
Review

Pharmaceutical Potential of Synthetic and
Natural Pyrrolomycins

Stella Cascioferro 1,2,*, Maria Valeria Raimondi 1, Maria Grazia Cusimano 1,*, Demetrio Raffa 1,
Benedetta Maggio 1, Giuseppe Daidone 1 and Domenico Schillaci 1

Received: 16 October 2015 ; Accepted: 24 November 2015 ; Published: 4 December 2015
Academic Editor: Peter J. Rutledge

1 Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche—Sezione di Chimica e
Tecnologie Farmaceutiche—Università degli Studi di Palermo, Via Archirafi 32, Palermo 90123, Italy;
mariavaleria.raimondi@unipa.it (M.V.R.); demetrio.raffa@unipa.it (D.R.);
benedetta.maggio@unipa.it (B.M.); giuseppe.daidone@unipa.it (G.D.); domenico.schillaci@unipa.it (D.S.)

2 IEMEST, Istituto Euromediterraneo di Scienza e Tecnologia, Via Emerico Amari, 123, Palermo 90139, Italy
* Correspondence: stellamaria.cascioferro@unipa.it (S.C.); mariagrazia.cusimano@unipa.it (M.G.C.);

Tel.: +39-091-23891920 (S.C.); +39-091-23891914 (M.G.C.)

Abstract: The emergence of antibiotic resistance is currently considered one of the most
important global health problem. The continuous onset of multidrug-resistant Gram-positive and
Gram-negative bacterial strains limits the clinical efficacy of most of the marketed antibiotics.
Therefore, there is an urgent need for new antibiotics. Pyrrolomycins are a class of biologically
active compounds that exhibit a broad spectrum of biological activities, including antibacterial,
antifungal, anthelmintic, antiproliferative, insecticidal, and acaricidal activities. In this review we
focus on the antibacterial activity and antibiofilm activity of pyrrolomycins against Gram-positive
and Gram-negative pathogens. Their efficacy, combined in some cases with a low toxicity, confers
to these molecules a great potential for the development of new antimicrobial agents to face the
antibiotic crisis.
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1. Introduction

Antibiotic resistance of common pathogenic microorganisms is a topic of great concern that
has finally attracted the attention of mass-media and governments. Drug-resistant bacteria are
responsible for some 30,000 deaths per year in the UK and Europe and it is estimated that 23,000
people in the United States die from pathogens that are not susceptible to treatment with any of the
current antibiotics [1]. There is therefore an urgent need to introduce novel antimicrobial molecules in
therapy, and there are several possible alternative strategies to conventional antibiotics to counteract
antibiotic resistance [2–6].

No new chemical classes of broad-spectrum antibiotics and few molecules with narrow spectrum
have been found in the recent past [7]. The increase of antimicrobial resistance has stimulated research
aimed towards the discovery of inhibitors of new bacterial targets [8,9]. In addition, more than 80%
of infections are associated to the growth of a sessile community of pathogenic bacteria, the so-called
biofilms, which are intrinsically resistant to conventional antibiotics [10].

Conventional antibiotics are effective against planktonic cells but are usually ineffective against
biofilm-associated infections because of the high level multi-factorial resistance provided by biofilm
mode of growth [11].

The development of anti-biofilm drugs, or the discovery of antibiotics with this additional
property, may contribute to combat the emergence of antibiotic-resistance.

Molecules 2015, 20, 21658–21671; doi:10.3390/molecules201219797 www.mdpi.com/journal/molecules



Molecules 2015, 20, 21658–21671

The reconsideration of old molecules that were previously largely replaced by more
“modern” antibiotics might represent a rapid strategy for the treatment of drug-resistant
infectious diseases [12,13]. Valuable examples are provided by colistin, a polymixin produced
by Paenibacillus polymyxa subspecies colistinus [14,15], or temocillin, fosfomycin, mecillinam,
nitrofurantoin and chloramphenicol for multi drug resistant (MDR) Gram-negative bacteria,
and trimethoprim-sulfamethoxazole for methicillin-resistant Staphylococcus aureus (MRSA) [16].
Furthermore, some authors have recently suggested the use of tetracyclines for multidrug-resistant
Acinetobacter baumannii infections [17].

Many antimicrobial molecules have been discovered in the past, but they were never developed
for clinical practice. These include natural halogenated pyrroles antibiotics, such as pyoluteorin,
discovered in 1958, and the pyrrolomycins, isolated in 1983.

Here, we will comment on the possibility that some of these old molecules are valuable
therapeutic agents to defeat the widespread emergence of bacterial resistance, placing emphasis upon
their profile of efficacy, safety, and tolerability. We will specifically describe the pyrrolomycins, a class
of polyhalogenated pyrrolic compounds, endowed with potent antibacterial activity, particularly
against Gram-positive, and, in some cases, Gram-negative pathogens, including Pseudomonas
aeruginosa, and showing the ability to target biofilms.

2. Halogenated Pyrroles Related to Pyrrolomycins

The antibacterial properties of halogenated pyrroles, such as pentabromopseudilin (1), isolated
from the marine bacterium Alteromonas luteoviolaceus, and pyoluteorin (2) isolated from Pseudomonas
aeruginosa (Figure 1), both structurally related to pyrrolomycins, have been known for a long time.

Burkholder et al. described in 1966 the antibiotic properties of pentabromopseudilin,
(2,3,4-tribromo-5(11-hydroxy, 21,41-dibromophenyl)pyrrole, 1) [18]. The antibacterial activity of
pentabromopseudilin is due to its ability to interfere with the synthesis of macromolecules in
Gram-positive and Gram-negative bacteria, probably through the formation of a prototropic isomer
by hydrogen shift and elimination of hydrogen bromide. This reaction proceeds with the formation
of a quinonoid system 3 (Figure 1) that may bind SH or NH groups of the target proteins.
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Figure 1. Structures of compounds 1–4. 

Although there are different biological activities described for this molecule, such as antifungal 
and antitumor activity, inhibition of cholesterol biosynthesis, and plant protection [19], here we 
specifically focus on the antibacterial activity, considering this class of old compounds as a good starting 
point to thwart the worldwide prevalence of antibiotic–resistant pathogens and the lack of novel 
antibiotics. The antibacterial activity observed for pentabromopseudilin is reported in Table 1. 
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Although there are different biological activities described for this molecule, such as antifungal
and antitumor activity, inhibition of cholesterol biosynthesis, and plant protection [19], here we
specifically focus on the antibacterial activity, considering this class of old compounds as a good
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starting point to thwart the worldwide prevalence of antibiotic–resistant pathogens and the lack of
novel antibiotics. The antibacterial activity observed for pentabromopseudilin is reported in Table 1.

Table 1. Antibacterial activity of pentabromopseudilin expressed as Minimum Inhibitory
Concentration (MIC) or half maximal inhibitory concentration (IC50) in µM.

Microorganisms Pentabromopseudilin (1) References

Acinetobacter calcoaceticus >90.3 µM [19]
Bacillus brevis 1.81 µM [19]

Bacillus subtilis 1.81 µM [19]
MRSA (ATCC 43300) (IC50) = 0.181 µM [20]

The introduction in the pentabromopseudilin of a carbonyl group between the phenyl group
and the pyrrole moiety, i.e., compound 4 (Figure 1), entails an increase in antibacterial activity against
Escherichia coli and Bacillus subtilis, whereas N-methylation is disadvantageous for the antibacterial
activity [19,21].

For pyoluteorin (2) activity against S. aureus, P. aeruginosa, E. coli and Pseudomonas vulgaris with
MIC values of 11.39 µM, 459 µM, 22.79 µM and 459 µM, respectively, is reported [22]. The study of
Structure Activity Relationship (SAR) of the 2-aroyl-4,5-dihalopyrroles [22,23] has shown that: (i) the
presence of one or more electron-withdrawing groups on the pyrrole is required for the antibacterial
activity; (ii) the replacement of chlorine on the pyrrole ring with more electropositive halogens, such
as bromine and iodine, produces less active compounds towards S. aureus and E. coli [22]; (iii) the
replacement of chlorine atoms with nitro groups causes an increase of antibacterial activity [23];
(iv) the attendance on the phenyl ring of a 4-CF3, 2,5-diOH or 2,4-diOH leads to compounds with
better or comparable antibacterial activity with respect to pyoluteorin against S. aureus, with MIC
values in the range 0.98–3.9 µg/mL, but with only a weak activity on E. coli (MIC > 125 µg/mL).

The acidity of the pyrrole NH group appeared to be important for the activity of this class of
compounds; accordingly, the presence of a more electronegative group, such as the nitro group, which
causes a significant increase in NH acidity, is associated with an improvement of microbiological
activity, probably because it facilitates a stronger binding to the active site of the receptor target [23].

Another natural halogenated pyrrole derivative showing antimicrobic actity is the antibiotic
pyrrolnitrin (5) (Figure 2), produced by Pseudomonas spp. [24–26], Myxococcus fulvus [27], and
Enterobacter agglomerans [28]. It shows antibacterial activity against Gram-positive pathogens,
in particular against certain Streptomyces species, such as S. antibioticus and S. violaceoruber
(MIC = 0.89 µM), against fungal strains, such as Paecilomyces variotii and Penicillium puberulum (MIC in
the range 8.9–26.9 µM) [29], and against a range of mycobacteria, including Mycobacterium tuberculosis
(MIC in the range 17.9–35.9 µM) [30]. This compound was launched in 1966 as an antifungal OTC
drug in Japan.

Studies on the mechanism of action of pyrrolnitrin showed that it probably blocks electron
transfer between the dehydrogenases and the cytochrome components of the respiratory chain [29].
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Pyrrolomycins (PM) are polyhalogenated metabolites known for their potent antimicrobial
properties [31], isolated from the fermentation broth of Actinosporangium and Streptomyces
species [32–37]. The antibiotics of this family include pyrrolomycins A, B, C, D, E, G, H, I, J and
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Important structural features of the pyrrolomycins are: (i) their high halogenation degree, which
is usually represented by chlorine substituents; and (ii) in some cases, the presence of a nitro group at
the position 3 of the pyrrole ring. The antibacterial activity of these derivatives may be closely related
to their halogen content, because it increases as the degree of halogenation [38,39].

Antibacterial Activity of Natural Pyrrolomycins

Pyrrolomycins A and B are active against Gram-positive pathogens, such as S. aureus,
S. epidermidis, S. faecalis, and Bacillus anthracis and Gram-negative bacteria, such as E. coli,
Salmonella typhi, Klebsiella pneunioniae and Shigella sonnei with MIC values in the range of
0.55–69.1 µM for PM-A, and in the range of 0.28–35.11 µM for PM-B. The antibacterial activity
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of both pyrrolomycins A and B is comparable, although pyrrolomycin A is more active against
Gram-negative bacteria and pyrrolomycin B against Gram-positive bacteria.

Pyrrolomycins C, D and E are active against Gram-positive pathogens such as S. aureus,
S. faecalis and Bacillus anthracis, as reported in Table 2. Pyrrolomycins C and E are inactive against
Gram-negative pathogens, such as E. coli, Salmonella typhi, Klebsiella pneunioniae and Shigella sonnei,
whereas pyrrolomycin D showed a moderate activity with MIC values ranging from 4.34 to 34.78 µM.

Pyrrolomycins C and D are similar to pyoluteorin produced by Pseudomonas, but the better
activity of pyrrolomycin D against Gram-positive bacteria is probably due to the introduction of
a chlorine atom into pyrrole moiety. Pyrrolomycin D was the most active compound among the
natural pyrrolomycins, being even more active than vancomycin when tested against S. aureus,
S. epidermidis, E. faecalis, S agalactiae, L. monocytogenes, and B. subtilis with MIC values, in most of cases
ď0.002 µM [40].

Dioxapyrrolomycin is primarily active against Gram-positive bacteria, as demonstrated by the
MIC values in the range of 0.077–0.64 µM for S. aureus and S. faecalis. The chirality and novel
1,3-dioxane ring may confer additional unique biological properties to this molecule in comparison
to other members of the pyrrolomycin class [31]. The antibacterial activities of natural pyrrolomycins
are summarized in Table 2.

Table 2. Antibacterial activities of natural pyrrolomycins.

Organism MIC (µM)
PM-A PM-B PM-C PM-D PM-E Dioxapyrrolomycin

Staphylococcus aureus 209P JC-1 17.29 0.56 0.61 ď0.069 5.07 0.077~0.64
Streptococcus faecalis ATCC 8043 34.53 1.09 1.2 ď0.069 5.07 0.644

Bacillus anthracis 8.62 0.28 0.31 ď0.069 ď0.16 -
Escherichia coli 34.53 35.11 >307.72 17.39 >325.18 >329.87

Citrobacter freundii GN 346 34.53 35.11 >307.72 17.39 >325.18 >329.87
Salmonella typhi 0-901-W 17.29 35.11 >307.72 17.39 >325.18 -

Shigella sonnei EW 33 Type I 34.53 35.11 >307.72 34.78 >325.18 -
Klebsiella pneumoniae PCI 602 17.29 35.11 >307.72 17.39 >325.18 >329.87

Proteus vulgaris OX-19 34.53 35.11 >307.72 4.34 20.32 -
Serratia marcescens MB-3848 34.53 70.23 >307.72 34.78 >325.18 >329.87

Pseudomonas aeruginosa MB-3829 69.07 35.11 >307.72 69.56 >325.18 >329.87
Cryptococcus neoformans Cr-1 138.14 280.91 >307.72 17.39 >325.18 -

Candida albicans 552.55 280.91 >307.72 278.23 >325.18 >1319.48
Aspergillus fumigatus 138.14 280.91 >307.72 278.23 >325.18 >1319.48

The pyrrolomycins G-H-I-J were obtained from cultures of Streptomyces fumanus [36].
Pyrrolomycin G and pyrrolomycin H, together with dioxapyrrolomycin, are the only pyrrolomycins
that possess a chiral center. The crystal structure the N-methyl derivative of dioxapyrrolomycin
revealed an S absolute stereochemistry.

The pyrrolomycins G, H and J were tested against Gram-positive, S. aureus WT and MRSA, and
the Gram-negative bacteria E. faecium VR, E. coli WT, and E. coli imp. The activities are summarized
as MIC values in Table 3 [41].

Table 3. Antibacterial activities of pyrrolomycins G, H and J.

Organism MIC (µM)
PM-G PM-H PM-J

S. aureus WT 21 2.6 2.6
S. aureus MRSA 21 5.1 5.3

E. faecium VR 21 NT NT
E. coli WT >300 >300 >300
E. coli imp 86 10.3 21.4

NT = not tested.
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Pyrrolomycins F1, F2a, F2b and F3 (Figure 4) were isolated from Actinosporangium vitaminophilum
sp. nov. when bromide ions were added to the culture medium [42].

Pyrrolomycins F showed strong activities against Gram-positive bacteria including S. aureus,
S. epidermidis [39], Streptococcus faecalis, and Bacillus anthracis, and only moderate activities against
Gram-negative bacteria like E. coli, as shown in Table 4.Molecules 2015, 20, page–page 
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compounds, and, in many cases, >80%. At the lower concentration of 0.045 µg/mL, pyrrolomycin F3
(0.11 µM) showed the best activity with an inhibition percentage >50% against all tested strains and
the remarkable selectivity index (ratio between IC50 on human cell and antibiofilm concentration)
of 1333 [39].

Toxicity studies in vivo have been carried out on JCL-ICR mice for dioxapyrrolomycin, which
unfortunately was very toxic with an oral LD50 of 13 mg/kg [31]. The other natural pyrrolomycins
were less toxic: pyrrolomycin A and B showed LD50 values of 21.2 and about 100 mg/kg, respectively,
when administered i.p. to JCL-ICR mice [37]; pyrrolomycins C and D showed LD50 values of
50 mg/kg and 20 mg/kg, respectively [35].
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4. Synthetic Pyrrolomycins

Pentatomic nitrogenous heterocyclic compounds are widely described in the literature for a
variety of biological activities [43–45] including the antibacterial activity [46–48]. This observation,
combined with the interesting biological results observed with the natural pyrrolomycins,
encouraged the synthesis of new analogs.

In 1973, Bailey et al. synthesized a series of compounds related to pyoluterin via three
different synthetic routes: (i) acylation of pyrrole with the Grignard reagent; (ii) acylation
with 4,5-dihalopyrrol-2-carbonyl chloride; and, (iii) base-catalyzed condensation of pyrrole with
arylaldehydes. Compounds 6a–j showed good in vitro antibacterial activities against a variety of
pathogens (Table 5), but none was able to prevent mortality in mice infected with S. aureus or
Klebsiella pneumoniae [22].

Table 5. In vitro antibacterial activity of compounds 6a–j.

 

N
H

X

X

O

R

6a-j

Compound X R
MIC µM

S. aureus P. aeruginosa E. coli P. vulgaris

6a Cl 2,6-(OH)2 11.39 459.42 22.78 459.42
6b Br 2-Cl 42.92 >343.94 343.94 >343.94
6c Cl 3-Cl 28.41 227.66 >227.66 >227.66
6d Cl 4-F 60.45 484.33 >484.33 >484.33
6e Br 4-F 44.96 360.25 >360.25 >360.25
6f Cl 4-CF3 10.06 >405.74 >405.74 >405.74
6g Br 2,4,6-(CH3)3 42.04 >336.86 >336.86 >336.86
6h Cl 2,5-(OH)2 3.6 459.42 459.42 229.71
6i Br 2,5-(OH)2 43.21 346.27 346.27 173.13
6j Cl 2,4-(OH)2 14.33 >459.42 115.04 >459.42

Koyama et al. submitted a patent on triiodoallyl- or iodopropargyl-substituted heterocyclic
aromatic compounds endowed with remarkable antibacterial and antifungal activities. The inventors
changed the structure of pyrrolomycin A by introducing a triiodoallyl group (compounds 7a–p, 8a–c,
9a,b, 10a–d) or an iodopropargyl group (compounds 11a–l, 12a–c, 13, 14, 15, 16) to the nitrogen atom
of the pyrrole ring in an attempt to obtain compounds more potent than pyrrolomycin A (Figure 5,
Table 6). The new structures have been synthesized by reaction of an unsubstituted or substituted
nitrogen-containing heterocyclic compound with a reactive derivative of a 2,3,3-triiodoallyl alcohol
or a reactive derivative of a 3-iodopropargyl alcohol in the presence of a base in an inert organic
solvent. All new compounds showed a good biological activity against various bacterial and fungi
strains, with MICs ranging from 0.09 µg/mL to >50 µg/mL [49].

Table 6. Substituents R1, R2, R3 and R4 of compounds 7–16.

Compound R1 R2 R3 R4

7a, 11a Cl Cl NO2 H
7b, 11b Cl H NO2 H

7c H H NO2 H
7d Cl Cl COOC2H5 H
7e Cl Cl COOCH3 H
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Table 6. Cont.

Compound R1 R2 R3 R4

7f Cl H COOC2H5 H
7g H COOC2H5 H H
7h H COOCH3 H H
7i H Cl 3-Cl-2-NO2-C6H5 H
7j H 3-Cl-C6H5 H H

7k, 11i H C6H5 H H
7l Cl Cl NO2 Cl

7m, 11j Cl Cl H COOCH3
7n COOCH3 H Cl H

7o, 11k COOCH3 H H H
7p, 11l NO2 H H H
8a, 12a H - H H
8b, 12b NO2 - H H
8c, 12c H - NO2 H
9a, 15 - - - H

9b - - - CH3
10a, 16 - - - H

10b - - - CH3
10c - - - C6H5
10d - - - NHCOCH3
11c H NO2 H H
11d Cl Cl H Cl
11e Br Br NO2 H
11f Cl Cl COOC2H5 H
11g H COOC2H5 H H
11h H Cl 2-NO2-3-Cl-C6H5 H
13 H H H H
14 H H H H
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Figure 5. Structures of compounds 7–16. Figure 5. Structures of compounds 7–16.
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Schillaci et al. [50] reported the synthesis of bromo analogs of pyrrolomycins 17a–c and
4 (Figure 6) by reaction of pyrrolylmagnesium bromide with 2-methoxybenzoyl chloride and
subsequent demethylation of the methoxy group using anhydrous aluminum chloride to obtain
the (2-hydroxyphenyl)(1H-pyrrol-2-yl)methanone. Finally, the bromination was carried out with
cupric(II) bromide in organic solvent. Compounds 17c and 4 showed a remarkable antibacterial
activity against S. aureus ATCC 25,923 (MIC values = 0.099 and 0.017 µM, respectively); in
particular, compound 4 was about 200 times more potent than the aminoglycoside, amikacin, against
S. aureus [50]. The encouraging results led the authors to test compounds 17a–c against ten clinical
S. aureus strains, five susceptible and five resistant to methicillin [51]. Results, expressed as MIC
values, showed that the antibacterial activity was correlated to the number of bromine atoms present
on the molecule and the most active compound was the pentabromo analog 4 (Table 7). The authors
continued the studies by testing, in vitro, compound 4 on seven reference Gram-positive bacterial
strains including S. epidermidis, S. aureus, Listeria monocytogenes, Streptococcus agalactiae, Bacillus
subtilis, and Enterococcus faecalis [38]. The activity of compound 4 was compared to the activity of
vancomycin, and MIC and MBC values were determined. Compound 4 was found to be active against
all tested strains with better MIC (ranging from 0.003 to 0.016 µM) and MBC (ranging from 0.63 to
21.4 µM) values than vancomycin, which showed MIC values ranging from 0.69 to 2.76 µM, and MBC
values from 1.38 to >5.5 µM.
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Table 7. Minimum inhibitory concentration (MIC) in µM against clinical S. aureus strain susceptible
or resistant to methicillin (s: methicillin susceptible strains; r: methicillin resistant strains).

S. aureus (MIC) in µM
Strain 17a 17b 17c 4

1s 17 0.87 0.35 0.06
2s 17 0.87 0.17 0.06
3s 34.7 3.53 0.73 0.01
4s 17 0.87 0.17 0.06
5s 17 3.53 0.35 0.09
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2r 17 0.21 0.07 0.01
3r 17 0.42 0.17 0.03
4r 17 1.76 0.17 0.01
5r 8.69 3.53 0.35 0.06
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In addition, compound 4 was also found to be active against preformed S. epidermidis and
S. aureus biofilms with inhibition percentages ranging from 100 to 49.4 and 89 to 58, respectively,
at concentrations of 0.08–2.5 µM.

In 2006, the Authors synthesized several 2-(21-hydroxybenzoyl)pyrrole bromine derivatives
(compounds 18a,b and 19a,b) to investigate whether the introduction of a keto or methylene
spacer between the phenol and pyrroloyl moiety led to more active compounds [52]. Compounds
18a,b have been synthesized by reaction of the (3,5-dibromo-2-methoxyphenyl)acetyl chloride with
pyrrolylmagnesium bromide in anhydrous diethyl ether to obtain the 2-(3,5-dibromo-2-methoxyphenyl)-
1-(1H-pyrrol-2-yl)ethanone. Bromination with N-bromosuccinimide and the demethylation with
boron tribromide in dry dichloromethane led to compounds 18a,b. Compounds 19a,b were obtained
by oxidation with selenium dioxide of the methylene group of the intermediates 1-(4,5-dibromo-3-R-
1H-pyrrol-2-yl)-2-(3,5-dibromo-2-methoxyphenyl)ethanones and subsequent demethylation using
anhydrous aluminum chloride in dry dichloromethane. The structural changes generated compounds
with less antimicrobial activity with respect to compound 4; nevertheless, compounds 18a,b and
19a,b resulted more active on S. aureus than the comparator amikacin, as shown in Table 8.

Table 8. Antimicrobial activity in vitro, MIC values expressed in µM for all strains tested.
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Compounds 20a–e were synthesized by reaction of pyrrolylmagnesium bromide with the
3,5-dichloro-2-methoxybenzoyl chloride. The introduction of halogen atoms on the pyrrole
moiety was conducted by addition of the appropriate equivalents of N-bromosuccinimide or
N-chlorosuccinimide in acetonitrile. Finally, the demethylation using anhydrous aluminum chloride
in dry dichloromethane led to compounds 20a–e [53]. Results showed that the replacement of the
41-bromo atom on the phenolic ring of pyrrolomycins F with two chloro atoms at the 31 and 51 position
resulted in an increase of antibacterial activity against all strains tested, with MIC values ranging from
ď0.001 to 12.5 µg/mL and MBC values ranging from ď0.39 µg/mL to 12.5 µg/mL.

Derivatives 20a and 20d were particularly interesting, showing MIC values against S. aureus,
S. epidermidis, E. faecalis, S. agalactiae, L. monocytogenes and B. subtilis in the range 0.012–0.2 µM and
0.007–0.2 µM respectively. They were more potent than vancomycin, which showed MIC values
ranging from 0.6 to 2.7 µM.

Compounds 4, 20a and 20d were also compared to some natural pyrrolomycins for their
antistaphylococcal biofilm activity. Compound 20a showed a substantial antibiofilm activity at
0.09 µM with an inhibition percentage >50% against all tested staphylococcal strains. The activity of
compound 20a was comparable to that exhibited by pyrrolomycin F3 and greater than that exhibited
by pyrrolomycins C, D, F1, F2a and F2b. Interestingly, compound 20a had a selectivity index of 1666,
and, therefore, it showed a slightly higher selectivity than pyrrolomycin F3 (selectivity index = 1333).
These data are particularly relevant because they refer to the antibiofilm activity. The selectivity
indexes of compound 20a and pyrrolomycin F3 referred to their activities against the planktonic mode
of growth were 7500 and 9600, respectively. To our knowledge, synthetic analogues of pyrrolomicins
have never been tested for their toxicity in animal models.

The antibiofilm activity of pyrrolomycins against S. aureus was also evaluated in terms of log
reductions and their efficacy was compared to the efficacy of rifampicin, an antibiotic that is currently
used in the clinic in the treatment of staphylococcal biofilm. [54] By using this different biofilm growth
model, compound 20a and pyrrolomycin D were more active than rifampicin [39].

5. Conclusions

Resistant pathogens have become a serious threat worldwide and the use of new effective agents
against drug-resistant bacteria is an urgent medical need. Such an emergence could be faced by
revisiting old antibiotics and carefully monitoring their profile of efficacy, safety, and tolerability.
Pyrrolomycins and other molecules are extremely interesting in terms of activity, in vitro and in vivo
toxicity, and additional features including the ability to defeat intrinsic forms of resistance, such as
biofilms [39]. Moreover, natural pyrrolomycin F3 and the synthetic analogue 20a have a very low
cytotoxicity in human primary cell cultures, with a selectivity index >1000. This is remarkable if
one considers that a good safety margin for a compound to be considered as a potential candidate
for clinical development is a selectivity index >200 [55]. Another advantage of pyrrolomycins is
related to their simple chemical synthesis, which allows us to easily obtain them although producing
organisms are no longer available. It is concluded that pyrrolomycins and their synthetic derivatives
are potential compounds for developing novel effective chemical countermeasures against pathogens.
These molecules might represent the launching platform for the development of new antimicrobial
agents. Data on the efficacy and safety of pyrrolomycins in animal models are urgently needed to
determine whether these molecules deserve further consideration.
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