318		510480.3
542.0355	1	3298000
543.0314	1	5662681
543.2331		491559.4
544.0327	1	1541619
545.0291	1	1010198.8

2c

Figure S53. HR-MS spectrum of compound 2c.

Figure S54. HR-MS spectrum of compound 2d.

User Spectra

Peak List

m / z	z	Abund
553.053	1	7179975.5
553.2544		508242.2
554.0542	1	2293498
555.0521	1	9874690
555.2473		907458.8
556.0521	1	3656231.8
557.048	1	6022600.5
558.0491	1	1734178
559.0455	1	1089732.3
1131.0749		530363.4

$2 e$

Figure S55. HR-MS spectrum of compound 2e.

User Spectra

Peak List

Peak List
m / z z Abund 581.0845 1 8488467 581.2841 680058.8 582.0851 1 3105136.8 583.0841 1 11037943 583.362 676582.5 584.0834 1 4881015 585.0796 1 7297667.5 586.08 1 2419787.5 587.0761 1 1465293 1187.138 654161.3

$2 f$

Figure S56. HR-MS spectrum of compound 2 f .

User Spectra

Peak List

m / z	z	Abund
537.1326	1	2552710.5
538.1362	1	720627.1
539.1301	1	2541021.5
541.1289	1	862659.5
581.0826	1	4242290.5
582.0848	1	1267022
583.0812	1	6434385
584.0824	1	2121076.8
585.078	1	3442944.8
586.0807	1	962253.3

2 g

Figure S57. HR-MS spectrum of compound 2g.

Peak List

$\boldsymbol{m} / \boldsymbol{z}$	\mathbf{z}	Abund
551.1492	1	4181802.8
552.1514	1	1304508.4
553.1466	1	4186059.5
555.1439	1	1518909
595.0996	1	6517437
596.101	1	2253578.3
597.0986	1	9178428
598.0989	1	3565117.5
599.0949	1	5430470.5
600.0959	1	1722469.9

2h

Figure S58. HR-MS spectrum of compound $\mathbf{2 h}$.

User Spectra

Peak List

m / z	z	Abund
551.1496	1	4350049
552.1518	1	1389648.5
553.147	1	4416446
555.144	1	1634510.1
595.0999	1	6730949.5
596.1012	1	2348590.8
597.0989	1	9423324
598.0991	1	3727104.8
599.0951	1	5624904
600.0963	1	1790023.4

2i

Figure S59. HR-MS spectrum of compound $\mathbf{2 i}$.

User Spectra	Collision Energy
Fragnentor Voltage	Ionization Made
ESI	

Peak List

m / z	z	Abund
354.2851	1	411753.6
359.2356	1	1065501.4
495.0839	1	923978.9
497.0793	1	890554.1
499.0815	1	294453.5
539.0295	1	1436330.8
540.0394	1	369547
541.0273	1	2306543
542.0368	1	628012.1
543.0255	1	1138796.8

2j

Figure $\mathbf{S 6 0}$. HR-MS spectrum of compound $\mathbf{2 j}$.

User Spectra

Peak List
Peak List

m / z	z	Abund
509.1024	1	3522169.5
510.1051	1	951091.7
511.0998	1	3510106.8
513.0974	1	1232857.9
553.0526	1	5343900.5
554.0545	1	1581421.8
555.0514	1	7869936
556.0522	1	2563860.8
557.0477	1	4380764
558.0495	1	1187812.8

2k

Figure S61. HR-MS spectrum of compound $\mathbf{2 k}$.

User Spectra

Peak List

m / z	z	Abund
509.1017	1	906035.3
510.1047	1	256031
511.0987	1	914025.5
513.0968	1	327095.2°
553.0502	1	1665467.4
554.0547	1	463617.5
555.0484	1	2729755
556.0528	1	695615
557.0462	1	1298244.5
558.0493	1	349623

21

Figure S62. HR-MS spectrum of compound 21.

User Spectra

Peak List

m / z	z	Abund
511.0816	1	910876.1
513.0793	1	911321.9
515.0773	1	330544.9
555.0307	1	1842440.6
556.0348	1	506028.7
557.0286	1	3025280.3
558.0316	1	755073.3
559.0262	1	1451913.4
560.0297	1	377341.4
579.0112		375617.2

2m

Figure S63. HR-MS spectrum of compound 2m.

User Spectra

Figure S64. HR-MS spectrum of compound 2n.

User Spectra

Peak List

$\boldsymbol{m / z}$	\mathbf{z}	Abund
507.3291		452978.6
551.3564		509313.2
595.3817		449043.7
600.1475	1	3538377.3
601.1502	1	1189805.6
602.146	1	4616274
602.3592		356043.1
603.1478	1	1598358.8
604.1437	1	1399279.1
605.147		429666.5

20

Figure S65. HR-MS spectrum of compound 20.

$\begin{gathered} \text { Fragmentor voltage } \\ 175 \\ \hline \end{gathered}$	$\begin{gathered} \text { Collision Energy } \\ 0 \end{gathered}$	$\begin{gathered} \text { Ionization Mode } \\ \text { ESI } \end{gathered}$		
+ESI Scan (0.14 min) Frag=175.0V HCY-1-P23-f1.d Subtract				
6.				
4				
2.				
200	400	1000	1200	1400

Peak List

m / z	z	Abund
528.1675	1	1183470.8
529.1711	1	384610.2
530.1653	1	788080.2
572.1174	1	4816736.5
573.1194	1	1557544.6
574.1159	1	6151599
574.3197		503864.8
575.1171	1	2054443.9
576.1131	1	1898072.5
577.1177	1	486316.5

Figure S66. HR-MS spectrum of compound 2p.

User Spectra

Peak List
m / z z Abund 542.183 1 1592069.8 543.188 1 493103.1 544.181 1 1082175.3 586.1339 1 6209576.5 587.1354 1 2182361.3 588.1326 1 7716560.5 588.3347 616641.9 589.1333 1 2874137 590.1291 1 2619945 591.1317 1 734669.8

$2 q$

Figure S67. HR-MS spectrum of compound 2q.

User Spectra

Peak List
m / z z Abund 500.1358 1 1529888.5 501.1398 1 457509.8 502.1341 1 1050037.1 544.0866 1 5038569 545.088 1 1890519.5 546.0851 1 7505626.5 546.2849 561615.4 547.086 1 2484396.8 548.0817 1 2462508 549.0856 1 611834.1

$2 r$

Figure S68. HR-MS spectrum of compound 2r.
User Spectra

Peak List

m / z	z	Abund
500.1361	1	1699800
502.1342	1	1141259.4
544.0869	1	6157081.5
545.0884	1	1940494.5
546.0855	1	7599645.5
546.3979		698677
547.0863	1	2546678.3
548.0821	1	2487351
549.086	1	628449.8
1187.1509	1	637096.7

2s

Figure S69. HR-MS spectrum of compound 2s.

User Spectra

Peak List

$m i / z$	z	Abund
131.1544		212879.2
528.1692	1	648969.2
530.1657	1	489020.4
572.1166	1	2878061
573.12	1	859990.4
574.1148	1	3797398.8
574.3202		280792.6
575.1175	1	1174055.6
576.1129	1	1064154.3
577.1166		310025.8

$2 t$

Figure S70. HR-MS spectrum of compound $\mathbf{2 t}$.

User Spectra

Peak List
Peak List

m / z	z	Abund
496.0333	1	207511.7
498.031	1	208656.1
502.3725	1	109257.6
539.9837	1	433868.7
541.9797	1	782432.2
542.9837	1	165118.3
543.9792	1	342599.4
546.3989	1	121343.5
561.9643	1	132692.8
563.9633	1	211319.5

Figure S71. HR-MS spectrum of compound $\mathbf{2 u}$.

User Spectra

Peak List

m / z	z	Abund
384.1926	1	113644.4
478.3219	1	353356.2
479.3249	1	124734.4
507.3297		57486.6
527.9668		52194.4
547.9505	1	150210.7
549.948	1	256024.5
550.9512	1	54022.7
551.9459	1	117012
571.9301	1	75525.9

Figure S72. HR-MS spectrum of compound 2v.

User Spectra

Peak List

m / z	z	Abund
659.0581		211451.5
701.0092	1	2351131.5
702.0128	1	838430.5
703.0076	1	3974236
703.2376		305006.4
704.0095	1	1447541.1
705.0049	1	2159214.5
706.0087	1	707274.3
707.005	1	472477.3

Figure S73. HR-MS spectrum of compound 2w.

User Spectra

Figure S74. HR-MS spectrum of compound $\mathbf{2 x}$.

User Spectra

Figure S75. HR-MS spectrum of compound $\mathbf{2 y}$.

