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Abstract: A series of 10 novel urea derivatives has been synthesized and evaluated for their 

central nervous system activity. Compounds 3a–3h were prepared in the reaction between 

the respective 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a and 1b and appropriate 

benzyl-, phenethyl-isocyanate or ethyl 4-isocyanatobenzoate and ethyl isocyanatoacetate 2 

in dichloromethane. Derivatives 4c and 4g resulted from the conversion of 3c and 3g into 

the respective amides due to action of an aqueous ammonia solution. The results obtained 

in this study, based on literature data suggest a possible involvement of serotonin system 

and/or the opioid system in the effects of tested compounds, and especially in the effect of 

compound 3h. The best activity of compound 3h may be primarily attributed to its 

favourable ADMET properties, i.e., higher lipophilicity (related to lower polar surface area 

and greater molecular surface, volume and mass than for other compounds) and good 
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blood-brain permeation. This compound has also the greatest polarizability and ovality. 

The HOMO and LUMO energies do not seem to be directly related to activity. 

Keywords: central nervous system activity; opioid receptors; urea derivatives 

 

1. Introduction 

It is well known that many diseases are accompanied by inflammation and pain. Therefore, the 

search for new antinociceptive compounds is an important focus of attention for chemists as well as for 

pharmacologists [1,2]. Opioid receptors are key molecular targets for antinociceptive medications. 

Most morphine-like analgesics possess similar structural features, i.e., the phenyl ring, tertiary nitrogen 

atom and the two carbon fragment (e.g., as a part of the piperidine ring), which are required by the 

receptor cavity [2–4]. These structural features are present in bezitramide, fentanyl and petidine, and 

their analogues (Figure 1) [2]. 
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Figure 1. Structural formulas of bezitramide, fentanyl and petidine. Pharmacophoric features 

according to the Beckett’s model are shown in bold [2,5,6]. 

This “pharmacophore” model was elaborated by Beckett (with its subsequent modifications [7–9]) 

and was one of the first models used to explain the antinociceptive activity of morphine derivatives [2]. 

Later, non-classical pharmacophore models explaining opioid receptor activity were suggested, as 

presented in Figure 2. These models consist of a base (B), a hydrophobic (H) and aromatic moiety (Ar) 

or hydrogen bond acceptor (HA), hydrophobic (H), and aromatic groups (Ar) [7,10–12]. 

 

Figure 2. Non-classical opioid receptor pharmacophore models. B—base, Ar—aromatic; 

H—hydrophobic region, HA—hydrogen bond acceptor [2,5,6]. 

Based on the non-classical pharmacophore models for opioid receptor activity we have previously 

reported a few series of compounds with antinociceptive activity mediated through the opioid system 
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(series A–E [10–13]), partially mediated through opioid system (series F [2]) or with a different 

mechanism of antinociceptive activity (series G–K [5,6], Figure 3). Some of these compounds also 

exerted serotoninergic activity according to the pharmacophore model presented in Figure 4. 

 

Figure 3. Previously reported antinociceptive and serotoninergic compounds. Series A–E 

and partially F exert their antinociceptive activity through the opioid system. Series G–K 

and some of compounds from series F have antinociceptive activity of unknown 

mechanism [2,5,6,10–13]. 

 

Figure 4. Pharmacophore model for the 5HT2 receptor [2,5,6,12]. 
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In our continuous effort towards the discovery of novel antinociceptive compounds with additional 
serotoninergic activity we have designed and synthesized a series of 10 N-substituted derivatives of  
1-alkyl-4-ary(arylalkyl)imidazolidyn-2-ylideneureas 3a–3h, 4c, 4g (Scheme 1). The rationale of this 
work can be summarized as follows: (1) the designed compounds follow the non-classical 
pharmacophore model for opioid receptor activity as well as the pharmacophore model for the 
serotoninergic activity; (2) the set of substituents in the aryl ring was selected on the basis of our 
earlier experience with the substituent effect on the activity. Here we present the synthesis, drug-likeness 
evaluation, ADMET prescreening, pharmacological studies for central nervous system activity and 
structure-activity relationship analysis for 10 N-substituted derivatives of 1-alkyl-4-ary(arylalkyl)-
imidazolidyn-2-ylideneureas. 

2. Results and Discussion 

2.1. Chemistry 

The synthetic route employed for the preparation of 1-(1-alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-
substituted urea derivatives is shown in Scheme 1. We have previously reported a few series of  
1-aryl-4,5-dihydro-1H-imidazol-2-amine derivatives which do not possess a protonable nitrogen atom 
but exhibit serotoninergic and antinociceptive activity mediated [2,10–13] or not [5,6] through the 
opioid system. Encouraged by these results, we designed, synthesized and studied compounds 3a–3h, 
4c, 4g (Scheme 1). Compounds 3a–3h were prepared in the reaction between the respective 1-alkyl-4-
aryl-4,5-dihydro-1H-imidazol-2-amines 1a and 1b and appropriate benzyl, phenethyl- isocyanate or 
ethyl 4-isocyanatobenzoate, ethyl isocyanatoacetate 2 in dichloromethane. Derivatives 4c and 4g 
resulted from the conversion of 3c and 3g into the respective amides due to the action of aqueous 
ammonia solution. 

 

Scheme 1. The synthesis scheme of the investigated compounds. 

2.2. Estimation of Drug-Likeness 

The descriptors applied for estimation of drug-likeness are presented in Table 1. Drug-likeness was 
assessed using Lipinski’s rule as well as the placement of the investigated compounds in the chemical 
space determined by the databases of the pharmacologically active compounds (CMC, Comprehensive 
Medicinal Chemistry Database, containing about 7000 compounds and MDDR, MACCS-II Drug  
Data Report, containing about 100,000 compounds) according to the methodology of PREADMET [14] 
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service as described previously [5,6]. Concerning Lipinski’s rule, all the compounds possess the molar 

mass below 500, the number of hydrogen bond donors below five, the number of hydrogen bond 

acceptors below 10, and the lipophilicity below 5. Optimal value of lipophilicity for drugs acting on 

central nervous system is from 2 to 4 [15].  

Regarding subsequent criteria of drug-likeness, most compounds collected in the CMC database has 

lipophilicity from −0.4 to 5.6, molar refractivity in the range of 40–130, molar mass from 160 to 480, 

and the number of atoms from 20 to 70 [5,6]. All the investigated compounds fulfill this criterion. 

Concerning the compounds in MDDR database, the drug-like substances have the number of rings 

equal or greater than 3, the number of rigid bonds equal or greater than 18, and the number of rotatable 

bonds equal or greater than 6 [5,6]. Compounds 3c, 3g, 4c and 4g possess too few rings. Compound 3c 

has in addition too few rotatable bonds. Compounds 3a, 3b, 3e, 3f, 4c and 4g have too low a number of 

rotatable bonds which we will consider in the design of next series of compounds. Finally, molecule 

drug-likeness score (fragment-based score) was calculated using Osiris Property Explorer [16]. According 

to this score compounds 3a, 3b, 3c, 3f, 4c, 4g are more drug-like than the rest of compounds.  

In summary, the investigated compounds may be termed drug-like, and it is justified to test them in the 

in vivo experiments. Evaluation of drug-likeness has not allowed to exclude any compound from  

in vivo experiments. In particular compound 3h has low drug-likeness score but it was selected for  

in vivo studies as the validation of in silico approach. 

Table 1. Parameters for drug-likeness estimation. HBD—a number of hydrogen bond 

donors; HBA—a number of hydrogen bond acceptors. 

Comp. 
Molar 

Mass 
AlogP HBD HBA 

Number 

of 

Atoms 

Molar 

Refractivity 
Rings 

Rigid 

Bonds 

Rotatable 

Bonds 

Druglikeness 

Score 

3a 308.378 2.630 2 5 43 91.64 3 21 4 5.22 

3b 322.404 2.951 2 5 46 96.24 3 19 5 5.74 

3c 304.344 1.102 0 7 42 82.41 2 17 6 5.77 

3d 366.414 2.827 2 7 49 102.91 3 23 6 1.30 

3e 322.404 3.116 2 5 46 96.06 3 22 4 3.87 

3f 336.431 3.437 2 5 49 100.67 3 22 5 4.39 

3g 318.371 1.589 2 7 45 86.84 2 18 6 -1.23 

3h 380.44 3.313 2 7 52 107.33 3 24 6 -0.14 

4c 261.280 0.815 4 7 34 69.30 2 18 2 5.56 

4g 275.306 1.301 4 7 37 73.72 2 19 2 4.16 

2.3. Prediction of ADMET Properties 

In order to facilitate the selection of compounds for animal studies, some ADMET parameters were 

calculated (Table 2). The plot presented in Figure 5 confirms that most of the tested compounds possess 

favorable ADMET properties. Comparing the plot in Figure 5 with lipophilicity values from Table 1 

and polar surface areas from Table 3, it can be concluded that compounds from series 4c and 4g have 

less favorable blood-brain permeation properties. All compounds are well absorbed (Figure 5), however 

compounds 3f and 3h are not enough soluble in water as they have values of logS below −4 [16]. 

Moreover, compounds 4c and 4g have lower overall drug score which combines drug-likeness, cLogP, 



Molecules 2015, 20 3826 

 

 

LogS, molecular weight and toxicity risks in one convenient value than may be used to judge the 

compound’s overall potential to qualify as a drug [16]. Importantly, compounds from series 3a–3h are 

predicted to be non-toxic (all scores equal to 1.00 in Table 2) whereas compounds from series 4c and 4g 

have middle risk (score 0.8) of mutagenic and tumorigenic properties and may have reproductive 

effects. On the basis of calculation of ADMET parameters and our earlier experience on the effect of 

substituents on the activity, we decided to test in vivo three compounds 3a, 3h and 4c. 

Table 2. ADMET parameters of the studied compounds. S—solubility. 

Comp. LogS 
Toxicity Risk 

Drug Score 
Mutagenic Tumorigenic Irritant Reproductive Effective 

3a −3.454 1.00 1.00 1.00 1.00 0.85 

3b −3.618 1.00 1.00 1.00 1.00 0.82 

3c −2.118 1.00 1.00 1.00 1.00 0.93 

3d −3.818 1.00 1.00 1.00 1.00 0.67 

3e −3.923 1.00 1.00 1.00 1.00 0.80 

3f −4.078 1.00 1.00 1.00 1.00 0.77 

3g −2.594 1.00 1.00 1.00 1.00 0.55 

3h −4.255 1.00 1.00 1.00 1.00 0.51 

4c −2.004 0.80 0.80 1.00 0.80 0.48 

4g −2.501 0.80 0.80 1.00 0.80 0.46 

 

Figure 5. Evaluation of ADMET properties of the studied compounds. 
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Table 3. Structural and electronic parameters of investigated compounds. PSA—polar 

surface area, HOMO—Highest Occupied Molecular Orbital, LUMO—Lowest Unoccupied 

Molecular Orbital. 

Comp. 
Surface 

Å2 

PSA 

Å2 

Volume 

Å3 
Ovality 

HOMO 

eV 

LUMO 

eV 
Polarizability 

Molecular 

Weight 

3a 586.1 61.2 288.6 1.652 −9.24 0.43 34.836 308.37 

3b 573.1 65.0 304.7 1.706 −9.10 0.49 36.896 322.40 

3c 589.8 107.7 278.8 1.702 −9.14 0.58 31.729 304.34 

3d 660.9 104.3 328.4 1.734 −8.92 −0.65 39.549 366.41 

3e 614.6 55.6 301.1 1.670 −9.20 0.42 36.854 322.40 

3f 616.3 54.3 321.9 1.739 −9.07 0.53 38.789 336.43 

3g 601.7 131.0 290.9 1.697 −9.26 0.38 33.862 318.37 

3h 683.8 92.9 342.6 1.770 −9.00 −0.14 41.710 380.44 

4c 482.5 170.8 225.8 1.556 −9.40 0.46 27.094 261.28 

4g 523.3 175.1 245.2 1.630 −9.28 0.42 28.801 275.30 

2.4. Pharmacological Activity 

In this study we tested properties of three new 1-(1-alkyl-4-aryl-4,5-dihydro-1H-imidazo)-3-substituted 

urea derivatives: 3a, 3h and 4c. Toxicity of tested compounds was 550 mg/kg ip for 3a, 1300 mg/kg ip 

for 3h and 800 mg/kg ip for 4c, and therefore these ED50 values were adopted for further study. The 

spontaneous activity and amphetamine hyperactivity were evaluated. The effect on body temperature 

and behaviour of animals caused by administration of L-5-HTP, motor coordination as well as nociceptive 

and anticonvulsant activity were also estimated. These allowed preliminary determination of the impact 

of the new substances on the central nervous system (CNS) of experimental animals. 

The antinociceptive properties were tested by performing “writhing test”. This test is one of the 

most sensitive methods to determine the antinociceptive properties, and by its use it is possible to 

detect even very weak antinociceptive agents. It is also considered as an experimental model closest to 

the nature of clinical pain. It allows evaluation of analgesic action of both central and peripheral origin. 

However, this method introduces some limitations: in this test it is difficult to determine the length  

of antinociceptive activity, and the test is not specific as it can show an analgesic effect for many 

substances [17,18]. Only substance 3h showed antinociceptive effect in this test and when 

administered both in higher dose (0.1 ED50) and at half dose (0.05 ED50) caused very clear and 

statistically significant (respectively p < 0.01 and p < 0.001) reduction in the number of writhing 

episodes in mice (Figure 6). In order to more closely determine the mechanism of antinociceptive activity, 

the writhing test was performed with the use of nonselective opioid antagonist—naloxone [19]. Naloxone 

very clearly and statistically significant (p < 0.01), decreased antinociceptive activity of the substance 

3h (Figure 7). This suggests the possibility of linking the activity of this compound with the opioid 

system, and also makes this compound a good predictor of the structure in the search for a new group 

of compounds acting through the opioid system. 

Compound 3c significantly reduced the locomotor activity of animals only in a dose of 0.1 ED50  

(p < 0.01), and the compound 3h—in the dose of 0.1 and 0.05 ED50 (p < 0.05) (Figure 8), while none 
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of the tested compounds did not change the hyperactivity caused by administration of amphetamine 

(Figure 9). 

 

Figure 6. The antinociceptive effects of the tested compounds 3a, 3h and 4c, assessed  

in the “writhing” test in mice. The results are expressed as mean ± SEM of a group of  

8–10 mice. One-way ANOVA showed significant changes in the number of writhing 

episodes of mice after the administration of the compound 3h (F5,47 = 5.734, p < 0.001). 

Post hoc Dunnett’s test confirmed a significant reduction in the writhing episodes of mice 

after the administration of the compound 3h in doses of 0.1 and 0.05 ED50 (p < 0.01 and  

p < 0.001, respectively). 

 

Figure 7. The influence of naloxone, 5 mg/kg s.c. on antinociceptive activity of compound 

3h evaluated in “writhing” test in mice. The results are expressed as mean ± SEM of a group 

of 6–14 mice. One-way ANOVA showed significant changes in the numer of writhing 

episodes of mice after the administration of the compound 3h and coadministration of 

compound 3h and naloxone (F2,25 = 11.42; p < 0.001). Post hoc Dunnett’s test confirmed  

a significant reduction in the writhing episodes of mice after the administration of the 

compound 3h in the 0.05 ED50 dose (p < 0.001). Pretreatment with naloxone increased the 

numer of writhing episodes compared to compound 2 g group (p < 0.01). 

Tests were also carried out to evaluate the effect of the new urea derivatives on the head-twitch 

responses (HTR) in mice caused by administration of a serotonin precursor, L-5-HTP, which may 

indicate the involvement of the serotonergic system in the observed effects. The head twitch response 

evoked in mice occurs as a result of increased activity of central 5-hydroxytryptamine (5-HT) neuronal 

systems [20]. This behavior appears to be mediated by 5-HT2 receptors. Several studies have established 
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that direct and indirect 5-HT agonists induce HTR in rodents [20–27]. Furthermore, 5-HT2 receptor 

antagonists selectively block HTR [26–30], and their potency is highly correlated with the antagonist’s 

affinity for 5-HT2 receptors [27,31]. However, this test is not very specific because, other compounds 

such as adrenergic ligands, can change the HTR [32]. 

 

Figure 8. The influence of the tested compounds 3a, 3h, and 4c on the spontaneous locomotor 

activity of mice. The results are expressed as mean ± SEM of a group of 6–14 mice.  

One-way ANOVA showed significant changes in locomotor activity of mice after the 

administration of compounds 3a and 3h (F6,47 = 6,204, p < 0.0001). Post hoc Dunnett’s  

test confirmed a significant reduction in motility of mice after the administration of the 

compound 3a in the dose of 0.1 ED50 (p < 0.01) and 3h—0.1 and 0.05 ED50 (p < 0.05). 

 

Figure 9. The influence of the tested compounds 3a, 3h, and 4c on amphetamine-induced 

hyperactivity in mice. The results are expressed as mean ± SEM of a group of 7–8 mice. 

One-way ANOVA revealed significant changes in locomotor activity of mice after the 

administration of amphetamine (F4,31 = 3.885; p < 0.05). Simultaneous injection of each of 

the tested compounds with amphetamine did not change the activity of mice compared to 

amphetamine group. 

HTR to 5-HTP were significantly decreased by all the substances investigated (p < 0.01), from  

a mean of 12.2 ± 3.12 to 4.0 ± 0.86 by 3c, 4.4 ± 2.2 by 3h and 3.0 ± 0.89 by 4c (Figure 10). The result 

seems to point out some connection with the 5-HT system. 
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Figure 10. The influence of the tested compounds 3a, 3h and 4c on the head-twitch responses 

(HTR) evoked by L-5-HTP (230 mg·kg−1). The results are expressed as mean ± SEM of  

a group of 8–10 mice. One-way ANOVA showed significant changes in the number of 

HTR (F3,30 = 6.902, p < 0.01). The post hoc Dunnett’s test confirmed a significant decrease 

in the numer of HTR after the administration of all of the tested compounds: 3a, 3h and 4c 

in the dose of 0.1 ED50 (p < 0.01). 

Only the substance 3h had a significant effect on body temperature in mice: given in a dose 

corresponding to 0.1 ED50 caused a very clear, statistically significant and prolonged decrease in body 

temperature in mice (p < 0.001 from 30 to 90, and in 180 min, and p < 0.01 from 120 to 150 min). 

Moreover, administration of a lower dose of this substance (0.05 ED50) resulted in statistically 

significant reduction of the observed parameter, but this effect was somewhat lower and short-lived  

(p < 0.001 at 30 min only, and p < 0.01 from 60 to 90 min) (Figure 11). Administration of other 

compounds practically did not affect the body temperature of animals.  

 
 

Fi 

Figure 11. The influence of compound 3h (used in dose of 0.1 and 0.05 ED50) on the body 

temperature of mice. Each point represents the mean for a group of 8–10 mice. Two-way 

ANOVA revealed significant effects for both dose [F(2.153) = 73.38; p < 0.0001] and time 

[(F(5.153) = 9.29; p < 0.0001], as well as a statically significant dose × time [F(10.153) = 3.22; 

p < 0.001]. Post hoc Bonferroni test confirmed a significant decrease of the body temperature 

of mice after the administration of compound 3h at the dose of 0.1 ED50 in 30, 60, 90, 180 min 

(p < 0.001), and from 120 to 150 min (p < 0.05) and at the dose of 0.05 ED50 in 30 min  

(p < 0.001), 60 min (p < 0.01) and 90 min (p < 0.05). * p < 0.05; ** p < 0.01; *** p < 0.001. 
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Serotonin has been reported to play an important role in central regulation of body temperature [33–35]. 

The MAO (monoamine oxidase) type A inhibitors appear to be crucially involved in hypothermia [36]. 

As a result of MAO-inhibition, 5-HT levels in the body are increased and may precipitate a serotonin 

syndrome. Hypothermia in rodents has been reported for MAO type A enzyme inhibitors (antidepressant 

drugs) such as clorgyline [37] and harman (1-methyl-β-carboline) [38]. In the pentetrazol seizure test, 

none of the tested compounds clearly reduced the severity of clonic or tonic seizures, or protected the 

animals from dying (data not presented). 

It should be noted that new compounds, used at a dose of 0.1 ED50, caused no coordination 

disorders, as they did not change the behaviour of mice in either assay—the chimney, as well as the 

rota-rod test (Figures 12 and 13). If present, impairment of motor coordination can express not only 

neurotoxicity, but can also influence on the results of the other tests, e.g., on the reaction to nociceptive 

stimuli of laboratory animals. Based on performed experiments, we cannot exclude any acute side 

effects of these compounds. Motility (after administration of compound 3a and 3h (only at the dose of 

0.1 ED50) as well as body temperature of normothermic mice (after compound 3h—at the dose of 0.1 

and 0.05 ED50) were decreased, indicating some depressant action on the CNS. 

 

Figure 12. The influence of the tested compounds 3a, 3h and 4c on motor coordination in 

the rota-rod test. The results are expressed as mean ± SEM of a group of 10 mice. One-way 

ANOVA did not show any significant changes in time spent on rota-rod [F3,36 = 0.61;  

p = 0.6129].  

 

Figure 13. The influence of the tested compounds 3a, 3h and 4c on motor coordination  

in the chimney test. The results are expressed as mean ± SEM of a group of 8–10 mice. 

None of the investigated compounds caused motor deficits in the chimney test. All animals 

were able to leave the chimney within less than 60 s. 
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The results of the pharmacological investigation showed that compounds tested exert significant 

influence on the CNS of laboratory animals. The observed effects seem to be connected primarily with 

serotonergic and/or opioid system. This involvement, however, is unclear and requires further study. 

2.5. Structure-Activity Relationship 

HOMO and LUMO orbitals for selected compounds are shown in Figure 14. Molecular structures 

and electrostatic potential distribution of selected compounds are presented in Figure 15.  

 

Figure 14. HOMO (A, C) and LUMO (B, D) for 3h (A, B) and 4c (C, D). 

 

Figure 15. Molecular structures of 3h (A) and 4c (B). The map of the electrostatic 

potential (ESP) onto a surface of the electron density for 3h (C) and 4c (D). 
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The best activity of compounds 3h may be primarily attributed to its favourable ADMET properties, 

i.e., higher lipophilicity (related to lower polar surface area and greater molecular surface, volume  

and mass than for other compounds, Table 3) and good blood-brain permeation. Ths compound has 

also the greatest polarizability and ovality. The HOMO and LUMO energies do not seem to be directly 

related to activity (Table 3). 

3. Experimental Section 

3.1. Chemistry 

All commercial reagents and solvents were purchased from Sigma-Aldrich (Spruce, St. Louis, MO, 

USA) and used without purification. Reactions were routinely monitored by thin-layer 

chromatography (TLC) in silica gel (60 F254 plates Merck, Darmstadt, Germany) and the products were 

visualized with ultraviolet light of 254 nm wavelength. All NMR spectra were acquired on a Bruker 

AVANCE III 300 MHz spectrometer (Bruker, Billerica, MA, USA) equipped with BBO Z-gradient 

probe. Spectra were recorded at 25 °C using DMSO as a solvent with a non-spinning sample in 5 mm 

NMR-tubes. MS spectra were recorded on Bruker microTOF-Q II and processed using Compass Data 

Analysis software. The elementary analysis was performed with the application of Perkin-Elmer 

analyzer (940 Winter St., Waltham, MA, USA). Melting points were determined with a Boetius 

apparatus (Jena, Germany). 

3.1.1. General Procedure for the Synthesis of Compounds 3a–3h 

Benzyl/phenethylisocyanate or ethyl 4-isocyanatobenzoate, ethyl isocyanatoacetate 2 were dissolved 

in dichloromethane (25 mL) under atmosphere of dry nitrogen and added to a solution of the free  

base of 1-alkyl-4-aryl-4,5-dihydro-1H-imidazol-2-amines 1a, 1e (0.01 mol) dissolved in 

dichloromethane (100 mL). The mixture was shaken for 24 h at room temperature. Solvent was 

removed by distillation and the rubber-like residue was treated with warm propan-2-ol. The solid product 

was filtrated off and recrystallized from propan-2-ol. 

1-(1-Methyl-4-phenyl-4,5-dihydro-1H-imidazo)-3-benzylurea (3a). From 1a (1.75 g) 3a (1.51 g, 49% 

yield) was obtained as a white crystalline solid, mp 145–146 °C; 1H-NMR (DMSO-d6): δ = 8.63 (s, 

1H, NH); 8.01 (s, 1H, NH); 7.08–7.42 (m, 10H, H-Ar); 4.01–4.17 (d, 2H, C4, J = 7.6 Hz); 3.61 (s, 1H, 

C5), 3.48 (s, 2H, CH2benzyl); 2.24 (s, 3H, CH3); 13C-NMR (DMSO-d6): δ = 17.1 (CH3); 38.2 (CH2); 

48.5 C5 (CH2); 68.9 C4 (CH); 161.0 (C=N); 171.0 (C=O); 119.1, 120.3, 120.7, 122.9, 124.2, 127.6 128.4, 

129.1, 129.8 (C-Ar); EIMS m/z 309.1 [M+H]+. HREIMS (m/z): 308.1340 [M+]; (Calcd for C18H20N4O 

308.3900); Anal. Calcd for: C18H20N4O; Anal. Found C, 70.35; H, 6.59; N, 17.17; Calcd C, 70.10; H, 

6.35; N, 18.16. 

1-(1-Methyl-4-phenyl-4,5-dihydro-1H-imidazo)-3-phenethylurea (3b). From 1a (1.75 g) 3b (1.06 g, 

33% yield), was obtained as a white crystalline solid, mp 120–122 °C; 1H-NMR (DMSO-d6): δ = 8.56 

(s, 1H, NH); 7.29 (s, 1H, NH); 6.89–7.63 (m, 10H, H-Ar); 4.00–4.10 (d, 2H, C4, J = 7.5 Hz); 3.45 (s, 

1H, C5); 3.78–3.85 (m, 2H, CH2phenethyl); 3.17–3.24 (m, 2H, CH2phenethyl); 2.06 (s, 3H, CH3); 13C-NMR 

(DMSO-d6): δ = 18.4 (CH3); 41.9 (CH2); 45.2 (CH2); 49.96 C5 (CH2); 67.8 C4 (CH); 161.3 (C=N); 
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171.6 (C=O); 114.2, 120.4, 120.8, 126.5, 127.1, 128.2, 129.1, 131.4,131.8, (C-Ar); EIMS m/z 323.5 

[M+H]+. HREIMS (m/z): 322.1921 [M+] (Calcd for C19H22N4O 322.4170); Anal. Calcd for: 

C19H22N4O: Anal. Found Found C, 70.65; H, 6.79; N, 17.49; Calcd C, 70.78; H, 6.87; N, 17.37. 

1-(1-Methyl-4-phenyl-4,5-dihydro-1H-imidazo)-3-(ethoxycarbonylmethyl)urea (3c). From 1a (1.75 g) 

3c (1.49 g, 48% yield) was obtained as a white crystalline solid, mp 159–161 °C; 1H-NMR (DMSO-d6):  

δ = 8.60 (s, 1H, NH); 8.27 (s, 1H, NH); 7.11–7.61 (m, 5H, H-Ar); 3.76 (s, 1H, C5), 4.02–4.15 (d, 2H, 

C4, J = 7.4 Hz); 3.98–4.02 (m, 2H, CH2); 3.71–3.82 (m, 2H, CH2); 2.30 (s, 3H, CH3); 1.26–1.31 (t, 3H, 

CH3, J = 7.1 Hz) 13C-NMR (DMSO-d6): δ = 17.9 (CH3); 19.3 (CH3); 41.3 (CH2); 43.6 (CH2); 49.6 C5 

(CH2); 68.1 C4 (CH); 160.9 (C=N); 171.3 (C=O); 119.1, 120.4, 120.9, 123.5, 127.4, 129.1, 129.8, 

132.5, 132.8, 133.5 (C-Ar); EIMS m/z 305.3 [M+H]+. HREIMS (m/z): 304.16730 [M+] (Calcd for 

C15H20N4O3 304.3570); Anal. Calcd for: C15H20N4O3; Anal. Found C, 59.35; H, 6.29; N, 18.38; Calcd 

C, 59.20; H, 6.22; N, 18.41. 

1-(1-Methyl-4-phenyl-4,5-dihydro-1H-imidazo)-3-(4-ethoxycarbonylphenyl)urea (3d). From 1a (1.75 g) 

3d (2.82 g, 77% yield) was obtained as a white crystalline solid, mp 170–172 °C; 1H-NMR (DMSO-d6): 

δ = 9.05 (s, 1H, NH); 8.16 (s, 1H, NH); 7.05–7.68 (m, 9H, H-Ar); 4.01–4.18 (d, 2H, C4, J = 7.6 Hz); 

3.29 (s, 1H, C5); 2.73–2.90 (m, 2H, CH2); 1.33 (s, 3H, CH3); 1.15–1.28 (t, 3H, CH3, J = 7.0 Hz);  
13C-NMR (DMSO-d6): δ = 18.3 (CH3); 21.3 (CH3); 41.3 CH2; 41.5 C5 (CH2); 69.3 C4 (CH); 161.2 

(C=N); 171.7 (C=O); 170.9 (C=O); 117.6, 119.7, 128.3, 129.7, 131.3, 131.6, 133.5, 134.9, 136.1, 

136.7 (C-Ar); EIMS m/z 367.1 [M+H]+. HREIMS (m/z): 366.1120 [M+] (Calcd for C20H22N4O3 

366.4280); Anal. Calcd for: C20H22N4O3; Anal. Found C, 65.45; H, 6.19; N, 15.38; Calcd C, 65.56; H, 

6.05; N, 15.29. 

1-[1-Methyl-4-(methylphenyl)-4,5-dihydro-1H-imidazo]-3-benzylurea (3e). From 1b (1.89 g) 3e (1.96 g, 

61% yield) was obtained as a white crystalline solid, mp 132–134 °C; 1H-NMR (DMSO-d6): δ = 8.73 (s, 

1H, NH); 8.04 (s, 1H, NH); 7.03–7.51 (m, 9H, H-Ar); 3.63 (s, 1H, C5), 4.02–4.18 (d, 2H, C4, J = 7.6 Hz); 

3.85 (s, 2H, CH2benzyl); 2.29 (s, 3H, CH3); 1.63 (s, 3H, CH3); 13C-NMR (DMSO-d6): δ = 18.8 (CH3); 

20.8 (CH3); 41.3 (CH2); 43.6 (CH2); 49.6 C4 (CH2); 68.4 C5 (CH); 162.5 (C=N); 172.0 (C=O); 119.2, 

121.4, 121.9, 123.5, 128.2, 129.5, 130.8, 133.5, 133.8, 135.3 (C-Ar); EIMS m/z 319.1 [M+H]+. 

HREIMS (m/z): 318.2630 [M+] (Calcd for C19H22N4O 322.7050); Anal. Calcd for: C19H22N4O; Anal. 

Found C, 70.65; H, 6.69; N, 17.42; Calcd C, 70.71; H, 6.87; N, 17.38. 

1-[1-Methyl-4-(4-methylphenyl)-4,5-dihydro-1H-imidazo)-3-phenethylurea (3f). From 1b (1.89 g) 3f 

(2.05 g, 61% yield) was obtained as a white crystalline solid, mp 116–117 °C; 1H-NMR (DMSO-d6):  

δ = 8.81 (s, 1H, NH); 8.54 (s, 1H, NH); 7.19–7.61 (m, 9H, H-Ar); 3.81 (s, 1H, C5), 4.09–4.19 (d, 2H, 

C4, J = 7.5 Hz); 3.61–3.76 (m, 2H, CH2phenethyl); 3.11–3.37 (m, 2H, CH2phenethyl); 2.30 (s, 3H, CH3);  
13C-NMR (DMSO-d6): δ = 17.6 (CH3); 21.8 (CH3); 41.2 (CH2); 43.6 (CH2); 49.6 C4 (CH2); 69.2 C5 

(CH); 160.8 (C=N); 172.8 (C=O); 120.0, 127.3, 120.5, 122.7, 127.2, 129.1, 129.4, 131.0, 131.9, 133.5 

(C-Ar); EIMS m/z 337.3 [M+H]+. HREIMS (m/z): 336.3210 [M+] (Calcd for C20H24N4O 336.4440); 

Anal. Calcd for: C20H24N4O; Anal. Found C, 71.55; H, 7.32; N, 16.68; Calcd C, 71.40; H, 7.19;  

N, 16.65. 
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1-[1-Methyl-4-(4-methylphenyl)-4,5-dihydro-1H-imidazo]-3-(ethoxycarbonylmethyl)urea (3g). From 

1b (1.89 g) 3g (1.56 g, 49% yield) was obtained as a white crystalline solid, mp 183–185 °C; 1H-NMR 

(DMSO-d6): δ = 9.04 (s, 1H, NH); 8.33 (s, 1H, NH); 7.02–7.64 (m, 4H, H-Ar); 3.49 (s, 1H, C5),  

4.04–4.20 (d, 2H, C4, J = 7.5 Hz); 3.98–4.02 (m 2H, CH2); 3.51–3.62 (m 2H, CH2); 2.45 (s, 3H, CH3); 

2.01 (s, 3H, CH3); 1.28–1.39 (t, 3H, CH3, J = 7.2) 13C-NMR (DMSO-d6): δ = 17.9 (CH3); 20.5 (CH3); 

22.9 (CH3); 41.0 (CH2); 43.6 (CH2); 48.6 C5 (CH2); 67.1 C4 (CH); 161.5 (C=N); 171.9 (C=O); 112.3, 

112.3, 112.8, 119.5, 120.9, 121.1, 128.7, 130.5, 131.8, 132.0 (C-Ar); EIMS m/z 319.1 [M+H]+. 

HREIMS (m/z): 318.1560 [M+] (Calcd for C16H22N4O3 318.3840); Anal. Calcd for: C16H22N4O3; Anal. 

Found C, 60.45; H, 6.59; N, 17.38; Calcd C, 60.36; H, 6.97; N, 17.60. 

1-[1-Methyl-4-(4-methylphenyl)-4,5-dihydro-1H-imidazo]-3-(4-ethoxycarbonylphenyl)urea (3h). From 

1b (1.89 g) 3h (2.51 g, 66% yield) was obtained as a white crystalline solid, mp 154–156 °C; 1H-NMR 

(DMSO-d6): δ = 9.18 (s, 1H, NH); 8.44 (s, 1H, NH); 7.18–7.60 (m, 8H, H-Ar); 4.09–4.20 (d, 2H, C4,  

J = 7.4 Hz); 3.56 (s, 1H, C5); 2.79–2.81 (m, 2H, CH2); 1.97 (s, 3H, CH3); 1.33 (s, 3H, CH3); 1.12–1.25 

(t, 3H, CH3); 13C-NMR (DMSO-d6): δ = 18.2 (CH3); 21.1 (CH3); 22.0 (CH3); 40.2 (CH2); 49.6 C5 

(CH2); 68.0 C4 (CH); 162.1 (C=N); 171.5 (C=O); 119.9, 120.2, 121.6, 122.5, 123.4, 128.1, 122.8, 

127.1, 127.8, 129.0 (C-Ar); EIMS m/z 381.4 [M+H]+. HREIMS (m/z): 380.3510 [M+] (Calcd for 

C21H24N4O3 380.4550); Anal. Calcd for: C21H24N4O3; Anal. Found C, 66.45; H, 6.59; N, 14.81; Calcd 

C, 66.30; H, 6.36; N, 14.73. 

3.1.2. General Procedure to Obtain Compounds 4c, 4g 

1-[1-Methyl-4-(alkyl)phenyl-4,5-dihydro-1H-imidazo]-3-(ethoxycarbonylmethyl)ureas 3c, 3g  

(0.01 mol) were dissolved in methanol (50 mL) and added to 20% aqueous ammonia solution. The 

mixture was shaken for 6 h at room temperature. The solid product was filtrated off and recrystallized 

from propan-2-ol. 

1-(1-Methyl-4-phenyl-4,5-dihydro-1H-imidazo)-3-aminocarbonylmethylurea (4c). From 3c (3.04 g) 4c 

(1.65 g, 60% yield) was obtained as a white crystalline solid, mp 142–144 °C; 1H-NMR (DMSO-d6):  

δ = 9.62 (s, 1H, NH); 8.46 (s, 1H, NH); 8.11–8.16 (d, 2H, NH2); 7.40–7.69 (m, 5H, H-Ar); 3.89 (s, 1H, 

C4), 4.03–4.17 (d, 2H, C5, J = 7.5 Hz); 3.98–4.02 (m 2H, CH2); 2.30 (s, 3H, CH3); 13C-NMR  

(DMSO-d6): δ = 23.8 (CH3); 41.3 (CH2); 49.9 C5 (CH2); 69.8 C4 (CH); 160.3 (C=N); 171.3 (C=O); 

172.5 (C=O); 119.3, 120.3, 121.6, 125.5, 125.9, 128.1, 129.7, 129.9 (C-Ar); EIMS m/z 276.3 [M+H]+. 

HREIMS (m/z): 275.3210 [M+] (Calcd for C13H17N5O4 275.3190); Anal. Calcd for: C13H17N5O4; Anal. 

Found C, 56.45; H, 6.39; N, 25.38; Calcd C, 56.71; H, 6.22; N, 25.43. 

1-[1-Methyl-4-(4-methylphenyl)-4,5-dihydro-1H-imidazo]-3-aminocarbonylmethylurea (4g). From 3g 

(3.18 g) 4g (1.33 g, 46% yield) was obtained as a white crystalline solid, mp 128–130 °C; 1H-NMR 

(DMSO-d6): δ = 9.23 (s, 1H, NH); 8.61 (s, 1H, NH); 8.05–8.11 (d, 2H, NH2); 6.76–7.38 (m, 4H,  

H-Ar); 3.73 (s, 1H, C5), 4.03–4.18 (d, 2H, C4, J = 7.6 Hz); 3.98–4.02 (m 2H, CH2); 2.30 (s, 3H, CH3); 

1.93 (s, 3H, CH3); 13C-NMR (DMSO-d6): δ = 17.5 (CH3); 23.4 (CH3); 40.2 (CH2); 45.0 C5 (CH2); 68.5 

C4 (CH); 160.7 (C=N); 172.1 (C=O); 169.8 (C=O); 118.3, 118.4, 120.1, 127.0, 127.9, 128.1, 129.7, 

131.1 (C-Ar); EIMS m/z 290.5 [M+H]+. HREIMS (m/z): 289.1330 [M+] (Calcd for C14H19N5O2 
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289.3460); Anal. Calcd for: C14H19N5O2; Anal. Found C, 58.23; H, 6.52; N, 24.38; Calcd C, 58.11; H, 

6.61; N, 24.21. 

3.2. Pharmacology 

The experiments were performed on male Albino Swiss mice (18–30 g). The animals were kept  

8–10 to a cage, at room temp. of 20 ± 1 °C, on a 12:12 h dark-light cycle. Standard food (LSM, Motycz, 

Poland) and water were available ad libitum. All experiments were performed between 9:00 a.m.  

and 4:00 p.m. The experiments were performed in accordance with the opinion of Local Ethics 

Committee for Animal Experimentation.  

The investigated substances, 3c, 3h and 4c, were administered intraperitoneally (i.p.) or subcutaneously 

(s.c.) in volume of 10 mL·kg−1 as suspensions in aqueous solution of 0.5% methylcellulose (tylose). 

The compounds were injected 60 min before the tests. The controls received the equivalent volume of 

the solvent. All tests performed, suggested by Vogel and Vogel [18], are generally accepted as basic in 

investigation of the central activity by behavioral methods. The acute toxicity of the compound was 

assessed in mice according to Litchfield and Wilcoxon method [39], as the ED50 calculated as “the lost 

of righting reflex” within 48 h. The compounds were injected in doses equivalent to 0.1, 0.05 and 

0.025 ED50. 

In addition, the activity of compounds was assessed in the following test: (1) locomotor activity  

was measured in photoresistor actometers for single mice for 30 min as spontaneous activity and 

amphetamine-induced hyperactivity: mice received subcutaneusly (s.c.) 5 mg/kg of amphetamine 30 min 

before the test; (2) nociceptive reactions were studied in the acetic acid (0.6%) induced writhing test [40]. 

The number of writhing episodes was measured for 10 min starting 5 min after i.p. administration of 

acid solution; (3) motor coordination was evaluated in rota rod test: [41] motor impairments, defined 

as the inability to remain on the rotating rod for 1 min were measured and the mean time spent on the 

rota-rod was counted for each mouse) and chimney test: [42] motor impairments were indicated by the 

inability to perform the test within 1 min); (4) body temperature in normothermic mice was measured 

in the rectum by thermistor thermometer; (5) pentylenetetrazole (110 mg/kg, s.c.)-induced convulsions 

were evaluated as the number of mice with clonic seizures, tonic convulsions and dead animals;  

(6) head twitch responses (HTR) after 5-hydroxytryptophan (L-5-HTP), were estimated acc. to  

Corne et al. [43]. Mice received L-5-HTP (230 mg/kg, i.p.) and the number of HTR was recorded in  

6 two-minutes intervals (4–6, 14–16, 24–26, 34–36, 44–46, 54–56 min). 

The obtained data were calculated by Fisher exact test (pentylenetetrazole-induced seizures),  

two-way analysis of variance (ANOVA) and followed by a post hoc confirmation with the Bonferroni 

test (body temperature), and one-way ANOVA followed by Dunnett’s post hoc test (other tests). 

3.3. Molecular Modeling 

The compounds investigated were modeled using the LigPrep protocol from the Schrödinger Suite [44]. 

In order to sample different protonation states of ligands in physiological pH, Epik module was used [45]. 

Parameters to evaluate drug-likeness were calculated using VegaZZ v. 3.0.1 [46] (number of atoms), 

Discovery Studio v. 3.1. [47] (molar mass, number of rings, lipophilicity, number of rotatable bonds), 

ACDLabs (molar refractivity, number of hydrogen bond donors and acceptors), and the Schrödinger 
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Suite (a number of rigid bonds) as described previously [2,12,13]. Drug-likeness was also evaluated 

with Osiris Property Explorer [16]. This approach is based on a list of about 5300 distinct substructure 

fragments with associated drug-likeness scores. The drug-likeness is calculated summing up score 

values of those fragments that are present in the molecule under investigation. ADMET parameters 

were calculated with Discovery Studio 3.1 (solubility, blood-brain permeation) or Osiris Property 

Explorer [16] (toxicity risks). The prediction of toxicity by this tool relies on a precomputed set of 

structural fragment that give rise to toxicity alerts in case they are encountered in the investigated 

structure. For structure–activity relationship studies, HOMO and LUMO energies and polarizabilty 

were calculated with Discovery Studio 3.1 and molar surface, volume, ovality and polar surface area 

were calculated with VegaZZ as reported earlier [2,12,13]. The maps of the electrostatic potential 

(ESP) onto a surface of the electron density were visualized with ArgusLab [48]. 

4. Conclusions 

In conclusion, we have designed and studied 10 compounds and one of them exhibited antinociceptive 

properties probably connected with the opioid system accompanied by serotoninergic properties. Further 

studies are necessary to investigate the molecular mechanism for this compound which will enable to 

apply structure-based design methods to obtain more favorable modifications. 
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