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Abstract: We present a comparative density functional tight binding study of an organic 

molecule attachment to TiO2 via a carboxylic group, with the example of acetic acid. For 

the first time, binding to low-energy surfaces of crystalline anatase (101), rutile (110) and  

(B)-TiO2 (001), as well as to the surface of amorphous (a-) TiO2 is compared with the 

same computational setup. On all surfaces, bidentate configurations are identified as 

providing the strongest adsorption energy, Eads = −1.93, −2.49 and −1.09 eV for anatase, 

rutile and (B)-TiO2, respectively. For monodentate configurations, the strongest  

Eads = −1.06, −1.11 and −0.86 eV for anatase, rutile and (B)-TiO2, respectively. Multiple 

monodentate and bidentate configurations are identified on a-TiO2 with a distribution of 

adsorption energies and with the lowest energy configuration having stronger bonding than 

that of the crystalline counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for 

monodentate adsorption. Amorphous TiO2 can therefore be used to achieve strong 

anchoring of organic molecules, such as dyes, that bind via a -COOH group. While the 

presence of the surface leads to a contraction of the band gap vs. the bulk, molecular 

adsorption caused no appreciable effect on the band structure around the gap in any of  

the systems. 
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1. Introduction 

Titanium oxide is widely used in various electrochemical technologies, namely heterogeneous 

catalysis and photocatalysis [1,2], fuel cells [3,4], solar cells (dye-sensitized, DSSC [5–9], and 

perovskite-sensitized, PSSC [10,11]) and electrochemical batteries [12–18]. It is relatively abundant, 

inexpensive, safe and possesses a band structure suitable for these electrochemical and photocatalytic 

applications [19]. The three most stable phases are usually employed: anatase, rutile and (B). In all of 

these applications, molecules interact with titania surfaces. While some higher-energy, higher-index 

surfaces are sometimes explored [20,21], most applications have relied on low-energy anatase (101), 

rutile (110) and (B) (001) surfaces [1,2,22–24], which is justified by the ease of synthesis and stability.  

In the applications in DSSC anodes, as well as in studies of carboxylic acids on TiO2, molecules 

typically bind to TiO2 via the -COOH group, with bidentate bridging and monodentate configurations 

dominating [9,25–30]. Bidentate chelating configurations are sometimes considered, but are usually 

much less stable [9,25,31,32]. Adsorption of organic molecules via a carboxylic moiety is also 

important for other applications. For example, the 21 amino acids possess the -COOH group, which 

plays a role in adsorption on TiO2. These interactions are of interest for the development of 

biocompatible and bio-inspired nanostructured materials [33]. A key parameter of the interaction of 

molecules with TiO2 surfaces is binding strength. It controls the stability of DSSC anodes, as well as 

the degree of electronic coupling, which directly influences the electron transfer rate [26,34]. It also 

controls the reaction rates in catalytic applications [1,2]. The ability to control or to strengthen binding 

by the choice of a specific TiO2 surface is therefore important in all of these applications.  

Applications of these crystalline phases and surfaces have also been supported by extensive 

theoretical and computational studies [35–39] and, specifically, studies of molecular adsorption via the 

carboxylic group onto selected crystalline phases [9,25–29,31,32]. Amorphous titania (a-TiO2) has 

recently attracted interest for its use in the dye-sensitized technology [40–42], as well as in 

electrochemical batteries [43–48] and in photocatalysis [49]. These studies indicate that a-TiO2 may be 

advantageous in these applications for several reasons. For example, the rate capability of battery 

electrodes made of nanostructured amorphous TiO2 was found to be higher than that of nanostructured 

anatase TiO2 due to the higher Li-diffusion coefficient in amorphous TiO2 [44,47]. a-TiO2 has also 

been shown to possess a distribution of binding energies to Li, Na and Mg, with the lowest binding 

energy stronger than that of the anatase, rutile and (B) phases [50,51]. The same might hold for 

molecular adsorption and needs to be quantified. The presence of amorphous TiO2 in the anodes of 

DSSC has been shown to improve conversion efficiency [42]. Low-crystallinity TiO2 DSSC anodes have 

shown a high open circuit voltage and low recombination [41]. a-TiO2 could also be a cheaper 

alternative to crystalline phases for photocatalytic applications, as it possesses similar band gap 

characteristics to anatase [49,52].  
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There are still few computational studies of the properties of a-TiO2 relevant for these  

applications [40,49–53]. Specifically, there are no ab initio studies comparing at the same level of 

theory and with the same computational parameters the adsorption of organic molecules on the 

surfaces of all of the phases of TiO2 that are finding use in electrochemical technologies, i.e., anatase, 

rutile, (B) and amorphous. As ab initio methods still possess only semi-quantitative accuracy, results 

obtained with different phases in different studies using different computational setups are not directly 

comparable. Here, we present a study that compares with the same computational setup the adsorption 

of a prototypical organic molecule endowed with a -COOH anchoring group (acetic acid) to low 

energy crystalline surfaces, namely, anatase (101), rutile (110) and (B) (001), and to amorphous 

surfaces. We therefore aim to compare for the first time the adsorption modes among different phases 

and to understand the effect of amorphization on the geometries and binding strength of molecules.  

2. Theoretical and Computational Methods  

Calculations were performed using the self-consistent charge density functional tight binding 

scheme (SCC-DFTB) [54] and the DFTB + code [55]. SCC-DFTB is an approximate DFT approach 

derived from a second-order expansion of the DFT energy with respect to charge density fluctuations 

and provides ab initio accuracy for systems for which it is parameterized. We used the parameter set 

(Slater–Koster files) “matsci-0-3”, which has been benchmarked, in particular, for TiO2 and for 

organic molecules interacting with TiO2 [56].  

For bulk TiO2 calculations, we used conventional standard cells with 4, 2 and 8 formula units for 

anatase, rutile and (B), respectively. The Brillouin zone was sampled with a k-point density no less 

than one point per 30−1 Å−1. Converged results were obtained with 10 × 10 × 5, 8 × 8 × 12, and 3 × 10 × 6 

k-points for anatase, rutile and (B), respectively. The initial structure of a-TiO2 was taken from [52] 

and re-optimized within the present setup. A 192-atom supercell of a size of about 13 × 13 × 13 Å was 

used, and converged results were obtained with 3 × 3 × 3 k-points. 

Anatase (101), rutile (110) and B (001) low-energy surfaces were modeled with slabs of a thickness 

of at least 13 Å, which are shown in Figures 2–4. The lateral (xy) extent of the supercell was about  

10.5 × 11.5 Å, 12 × 13 Å and 12.5 × 11.3 Å, for anatase, rutile and (B), respectively. The top half of 

the slab (in the z direction) was optimized, and the bottom half held at bulk positions during 

optimization. The amorphous surfaces were obtained from the bulk supercell by adding a vacuum in 

the z direction. Two surfaces were obtained by optimizing the top/bottom half and fixing the 

bottom/top half of the slab; these are labeled as “top” and “bottom” surfaces. This is a similar approach 

to that used in [53]. All surface supercells were 30 Å in the z direction, and 3 × 3 × 1 k-points were 

used. Acetic acid molecules were then positioned above the surfaces in various configurations with the 

COOH group in monodentate or bidentate binding to the surface and optimized with DFTB. We here 

focus on bidentate binding in bridging configurations, which are known to be much more stable than 

chelating configurations [9,25,31,32].  

The adsorption energy (Eads) of AcOH on top of all of the surfaces here considered has been  

calculated as:  ܧ௔ௗ௦ = ௦௨௥௙ܧ ା ஺௖ைு − ൫ܧ௦௨௥௙ + ஺௖ைு൯ (1)ܧ
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where Esurf, EAcOH and Esurf + AcOH represent the energy of, respectively, the optimized surface, a free 

optimized acetic acid molecule and of the final optimized anchored system formed by the surface and 

acetic acid.  

3. Results and Discussion 

3.1. TiO2 Bulk and Surfaces  

Anatase: The cell vectors of the optimized bulk anatase (conventional standard cell) are a = b = 3.81 Å, 

c = 9.73 Å, in good agreement with previously reported experimental and computed values [57–61]. 

The energy per formula unit is −215.181 eV. The density of states is shown in Figure 1 and shows a 

band gap of about 3.2 eV, in good agreement with experimental values of 3.2–3.3 eV [62] and prior 

DFTB calculations [63]. The presence of the (101) surface causes a contraction of the band gap by 

about 0.5 eV. 

 

Figure 1. The densities of states (DOSs) of bulk anatase, rutile, (B) and a-TiO2 and their 

surfaces, as well as surfaces with AcOH adsorbed in different configurations (described in 

Section 3.1). For each phase, the zero of the energy axis corresponds to the Fermi energy in 

the bulk, and the DOSs of surfaces are plotted to match the valence band maximum. 

Gaussian broadening of 0.1 eV. For a-TiO2, only the “top” surface data are shown. The 

curves for the “bottom” surface are qualitatively similar. For (B)-TiO2 and a-TiO2, curves 

for the selected adsorption configurations are shown; the curves for other adsorption 

configurations are similar. For anatase and rutile, the DOSs for nanosheets (“NS”) are  

also shown. 
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Rutile: The cell vectors of the optimized rutile phase are a = b = 4.61 Å, c = 2.97 Å, in good 

agreement with previously reported values [57,58,61]. The density of states is shown in Figure 1 and 

shows a band gap of about 3.1 eV, in good agreement with reported values of about 3 eV [22,64–66] 

and consistent with that of anatase. The energy per formula unit is −215.481 eV. The calculations 

therefore correctly reproduce the anatase-rutile phase ordering, albeit with a difference of 0.1 eV per 

atom, which is higher than the reported values of 0.012–0.015 eV [67,68]. This, however, is not critical 

for the present purpose of studying molecular adsorption. This accuracy is also comparable with that of 

previously reported DFT values for cohesive energies ranging from −18.77 to −21.44 eV [69,70] for 

rutile and from −21.54 to −21.60 eV [70,71] for anatase. The presence of the interface ((110) surface) 

causes a contraction of the band gap by about 1.5 eV. 

(B): The cell parameters of the optimized (B) phase are a = 12.45 Å, b = 3.76 Å, c = 6.69 Å,  

α = γ = 90°, β = 107.3°, in good agreement with previously reported values [22,72]. The density of 

states is also shown in Figure 1 and shows a band gap of about 3.1 eV, in good agreement with the 

experimental value of 3.2 eV [73]. The energy per formula unit is −215.365 eV, i.e., similar to 

previous ab initio calculations, we obtain that (B) is more stable than anatase, although this is in 

contradiction with the low abundance of (B) relative to anatase and rutile [22,57]. The effect of the 

(001) surface on the band structure is the least significant among the three crystalline phases, 

decreasing the band gap by about 0.3 eV. This can be rationalized by the low surface energy of this 

surface [22], as well as by the substantial slab thickness we used (6 Ti layers vs. 4 Ti layers for the 

rutile (110) slab, which shows the strongest effect of the surface on the gap; see Figures 2–4). 

a-TiO2: The optimization in DFTB+ resulted in some atomic relaxation, but largely preserved the 

original structure of [52]. The energy per formula unit is −214.795 eV, i.e., metastability by about  

0.13 eV per atom vs. anatase, similar to that reported in [52]. The density of states shown in Figure 1 for 

bulk a-TiO2 shows a similar gap of about 3 eV to that of the crystalline phases, similar to the report of [52]. 

The introduction of the surface gives rise to multiple states in the band gap, also shown in Figure 1. 

The reduction of the bandgap is partly due to the limited thickness of the slab and the fixation of the 

bottom layers. The reduction is much less severe if all atoms are allowed to relax (i.e., a nanosheet 

model), as shown in Figure 1 for anatase and rutile (orange lines). We have also performed a plane 

wave DFT calculation on the same slab of anatase (surface and nanosheet) using the Vienna ab initio 

simulation package (VASP) code [74–77], the PBE functional [78], PAW pseudopotentials [79] and a 

cutoff energy of 600 eV and confirmed that the same effect is observed. Similar to DFTB results, no 

significant effect on the densities of state (DOS) of molecular adsorption was observed. 

3.2. Adsorption Configurations of AcOH and Energetics  

Anatase (101): Similar to previous works [31,80], a bidentate (BB) and two monodentate 

configurations (M1 and M2) were identified. These are shown in Figure 2, and their adsorption 

energies are listed in Table 1. The BB mode is therefore preferred. In the bidentate configuration, both 

oxygen atoms of the carboxylic group bind to surface Ti atoms with both Omol-Ti bonds equal to 2.22 Å. 

The H atom is dissociated from the molecule and is bound to a surface oxygen. In the monodentate 

configurations, the molecules are undissociated, with Omol-Ti bonds of 2.26 Å and hydrogen bonds 

between the H atom and a surface oxygen of 1.62 Å, in both M1 and M2 configurations. Molecular 
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adsorption has no appreciable effect on the band structure around the gap regardless of the 

configuration (Figure 1). 

   

Figure 2. Adsorption configurations of AcOH on the anatase (101) surface of TiO2: 

bidentate (BB) (left), M1 (monodentate) (middle) and M2 (right). The atom color code 

here and elsewhere: Ti, blue; O, red; C, brown; H, light grey. Visualization here and 

elsewhere by VESTA [87]. 

For AcOH on anatase (101), we can compare the adsorption energies computed with DFTB (Table 1) 

to previous DFT calculations. Using the SIESTA code [81], the PBE functional [78], broad DZP basis 

functions and Troullier–Martins pseudopotentials [82], Chan et al. computed Eads of −1.71, −1.56 and 

−1.50 eV for the BB, M1 and M2 configurations, respectively, using a thinner slab than in the present  

study [80]. Spreafico et al. [30] computed Eads values of −1.25 and −1.27 eV for the BB and M1 

configurations, respectively, by using the CP2K code [83], the PBE functional, Goedecker 

pseudopotentials [84], a mixed Gaussian-plane wave (GPW) basis [85], also employing the dispersion 

correction scheme of Grimme [86]. The values were also dependent on slab size [30]. In [31], the 

adsorption strength of the M1, M2 and BB modes was compared with different DFT setups, including 

a cluster of slab TiO2 models, localized or plane wave basis functions and GGA or hybrid functionals. 

The stability of M1 and M2 relative to BB was ± 0.5 eV [31]. We have also made a plane-wave DFT 

calculation with VASP [74–77], using the PBE functional, PAW pseudopotentials [79] and a plane 

wave cutoff of 600 eV. We obtained Eads values of −0.91, −0.95 and −0.91 eV for M1, M2 and BB 

configurations, respectively. The differences in the values of Eads of the order of half an eV observed 

among different commonly accepted DFT setups, including differences of the order of 0.5 eV in relative 

Eads for different adsorption configurations, highlight the need to use one and the same setup to obtain 

truly comparative values of Eads among different phases and configurations. Interestingly, a measured 

infrared spectrum of AcOH on the anatase (101) surface pointed to bidentate adsorption [31]. 
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Table 1. Adsorption energies Eads of AcOH in different configurations on anatase (101), 

rutile (110) and (B) (001) surfaces of TiO2, as well as on two amorphous surfaces. The 

bond length for bonding between the molecule’s and surface atoms, as well as charges on 

the molecule q are also given. For bidentate configurations, the two bond lengths are  

Omol-Ti; for monodentate, they are Omol-Ti and H-Osurf. 

System Eads, eV q, |e| Omol-Ti, Å Omol-Ti/H-Osurf, Å 

Anatase (101) 

BB −1.93 −0.12 2.22 2.22 
M1 −0.93 0.16 2.26 1.62 
M2 −1.06 0.17 2.26 1.62 

Rutile (110) 

BB −2.49 −0.11 2.21 2.21 
M1 −1.04 0.17 2.26 1.60 

M2B −1.11 0.34 2.27 2.29 

B (001) 

BB1 −0.74 −0.17 2.24 2.25 
BB2 −0.41 −0.18 2.25 2.25 
BB3 −1.07 −0.16 2.23 2.24 
M1 −0.78 0.17 2.27 1.83 
M2 −0.79 0.18 2.27 1.87 
M3 −0.86 0.19 2.27 1.97 
M4 −0.70 0.17 2.27 1.87 
M5 −0.79 0.19 2.27 2.08 
M6 −0.75 0.18 2.27 1.86 

a-TiO2 

top BB1 −2.60 0.03 1.93 2.25 
top BB2 −3.56 0.00 1.94 2.24 
top BB3 −2.96 −0.03 1.93 2.27 
top M1 −2.20 0.33 1.96 1.60 
top M2 −2.40 0.35 1.95 1.60 
top M3 −2.38 0.35 1.95 1.63 
top M4 −0.97 0.18 2.26 1.63 
top M5 −0.80 0.16 2.26 1.62 

bottom BB1 −4.43 0.04 1.91 1.95 
bottom BB2 −4.92 0.08 1.97 2.00 
bottom BB3 −0.28 −0.07 2.21 2.22 
bottom M1 −1.18 0.18 2.25 1.69 
bottom M2 −0.84 0.14 2.25 1.63 
bottom M3 −1.53 0.19 2.23 1.62 
bottom M4 −1.83 0.14 1.93 1.77 

Rutile (110): Two bidentate (BB and M2B) and a monodentate configuration (M1) are identified. 

These are shown in Figure 3, and their adsorption energies are listed in Table 1. In the bidentate BB 

configuration, both oxygen atoms of the carboxylic group bind to surface Ti atoms with both Omol-Ti 

bonds equal to 2.21 Å. The H atom is dissociated from the molecule and is bound to a surface oxygen. 
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In the monodentate configuration (M1), the molecule is undissociated, with Omol-Ti bonds of 2.26 Å 

and hydrogen bonds between the H atom and a surface oxygen of 1.60 Å. The configuration M2B was 

attempted as a monodentate configuration, where the molecular hydrogen coordinates to an in-plane 

oxygen atom of TiO2. This configuration, however, converged to a bidentate configuration in which 

AcOH preserves the H atom and in which a hydrogen atom of the CH3 group is 2.21 Å away from a 

surface O atom. This configuration is less stable than the dissociated bidentate configuration by more 

than 1 eV and has larger Omol-Ti bond lengths (2.27 and 2.29 Å) than the dissociated configuration. 

Similar to anatase, molecular adsorption has no appreciable effect on the band structure regardless of the 

configuration (Figure 1). The energetic preference of AcOH for bidentate configurations computed 

here (Table 1) is in agreement with known preference for bidentate bridging adsorption on the clean 

(110) surface identified experimentally [88,89]. 

   

Figure 3. Adsorption configurations of AcOH on the rutile (110) surface of TiO2: BB 

(left), M1 (middle) and M2B (right). 

(B) (001): Three bidentate (BB1 to BB3) and six monodentate configurations (M1 to M6) were 

identified and are shown in Figure 4. Their adsorption energies are listed in Table 1. BB1 and BB2 

configurations, while visually similar, differ in that the COO group straddles different types of surface 

oxygen atoms, located in a slightly more “sagged” or slightly more protruding oxygen rows, 

respectively. This corresponds to significantly different Eads (−0.74 and −0.41 eV, respectively). The 

strongest bound configuration (Eads = −1.11 eV) is BB3, which straddles different Ti rows. In the BB 

configurations, both oxygen atoms of the carboxylic group bind to surface Ti atoms with both Omol-Ti 

bond lengths within 2.23–2.25 Å, with the shortest lengths corresponding to the strongest-bound BB3 

configuration. In all monodentate configurations, the Omol-Ti bond length is 2.27 Å; the Hmol-Osurf 

bonds are spread within 1.86–2.08 Å. Similar to anatase and rutile, molecular adsorption has no 

appreciable effect on the band structure regardless of the configuration (Figure 1; not all M 

configurations are shown to prevent clutter, but no configuration changed the DOS). 
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Figure 4. Adsorption configurations of AcOH on the (B) (001) surface of TiO2. Top row: 

BB1 to BB3 (left to right). Bottom rows: M1 to M6 (left to right and top to bottom).  

a-TiO2: On both surfaces of a-TiO2 (“top” and “bottom”), we have identified a total of six bidentate 

and nine monodentate configurations. They are shown in Figures 5 and 6, and their adsorption energies 

are listed in Table 1. While it is possible that other adsorption configurations exist on these surfaces, 

the 15 that we identified already provide an understanding of the strength of binding and the spread of 

adsorption energies on different sites of amorphous TiO2. Similar to the crystalline surfaces, bidentate 

binding is energetically preferred. The Omol-Ti bonds in BB configurations are generally shorter than 

on crystalline surfaces, the shortest reaching 1.91 Å (Table 1). While there is a dispersion of Eads 

values among both monodentate and bidentate configurations, the strongest Eads is larger than that of 

any crystalline surface in either the monodentate (reaching −1.83 eV) or bidentate (reaching −4.92 eV) 

regimes. Amorphous TiO2 can therefore be used to achieve stable anchoring of organic molecules, 

such as dyes, that bind via a -COOH group. 
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Figure 5. Adsorption configurations of AcOH on the “top” surface of a-TiO2. Top row: 

BB1 to BB3 (left to right). Bottom rows: M1 to M5 (left to right and top to bottom).  

3.3. Correlates of Adsorption Strength  

On all surfaces, bidentate configurations are more strongly bound to the surface than monodentate, 

and from Table 1, it can be seen that increased binding strength generally corresponds to shorter  

molecule-surface distances and more positive charge on the molecule. In Figure 7, we quantify this 

dependence by plotting Eads vs. the molecular charge q. Points corresponding to adsorption on 

amorphous surfaces are highlighted. There is a significant linear trend, with only two outlier points for 

bidentate and one outlier for monodentate configurations, with all outliers corresponding to a-TiO2. 

This is not surprising given the expected differences of the chemical environments of the adsorbed 

molecule in different parts of an amorphous surface. Even so, the correlation is significant, with 

Pearson correlation coefficients (R2) of 0.69 and 0.88 for bidentate and monodentate configurations, 

respectively. Figure 7 also highlights that Eads in excess of −3 eV is only achieved in bidentate modes 

on a-TiO2 and only with positive q values, in contrast with bidentate binding on crystalline surfaces, 
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where the molecule accepts charge (we note that the scales of q should not be directly compared for 

BB and M configurations, as in one case, H is dissociated and in the other, it is not; see Figures 2–6). 

   

    

Figure 6. Adsorption configurations of AcOH on the “bottom” surface of a-TiO2. Top 

row: BB1 to BB3 (left to right). Bottom row: M1 to M4 (left to right).  

 

Figure 7. Dependence of the adsorption energy Eads on the molecular charge q in bidentate 

(left) and monodentate (right) configurations on all surfaces and their linear regressions. 

Points corresponding to a-TiO2 are highlighted in red.  

Trends can also be identified between the adsorption energy and the shorter Omol-Ti distance, with 

correlation coefficients (R2) of 0.69 and 0.88 for bidentate and monodentate configurations, respectively. 

A combined linear regression in these two variables (i.e., charge and bond length) unveils a significant 

R² = 0.74
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correlation with the correlation coefficient of 0.75 and 0.93 for bidentate and monodentate 

configurations, respectively. 

4. Conclusions  

We have presented the first comparative density functional tight binding study of acetic acid 

adsorption on anatase (101), rutile (110), B (001) and amorphous surfaces of TiO2. On all surfaces, 

bidentate bridging adsorption configurations are preferred, consistent with available data. The 

computed adsorption energies of the lowest-energy bidentate configurations Eads = −1.93, −2.49 and 

−1.09 eV on anatase, rutile and (B)-TiO2, respectively. For monodentate configurations, the strongest 

Eads = −1.06, −1.11 and −0.86 eV on anatase, rutile and (B)-TiO2, respectively. The comparison with 

previously reported DFT values for Eads computed with different computational setups highlights the 

need to use one and the same setup to obtain truly comparative values of Eads among different phases 

and configurations. 

Multiple monodentate and bidentate configurations are identified on a-TiO2 with a distribution of 

adsorption energies and with the lowest binding energy stronger than that of the crystalline 

counterparts, with Eads up to −4.92 eV for bidentate and −1.83 eV for monodentate adsorption. 

Amorphous TiO2 can therefore be used to achieve strong anchoring of organic molecules, such as 

dyes, that bind via a -COOH group. While the presence of the surface leads to a contraction of the 

band gap vs. bulk, molecular adsorption caused no appreciable effect on the band structure around the 

gap in any of the systems. 

Then, comparison among five surfaces (three crystalline and two amorphous) and a total of 30 

binding geometries and energies allowed us to identify correlations between the binding strength, the 

charge donation at the interface and bond lengths between molecular and surface atoms. There is a 

strong positive correlation between the adsorption strength and the positive charge on the molecule, as 

well as between Eads and the shortest bond length between molecular O and surface Ti atoms. 
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