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Abstract: The interaction of the G-2 poly(ethylene imine) dendrimer L, derived from ammonia 

as initiating core, with Hg(II) and HgCl4
2− was studied in aqueous solution by means of 

potentiometric (pH-metric) measurements. Speciation of these complex systems showed that 

L is able to form a wide variety of complexes including 1:1, 2:1, 3:1 and 3:2 metal-to-ligand 

species, of different protonation states, as well as the anion complexes [(H7L)HgCl4]5+ and 

[(H8L)HgCl4]6+. The stability of the metal complexes is very high, making L an excellent 

sequestering agent for Hg(II), over a large pH range, and a promising ligand for the preparation 

of functionalized activated carbons to be employed in the remediation and the prevention of 

environmental problems. 
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1. Introduction 

Mercury and most of its compounds are highly toxic. They can be absorbed through the skin and 

mucous membranes, while mercury vapours and volatile derivatives can be inhaled [1]. Mercury is 

mainly emitted into the air by industries that burn fossil fuels, particularly coal, and by incomplete 

incineration of wastes containing inorganic mercury. Over the years, however, different chemical 
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manufacturers and other industrial facilities, have contributed to mercury contamination of the 

environment. A famous environmental disaster occurred in Japan, where dumping of mercury 

compounds into Minamata Bay from 1932 to 1968 caused severe poisoning symptoms or death to more 

than 3000 people from what became known as Minamata disease [2]. Concentrations of mercury up to 

3.6 μg/L were measured in seawater of Minamata Bay from 1960 to 1962, when mercury was still being 

discharged into the bay [3,4], and this caused contamination levels as high as 35.7 ppm in marine 

products in the bay, while extremely higher mercury levels were found in the tissues (up to 705 ppm in 

hair) of the poisoned coastline inhabitants [5]. Notwithstanding that, one of the largest sources of 

mercury intake by people is still a fish-based diet, since fishes, in particular large size ones, accumulate 

mercury from the aqueous environments where they live.  

Hg(II), its chloride complexes present in seawater and methylmercury(II), which is formed in the 

environment by microbial metabolism and by abiotic chemical reactions involving inorganic mercury, 

are the main polluting forms of mercury [6–8]. Considering the severe problems generated by this metal 

to biological systems, it is an important task to find methods of removing these undesirable compounds 

from the environment and from toxic waste and to find efficient chelation therapies to treat contaminated 

human beings. 

It was shown that activated carbon functionalized with polyamine molecules can be efficiently used 

for the recovery of both metal ions [9–11] and inorganic anions [12], including HgCl4
2−, from aqueous 

media. Such particular behaviour is due to the dual nature of the polyamine functionalities that are able 

to coordinate metal ions when they are completely or partially deprotonated and to bind anions, through 

electrostatic and hydrogen bonds, when they are extensively protonated. Among polyamines, dendrimeric 

ones are able to coordinate large numbers of metal ions, forming stable complexes, thanks to the many 

amine groups they contain and to their branched structures. For instance, we have recently shown that 

even the small poly(ethylene imine) dendrimer L (Figure 1) can bind two metal ions such as Ni(II), 

Zn(II) and Cd(II) and up to three Cu(II) ions [13]. The same ligand is also able to bind inorganic and 

organic anions and to form ion-pair complexes [14,15]. Accordingly, polyamine dendrimers display the 

appropriate binding properties for the recovery of both metal ions and anions from aqueous solutions and, 

as a matter of fact, it has been demonstrated that activated carbons functionalized with polyalkylamines 

display excellent performance as Pd(II) scavengers in water [10]. 

 

Figure 1. The G-2 poly(ethylene imine) dendrimer L. 

For this reason, we have studied the interaction of L with Hg(II) and HgCl4
2− to assess the ability of 

this ligand to sequestrate these ions in view of a possible use of the dendrimer to prepare functionalized 
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activated carbons for the remediation of aqueous media contaminated by inorganic mercury. We describe 

here the results of this study. 

2. Results and Discussion 

Speciation of the Hg(II)/L systems and determination of the relevant stability constants were performed 

by means of pH-metric (potentiometric) titrations (0.1 M Me4NCl, 298.1 ± 0.1 K) and analysis of the 

associated data by means of the computer program HYPERQUAD [16] which furnished the stability 

constants collected in Table 1. A medium containing high chloride concentration (0.1 M) was adopted 

both to facilitate the determination of the large stability constants of Hg(II) complexes and to furnish 

information about Hg(II) complexation by L in aqueous media with high chloride levels, like seawater. 

Table 1. Equilibrium constants (with standard deviations in parentheses) for the complexes 

formed by L with Hg(II) and HgCl4
2−, determined in 0.1 M Me4NCl aqueous solution at 

298.1 K. 

Equilibria logK 

L + Hg2+ = HgL2+ 28.17(5)
HgL2+ + H+ = HgLH3+ 9.64(6) 

HgLH3+ + H+ = HgLH2
4+ 8.91(7) 

HgLH2
4+ + H+ = HgLH3

5+ 8.45(5) 
HgLH3

5+ + H+ = HgLH4
6+ 6.13(4) 

HgLH4
6+ + H+ = HgLH5

7+ 4.85(5) 
L + 2Hg2+ = Hg2L4+ 48.38(8)

Hg2L4+ + H+ = Hg2LH5+ 9.41(9) 
Hg2LH5+ + H+ = Hg2LH2

6+ 6.63(6) 
HgL2+ + Hg2+ = Hg2L4+ 20.21(9)
2L + 3Hg2+ = Hg3L2

6+ 79.4(1) 
Hg3L2

6+ + H+ = Hg3HL2
7+ 10.4(2) 

Hg3L2H7+ + H+ = Hg3L2H2
8+ 9.0(2) 

Hg2L4+ + HgL2+ = Hg3L2
6+ 2.9(2) 

L + 3Hg2+ = Hg3L6+ 66.74(5)
Hg3L6+ + OH− = Hg3LOH5+ 4.83(8) 

Hg2L4+ + Hg2+ = Hg3L6+ 18.36(8)
H7L7+ + HgCl4

2− = [(H7L)HgCl4]5+ 2.7(1) 
H8L8+ + HgCl4

2− = [(H8L)HgCl4]6+ 2.8(1) 

The results shown in the table evidence the ability of L to form a variety of complexes with Hg(II), 

including 1:1, 3:2, 2:1 and 3:1 metal-to-ligand species, of different protonation states, as well as the 

anion complexes [(H7L)HgCl4]5+ and [(H8L)HgCl4]6+. Cumulative species distribution diagrams 

calculated [17,18] for the formation of these complexes in 1:1, 3:2, 2:1 and 3:1 metal-to-ligand molar 

ratios (R), under the experimental conditions adopted for the potentiometric measurements, are shown 

in Figure 2. In these diagrams, the percentage of the overall concentration of complexes with a particular 

metal-to-ligand stoichiometry (all protonation states) are represented as a function of pH. Distribution 

diagrams showing the formation of the individual species are reported in the Supplementary Material 

(Figures S1–S4). As can be seen in Figure 2, in a solution containing Hg(II) and L in 1:1 molar ratio  
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(R = 1), the mononuclear complexes are the main species above pH 4.5 becoming the only species from 

pH 8 above (Figure 2a). Increasing R, complexes of higher nuclearity (greater number of metal ions) 

become of increasing importance (Figure 2b–d), until for R = 3 only trinuclear complexes are formed in 

alkaline media (Figure 2d). The adducts formed by the anionic HgCl4
2− species are always present in 

acidic solutions (pH < 5) and their formation increases with increasing R. It is interesting to note that, 

even for R > 1, mononuclear complexes are the main species in solution around pH 5. This is due to the 

very high stability of the HgL2+ complex (logK = 28.17) and to the high tendency of this complex to 

bear protonation forming stable species (Table 1) that strongly compete, in this pH region, with the 

binding of additional metal ions. 

 

Figure 2. Cumulative distribution diagrams for the system Hg(II)/L. (a) [Hg(II)] = [L] =  

1 × 10−3 M; (b) [Hg(II)] = 1.5 × 10−3 M, [L] = 1 × 10−3 M; (c) [Hg(II)] = 2 × 10−3 M,  

[L] = 1 × 10−3 M; (d) [Hg(II)] = 3 × 10−3 M, [L] = 1 × 10−3M. [Cl−] = 0.1 M in all cases. 

Protonation of primary amine groups in the free ligand L was shown to occur with equilibrium 

constants logK ≥ 8.32, while tertiary ones undergo protonation with logK ≤ 5.69 [13]. Table 1 shows 

that the first three successive protonation constants of HgL2+ are greater than the limiting value  

(logK ≥ 8.32) for protonation of primary nitrogens and, accordingly these three protonation stages should 

involve primary amine groups that are not engaged in metal coordination. The fourth protonation 

constant (logK = 6.13 for HgLH3
5+ + H+ = HgLH4

6+, Table 1) is intermediate between the limiting logK 

values for protonation of primary and tertiary amine groups of L. Nevertheless, considering that in the 

complex, the ligand is not able to expand its structure to minimize the electrostatic repulsion between 

positive charges as it is able to do it in its metal-free form, even this fourth protonation stage can be 

ascribed to an uncoordinated primary nitrogen. Successive protonation, the fifth one, has a logK value 

typical of tertiary amine group. All in all, we can reasonably conclude that, in HgL2+, the metal ion is 

coordinated to five ligand donor atoms, while four primary and one tertiary nitrogen atoms keep 
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uncoordinated. By similar reasoning, it is possible to draw some conclusions about the coordinated donor 

atoms in the different complexes and propose the coordination scheme depicted in Figure 3. 

 

Figure 3. Schematic representation of the coordination environments suggested for the Hg(II) 

complexes formed by L in solution.  

This coordination scheme is consistent with previous results obtained with Ni(II), Zn(II), Cd(II) and 

Cu(II) and with the crystal structures of the Ni3L2
6+ and Cu3L6+ complexes [13]. It was reported that 

Ni(II), Zn(II), Cd(II) and Cu(II) form mono- and binuclear complexes with L, while only Cu(II) forms 

trinuclear species and Ni(II), Zn(II) and Cd(II) form 3:2 metal-to-ligand complexes [13]. Interestingly, 

Hg(II) forms the whole variety of species and all of them (HgL2+, Hg3L2
6+, Hg2L4+, Hg3L6+) are 

considerably more stable than the corresponding complexes formed by the other metal ions. 

As far as the sequestering ability of L toward Hg(II) is considered, we note that the stability constant 

of the HgL2+ complex (logK = 28.17, Table 1) ranks among the highest values shown by the most 

efficient chelating agents used for Hg(II) sequestration [19,20]. Furthermore, the ligand is able to sustain 

the coordination of two additional Hg(II) ions, the corresponding equilibrium constants being still very 

high (logK = 20.21 for HgL2+ + Hg2+ = Hg2L4+ and logK = 18.36 for Hg2L4+ + Hg2+ = Hg3L6+, Table 1), 

thus making L an excellent sequestering agent for Hg(II). For instance, calculations performed by means 

of the computer program HYSS [21] show that upon addition of a millimolar amount of L to an aqueous 

solution of Hg(II), in a concentration corresponding to the maximum level recorded for the Minamata 

Bay seawater (3.6 μg/L) and in the presence of Cl− at the common 0.6 M concentration of seawater, the 
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overall concentration of free mercury (Hg(II), HgCl+, HgCl2, HgCl3
−, HgCl4

2−) is reduced to 1.8 ng/L at 

pH 7, to 0.06 ng/L at pH 7.5 and to 0.02 ng/l at pH 8, despite the strong competitive effect of chloride. 

Furthermore, under the same conditions but in the absence of chloride, the concentration of free mercury 

at these pH values is negligible, becoming appreciable only in very acidic solutions (5 × 10−5 ng/L at  

pH 3). In more alkaline media (pH > 8) the binding ability of L is even greater. 

3. Experimental Section  

3.1. General 

All starting materials were high purity compounds purchased from commercial sources and used as 

supplied. Ligand L was synthetized according to a previously described procedure [13]. 

3.2. Potentiometric Measurements 

Potentiometric (pH-metric) titrations, used to determine equilibrium constants, were performed in  

0.1 M Me4NCl aqueous solution at 298.1 ± 0.1 K by using an automated system and a procedure already 

described [13]. The combined Metrohm 6.0262.100 electrode was calibrated as a hydrogen-ion 

concentration probe by titration of previously standardized amounts of HCl with CO2-free NMe4OH 

solutions and determining the equivalent point by Gran’s method [22], which gives the standard 

potential, E°, and the ionic product of water (pKw = 13.83(1) in 0.1 M Me4NCl at 298.1 K). A chloride 

containing medium (0.1 M from the electrolyte) was adopted to take advantage from the competing 

coordinative effect of chloride in determining the high stability constants of Hg(II) complexes. The 

computer program HYPERQUAD [16] was used to calculate complex stability constants. Five titrations 

were performed in the pH range investigated (2.5–11.0) with 1 × 10−3 M ligand concentration and Hg2+ 

concentration in the range 0.5[L] ≤ [Hg2+] ≤ 2.8[L]. The different titration curves were treated as 

separated curves without significant variations in the values of the common stability constants. Finally, 

the sets of data were merged together and treated simultaneously to give the final stability constants. The 

hydrolysis of metal ion was considered in calculations. Different equilibrium models for the complex 

systems were generated by eliminating and introducing different species. Only those models for which 

the HYPERQUAD program furnished a variance of residuals σ2 ≤ 9 were accepted. This condition was 

unambiguously met by a single model. Ligand protonation constants (logK = 10.16, 9.98, 9.25, 9.22, 

8.57, 8.32, 5.69, 2.60) [13] and stability constants of Hg(II) chloride complexes [19] were taken from 

the literature. 

4. Conclusions 

The G-2 poly(ethylene imine) dendrimer L is able to bind Hg(II) forming complexes with 1:1, 3:2, 

2:1 and 3:1 metal-to-ligand stoichiometries. In acidic solution and in the presence of chloride anions,  

the protonated species H7L7+ and H8L8+ interact with HgCl4
2− to form the [(H7L)HgCl4]5+ and 

[(H8L)HgCl4]6+ anion complexes. The stability of the Hg(II) complexes is very high, much higher than 

the stability previously found for the analogous complexes with Ni(II), Zn(II), Cd(II) and Cu(II), and 

ranks among the highest values shown by the most efficient chelating agents used for Hg(II) 

sequestration. High stability is also observed for protonated Hg(II) complexes with L, which makes this 
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polyamine dendrimer an excellent sequestering agent for Hg(II) from acidic to alkaline conditions. 

Accordingly, L is a promising ligand for the preparation of functionalized activated carbons to be 

employed in the decontamination of polluted waters containing Hg(II), even in the presence of high 

chloride concentrations, like in seawater, and in a wide pH range. The preparation of such hybrid material 

and its application will be the subject of a future study. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/20/03/3783/s1. 
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