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Abstract: In this study, the three forms of B2Np´,0,`q—radical, anion and cation—have been
compared in terms of electric potential and atomic charges, ESP, rather than the well-known cut
of the potential energy surface (PES). We have realized that the double minimum of the BNB
radical is related to the lack of the correct permutational symmetry of the wave function and charge
distribution. The symmetry breaking (SB) for B2N(0, +) exhibits energy barrier in the region of
(5–150) cm´1. The SB barrier goes through a dynamic change with no centrosymmetric form which

depends on the wave function or charge distribution. In spite of rA2Σ`g exited state, the rB
2 ś

g excited

configuration contributes to the ground state ( rB
2 ś

g´
rX2Σ`u q for forming radicals. The SB did not

occur for the anion form (B2Np´q) in any electrostatic potential and charges distribution. Finally, we
have modified the Columbic term of the Schrödinger equation to define the parameters “αα1 and
ββ1” in order to investigate the SBs subject.

Keywords: symmetry breaking; electric potential; atomic charges; Boron Nitride compounds;
h-BN sheet

1. Introduction

Linear triatomic structures, particularly those of the X-Y-X type are one of the simplest molecular
systems with “high” symmetry in which symmetry breaking (SB) may occur. The point group of the
BNB in the linear symmetric X-Y-X species is “D8h” whereas its asymmetrically distorted form has
the symmetry of the C8v group. Tri-atomic B2Np´,0,`q molecules have been subsequently studied
using a variety of calculations and spectroscopic methods. It is a deep challenge to measure the real
or artifactual SB effects due to its capability to a display a pseudo second-order Jahn–Teller effect,
which results in a structure with unequal BN bond lengths [1–14].

Obviously, the adiabatic system of the Born–Oppenheimer approximation breaks down when
the electronic states are degenerate, so the SB can be associated with degeneracy. SB may result
from first-order Jahn–Teller effects or Renner–Teller effects for degenerate electronic states, while
non-degenerate states result from interactions between different states, i.e., the so-called pseudo
Jahn–Teller (SOJT) effects.
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The first important investigation for BNB was done by Martin et al. in 1989. Based on an
UHF/6-31G* geometry optimization, they predicted that the B2N has a symmetric linear regulation
in its ground state (rX2Σ`u q) with an unusually low bending frequency (73 cm´1) [1].

They noted that the full valence CASSCF wave function for the rX2Σ`u state of linear B–N(0)–B
is unstable with respect to symmetry lowering, i.e., the C8v structure (r1(BN) ­“ r2(BN)) yields a lower
total energy than the D8h symmetric structure (r1(BN) = r2(BN)) [10].

In 1992, Knight et al. found two minimum structures, i.e., the linear B2N(0) and cyclic B2N [4].
The UHF/6-31G* level of theory predicts the cyclic 2B2 state to be at the global minimum, while the
correlated methods predict the rX2Σ`

puq state of linear B–N–B to be at the global minimum and the

cyclic 2B2 state to be at the local minimum.
There are two conceivable valence bond structures for open-shell system of the BNB radical

in the ground state. The first one is the localized form where the symmetry is C8v{2Σ+:1σ2, 2σ2,
3σ2, 4σ2, 5σ2, 1π4, 6σ2, 7σ1}, and the second is the resonance form where the symmetry is D8h
{p2Σ`u q : 1σ2

g, 1σ2
u, 2σ2

g, 3σ2
g, 2σ2

u, 1π4
u, 4σ2

g, 3σ1
u}. Obviously describing the electronic structure of the

open-shell system (B2N(0)) is much more difficult than the closed-shell system of B2Np´,`q and
in many cases, the description of an open-shell system is challenging in computational quantum
chemistry calculations. This is primarily due to the presence of static correlation effects (requiring a
multireference-type description) [13,14].

In general, researchers agree that BNB is linear in its ground electronic state of (rX1Σ`g ) and

(ĂX
2
Σ`u q for anionic and neutral forms, respectively [2,13].The ground state of the BN(0)B has been

examined via the developed reduced multireference coupled cluster method with singles and doubles
that is perturbatively corrected for triples [RMR CCSD (T)] using the correlation consistent basis
sets (cc-pVDZ, cc-pVTZ and cc-pVQZ) by J. Paldus [9]. They showed that the ground state has an
asymmetric structure C8v with two BN bonds of unequal length.

In an experimental study, the state of ĂA
2
Σ`g pB2N´qwas observed in photoelectron spectroscopic

studies (PES) by Asmis et al., placing the zero-point level of the 6330 ˘ 40 cm´1 above the ground
state of the rX2Σ`

puq [2]. He showed that the observed signal in the 355 and 266 nm photoelectron

spectra of B2N´ has been indicated to a photodetachment from the anion ground state ĂpX
1
Σ`g q to the

ground and lowest excited states of neutral B2N i.e., rX2Σ`u and rA2Σ`g with a linear symmetry and

is assigned to the rX1Σ`g Ñ rX2Σ`u ` e´ and rX1Σ`g Ñ rA 2Σ`g ` e´ transitions.
Electron spin resonance (ESR) experiments indicate the unpaired electron between the two B

atoms implying symmetric geometry [4]. However, this result cannot exclude the presence of a
small barrier to asymmetry in point view of the time scales involved. A further, matrix infrared
study [7] indicated that the ground state of BNB is cyclic, whereas a more recent photoelectron
spectroscopic study of B2Np´q anion [2] confirmed a linear symmetric geometry. Furthermore,
the infrared absorptions were also observed in the cryogenic argon matrix near 6000 cm´1 of the

electronic band system, due to the ĂA
2
Σ`g ´ĂX

2
Σ`u [7].

Recently, the compounds of BNB, especially their electronic structures have been
considered [15–19]. In 2009, a series of multi-reference approaches based on the SA-CASSCF wave
function, i.e., CASPT2, MRCI, and MRAQCC, have been employed by Boggs and coworkers to
investigate the SB in the ground state rX2Σ`

puq of the triatomic B2N(0) radical [20]. Their results show
that B2N in its ground state has a linear non-centrosymmetric structure with two equivalent global
minima of the adiabatic potential energy surface, including two oppositely directed dipole moments,
respectively. They accepted that the PJT effect involving vibronic interaction with the first excited
state rA2Σ`

pgq via the asymmetric stretching vibrations is the major reason for the double-minimum. On
the other hand, the large-scale multi-reference configuration interaction calculations, CASSCF+1+2
predicted an asymmetric configuration, while the SACASSCF+1+2 predicted a symmetric D8h
ground state [21].
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In another study in 2010, Stanton has discussed an unusually large non-adiabatic error in
the BNB molecule as well as non-adiabatic corrections to energy level [22]. He illustrated those
non-adiabatic corrections to energy levels should fall out only when the affected vibrational frequency
is large enough to be of comparable magnitude to the energy gap. In other words, non-adiabatic
corrections should be given as much weight as issues such as high-level electron correlation,
relativistic corrections, etc.

In other words, calculations using larger and larger basis sets, and more and more advanced
methods of electron correlation, are doomed to approach the “wrong” limit for the vibronic levels of
BNB if the Born-Oppenheimer approximation is applied, so the electrostatic potential charges which
are based on wave functions of the BNB systems and are related to quantum mechanics phenomena
can be used as suitable tools through the significant approach reported in this work.

In 2013, Kalemos [21] tried to approach the SB problem by using high level multi-reference
variation and full configuration interaction methods. He indicated that the (SB) problem is related
to the lack of the “correct” permutation symmetry of the wave-functions adopted to attack the
problem and is by no means a real effect. Furthermore, he indicated the wave-function which is
not invariant under all symmetry operations of the point group should be symmetrically broken
(SB). SB (in classical mechanics) occurs when a stable minimum undergoes splits into two stable
minima. He checked the MRCI results by FCI (9e´)/[3s2p] calculations and found no trace of SB
in qualitative disagreement with all previous theoretical investigations that predicted a barrier to a
centro-symmetric structure either of 20 cm´1 (based on MRCI methods of Boggs) or of 100–160 cm´1

(based on CC methods) [9,22,23].
In this study, we compare three forms of B2Np´,0,`q (anion, radical and cation) in terms of

electrostatic potential charges “ESP” rather than the cut of the potential energy surface (ESP is
changed using the trial wave functions). For a charged system with charge Q, the density |ψ pxq |2

multiplied by the atomic charge yields the charge density |Q pxq |2. Large points for fitting of various
situations have been used to calculate the atomic charges and electrostatic potential of the systems.
As a result, the possibility of an asymmetric ground state may not be eliminated or it seems that an
asymmetric geometry is a rather comfortable situation; the double minimum nature of BNB is related
to the lack of the correct permutation symmetry of the wave functions (Scheme 1).
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Scheme 1. A simplified of spontaneous symmetry breaking, (a) indicates high energy level which
the ball settles in the center, and the result is symmetrical; (b) and (c) are lower in energy levels
and the overall “rules” remain symmetrical, however, as the potential comes into effect, the “local
symmetry” is inevitably broken since eventually the ball must roll one way (at random) and not
another; (A) is a non-linear combination of two wave function and (B) is a non-linear combination
of three wave function.

The small barrier energy including the two equal minima in some parts of B2Np´,0,`q systems
have been estimated using symmetrical linear combination of wave functions (SLC-WFs). These
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barriers are dependent on the charge distribution, SLC-WFs and correlation effects between |αy or |βy
levels which are not global minima.

There are 16, 17, and 18 electrons in B2Np´,0,`q systems. Therefore, based on Walsh
prediction [24], it appears that the linear p-block molecule holds up quite well for all B2Np´,0,`q

ions and the radical. This work has focused on a spontaneous symmetry breaking (SSB) [25–27]
for B2Np´,0,`q systems in view of ESP.

2. Wave Functions and Symmetry Breaking

SB is generally applied to two phenomena—the first is the failure of the electronic wave
function to transform as an irreducible representation of the molecular point group and the second
is the preference of the nuclear framework for lower-symmetry geometry [28]. The failure of the
electronic wave function is purely artifactual in that the exact wave function necessarily obeys the
symmetry properties of the molecular point group and the symmetry-contaminated wave functions
was described by Lowdin as the symmetry dilemma [29]. In such cases, a broken-symmetry wave
function may yield a solution with lower energy than the symmetry-adapted one.

On the other hand, in the absence of external fields, the motion of nuclei is governed by a
function of nuclear coordinates which is a sum of the Coulomb repulsion between nuclei and the
electronic effective potential terms, resulting from the Born Oppenheimer approximation and wave
function, so the meaning of the wave function can be interpreted by the charge density distributions
of electrons in a quantum system [30].

It is obvious that every wave function must be satisfactory before being submitted to the
Schrödinger equation; however, it has been shown by Wigner that exact electronic wave functions
satisfy the Pauli Exclusion Principle [31]. The physical root of charge density is one of the main
questions in electronic wave function origin and the key to unveiling the meaning of the wave
function is to find the physical root of the charge density [32–35].

Many questions have been raised from interpretation of the wave function in the theory which
is dependent on SB problem such as regarding the wave function as a field similar to electromagnetic
field [36], an active information field [37], and a field carrying energy and momentum [38].

In a time independent system using Born-Oppenheimer approximation, the Hamiltonian of
boron and nitrogen nuclei are sum of the kinetic energy term and effective potentials (Equation (1)):

Ĥn “

3
ÿ

j“1

´
}2

2Mj
∆j `Vp

Ñ

RB1 ,
Ñ

R N ,
Ñ

RB2q (1)

The B2Np´,0,`q forms will be stable by minimization of “V”. So, it depends on sum of Coulomb
repulsions between nuclei and the electronic effective potential:

Vp {R̂B, R̂N , RBq “

2
ÿ

j“1

3
ÿ

l“j`1

qjql

4πε0|
Ñ

R j ´
Ñ

R l|
` Ep

Ñ

RB1 ,
Ñ

R N ,
Ñ

RB2q (2)

The dynamic representation was first postulated by Wigner in 1930 with the justification that
its action does not change the relative distances between nuclei and is therefore the symmetry of the
dynamical problem [31]. Damljanovic modified the Wigner postulate in another way for dynamical
representation, while for every molecule; there exists at least one normal mode that belongs to the
totally symmetric irreducible representation of the point group of that molecule [34]. In this approach,
the problem of finding minima of V becomes another case of the spontaneous symmetry breaking
phenomenon and it allows finding approximate relations between bond lengths in a molecule and

21639



Molecules 2015, 20, 21636–21657

its vibrational frequencies. The Schrödinger equation for electrons moving in the field generated by
nuclei in a molecule subjected to no external fields can be written as follows:

»
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–
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where
Ñ
r

a
“ p

Ñ
r

a
1, . . .

Ñ
r

a
Neq

T
and

Ñ

R
a
“ p

Ñ

R
a

1, . . .
Ñ

R
a

Neq

T
and T is the transposition vector in the

3N-dimesional real vector space. In this equation, the first term in the left is kinetic energy of the
electrons, the second term is Coulomb attraction between electrons and nuclei and the third term is
Coulomb repulsion between electrons and coordinates of nuclei that are the parameters on which the

eigenvalue E is dependent “E = E(
Ñ

R
a
)”. Damljanovic has discussed that any two configurations of

nuclei can be obtained from each other by rotation, translation or a permutation of one configuration
as a whole correspond to the same value of V or E [39].

Since Coulomb repulsion between nuclei diverges at origin, the function “V” cannot be
expanded by the use of Taylor formula around that point. On the other hand, “E” is finite at the
point R = 0. It is equal to the electronic energy of an atom (called united atom) having charge of
the nucleus equal to sum of charges of all nuclei in the molecule under investigation. Moreover,
stable configurations of relatively simple molecules are confined in space in the small volume around
an origin.

We have modified our systems based on definition of “V” in order to find minima as follows:

V “ αrp
Ñ

R N ´
Ñ

RB1
q

2
s `βr p

Ñ

R N ´
Ñ

RB2q
2s ` γrp

Ñ

RB1 ´
Ñ

RB2q
2
s

1
`4πε0

r
α1qNqB1

|
Ñ

R N ´
Ñ

RB1 |

`
β1qNqB2

|
Ñ

R N ´
Ñ

RB2 |

`
γ1qB1 qB1

|
Ñ

RB1 ´
Ñ

RB2 |

s
(4)

where
Ñ

R N ,
Ñ

RB1 ,
Ñ

RB2 and charges qN , qB1 , qB2 are bound distances and charge distribution of

B2Np´,0,`q and
Ñ

λ 1,
Ñ

λ 2 and
Ñ

λ 3 are defined as:

Ñ

λ 1 “
Ñ

R N ´
Ñ

RB1 ,
Ñ

λ 2 “
Ñ

R N ´
Ñ

RB2 and
Ñ

λ 3 “
Ñ

RB1 `
Ñ

RB2 `
Ñ

R N and

V “ α
Ñ

λ 1

2
`β

Ñ

λ 2
2
` γp

Ñ

λ 1 ´
Ñ

λ 2q
2
`

1
4πε0

r
α1qNqB1

|
Ñ

λ 1|

`
β1qNqB2

|
Ñ

λ 2|

`
γ1qB1 qB1

|
Ñ

λ 1 ´
Ñ

λ 2|

s

(5)

Ñ

λ 1 “
Ñ

λ 2 “
Ñ

λ 0, in the center of mass of BNB molecules, while:

Vp
Ñ

λ q “ 2 α|
Ñ

λ
2
| `

2
4πε0

α1qNqB

|
Ñ

λ |
and in minimum :

4α|
Ñ

λ 0| “
2

4πε0

α1qNqB

|
Ñ

λ 0|

Ñ qNqB “ 8πε0αα
1|
Ñ

λ 0
3
|

(6)

Depending on the radical, cation and anion forms of BNB, qN ˆ qB multiplication can be positive

or negative and consequently, |
Ñ

λ 0| “
3

d

qp0qN qp0qB
8πε0αα

1 would be either positive or negative.

In our calculations, the charges for nitrogen were changed between +0.75 < qN <+0.87 (for the
anion form) and in equilibrium the charges of the nitrogen and the two borons are qN = 0.868802 and
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qB1 “ qB2 “ qB “ ´0.934401. Therefore, the
Ñ

λ 0 “ 1.329 and αα1 = ββ1 = 1.506 can be yielded in
the center.

Ñ

λ 1 ‰
Ñ

λ 2,
Ñ

λ1

p0q
and

Ñ

λ 2
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denote a stable configuration, and V can be expanded around this
point up to the second order as Equation (10):
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so, the distance between B and N is equal to |
Ñ

λ BN| “
3

d

qpnqN qpnqB
8πε0αα

1 “
3

d

qpnqN qpnqB
8πε0ββ

1 and the distance

between the two borons is |
Ñ

λ BB| “
3

g

f

f

e

qpmqB1
qpmqB2

8πε0γγ
1 .

In the B2Np´,0,`q radical, cation and anion forms, the charges of atoms always localize in a
definite position in space. In fact, for a charged quantum system, it has been described by the wave
function. Thus, the charges distribution with a certain amount in space and different distributions
between borons and nitrogen atoms are important for the understanding of real or artifactual SBs
problems of radical and ion BNB forms.

3. Computational Details

Even though various methods and basis sets (both large and medium) have been employed in
this study, among them, the EPR-III and EPR-II basis sets of Barone [40] show accurate results for
electrostatic potential (ESP) fitting. EPR-II is a double-ζ basis set with a single set of polarization
functions and an enhanced “s” part: (6, 1)/ [41] for H and (10, 5, 1)/ [41,42] for B to F. EPR-III is a
triple-ζ basis set including diffuse functions, double d-polarizations, and a single set of f-polarization
functions. Also in this case, the s-part is improved to better describe the nuclear region, (6, 2)/[37,38]
for H and [40–44] for B up to F.

The active space for the CASSCF methods was composed of all valence electrons and orbitals
of these atoms, i.e., 11 active electrons and 12 active orbitals for B2N(0) and 10 and 12 electrons for
B2N(+)and B2Np´q respectively. In some part of our discussion, the BNB has been optimized via
various levels of theory such as CASSCF (11, 12)/cc-pvqz and CASSCF (11, 12)/AUG-cc-pvqz (for
radical) and CASSCF (10, 12)/cc-pvqz for cation. Approximation spin orbit coupling between two
spin states has been computed during CASSCF calculations [45,46].

A Quadratic CI calculation including single and double substitutions [47] has been used to
evaluate various one-electron properties including NBO, bonding analysis, atoms in molecules
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(AIM) [48], multi-pole moment, natural population analysis, electrostatic potentials, and electrostatic
potential-derived charge using the Merz-Kollman-Singh [49], chelp [50], or ChelpG [51].

Polarizabilities and hyper-polarizabilities have been computed by CISD and QCISD and
CASSCF methods and double numerical differentiation of energies have been used by with the
pol=En only keyword in some cases. The AIM properties have been used to request molecular
properties predicted via the theory of atoms in molecules [48]. The AIM keyword is used to compute
atomic charges of atoms in molecules, covalent bonds, localized orbitals, and critical points.

Atomic charges have been calculated from electrostatic potentials using a grid-based method,
ChelpG, which was developed by Breneman and Wiberg [51]. Atomic charges are fitted to reproduce
the molecular electrostatic potential (MESP) at a number of points around the molecule [52,53].
The charge calculation methods based on molecular electrostatic potential (MESP) fitting (including
CHELPG) are not well-suited for treating larger systems where some of the innermost atoms are
located far away from the points at which the MESP is computed. In such a circumstance, variations of
the innermost atomic charges will not lead to significant changes of the MESP outside of the molecule,
meaning that the accurate values for the innermost atomic charges are not well-determined by MESP
outside of the molecule [52,53].

The representative atomic charges for flexible molecules hence should be computed as average
values over several molecular conformations. A number of alternative MESP charge schemes have
been developed, such as those employing Connolly surfaces or geodesic point selection algorithms,
in order to improve the rotational invariance by increasing the point selection density and reducing
anisotropies in the sampled points on the MESP surface. A detailed overview of the effects of the
basis set and the Hamiltonian on the charge distribution can be found in reference [54]. CHELPG
charges can be computed using the popular ab initio quantum chemical packages such as Gaussian or
GAMESS-US.

Indeed in our study, because of the large number of calculations in various ESP simulation
situations, using expensive basis sets and methods such as MRCI was difficult and also not necessary
for CHELPG and ESP calculations. Therefore, with medium methods in terms of computational cost,
we have obtained accurate results for our approach. All the calculations were performed using the
Gaussian program package [55] and the optimization was done along with a frequency calculation to
verify that the geometry was a real minimum without any imaginary frequency.

4. Results and Discussion

The radical form of BNB is linear in its ground electronic state (ĂX
2
Σ`u q) with an orbital occupancy

of 1σ2
g, 1σ2

u, 2σ2
g, 3σ2

g, 2σ2
u, 1π4

u, 4σ2
g, 3σ1

u while the lowest electronically excited state is predicted to be
rA2Σ`

pgq, with an orbital occupancy of 1σ2
g, 1σ2

u, 2σ2
g, 3σ2

g, 2σ2
u, 1π4

u, 4σ1
g, 3σ2

u.
Although the geometric data in Table 1 show boron-nitrogen bonds within a molecule that differ

from each other by less than 0.001 angstrom, the BNB in the three radical, cation and anion forms in
the ground state are linear. Moreover, the other structures have angles that differ from 180 degrees
by less than a degree or in many cases less than a tenth of a degree and the reason depend on the
methods used.

In addition, the rB
2 ś

g exited state with an orbital occupancy of 1σ2
g, 1σ2

u, 2σ2
g, 3σ2

g, 2σ2
u,π4

u, 4σ2
g, 1π1

g

(above the ĂA
2
) is subject to the Renner-Teller effect and further exited states depend on the p4

ś

gq of
triplet form. The geometric structures and electronic energies in ground and exited states are listed
in Table 1.

In addition, NBO, atomic occupancies, Fock Matrix and IFCC [F (∆), F (θ)] are listed in Tables 2
and 3. The total energies of |αy and |βy spin orbitals for the ground state of strata/stratum, formed

with symmetry C2V/C8V (global minima of ĂX
2
Σ+), are E p |αyq “ ´34.87083 and E p |βyq “ ´34.15046

Hartree respectively, while these energies for C8V/D8h (local minima) are E p |αyq “ ´34.87079 and
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E p |βyq “ ´34.15042, respectively. Although the energy of rA2Σ`
pgq state is near the ground state, this

excited configuration does not contribute to the ground state wave function.
In the symmetric D8 h geometry, the unpaired electron of BNB is delocalized, while in the

asymmetric C8v geometry it is localized on either one of the B atoms. Broken symmetry C8v

structures will be stabilized by this interaction relative to the symmetric D8h geometry. Physically,
the second-order Jahn-Teller interaction permits the unpaired electron to localize on a single boron
atom, rather than being delocalized. The other two, which correspond to localizing the unpaired
electron on one or both of the boron atoms (when the bond lengths are unequal), do not transform
as an irreducible representation of D8h for BNB radical via any changing of charges on N and either
one of the B atoms (Figure 1a,a',b).Molecules 2015, 20, page–page 

11 

 
Figure 1. Relative energies of B2N(−, 0, +) versus B-N-B bond distance in various level of methods (a, a′) 
cation; (b, b′) radical and (c) anion. 

It is prudent to employ a highly correlated method which can use a large number of reference 
determinants to recover dynamic and static correlations. In this work, the results of EPR-III basis sets 
are monotonous through the comparison between different situations. Although (in Table 1) the 
difference between the two positions of global minima and local minima for both |α〉 and |β〉 is 8.77 
cm−1, our calculations show that the total energies for both of them are the same (i.e., −104.0781959). 
This is due to the fact that the spin orbital energies are related to the small bending angles of A1 and A2 
which have an extremely low bending frequency (70 cm−1). Harmonic frequencies were determined at 
the QCISD/EPR-III//prop=EPR and characterized by 228.79 cm−1 (ϑଵ = ϑଵᇱ ,	bending mode "π௨" ), 
1178.64 cm−1 (ϑଶ, symmetric stretching “σ௚”) and 2146.42 (ϑଷ, asymmetric stretching “σ௨”). The IR and 
Raman intensities for ϑଷ  are 10165.0 and 0.00, respectively, while the "ϑଶ" mode has intensity in 
Raman (51.0) but zero intensity in the IR region. 

As it is shown in Table 1, the energy difference between two states of (ܣ	෩ ଶΣ௚ା) and (ܺ	෩ ଶ ∑ )ା௨  {(k − a) 
and (k –	kᇱ)} are 5829.75 cm−1 and 5834.79 cm−1, respectively. Those values are close to the photoelectron 
spectroscopy calculation results which Asmis et al. have shown [2]. They have discussed that the 
signal observed in the 355 nm and 266 nm photoelectron spectra of 	ܤଶ	ܰି has been indicated as due 
to a photodetachment from the ( ෨ܺଵ ∑ 	)ା௚  to the ground and lowest excited state of neutral B2N 
{( ෨ܺଶ ∑ 	)ା௨  and (	ܣሚଶ ∑ 	)ା௚  with a linear symmetry and assigned to the ෨ܺଵ ∑ 	→ା௚ ෨ܺଶ ∑ +	݁ିା௨  and ෨ܺଵ ∑ 	→ା௚ ଶ	ሚܣ ∑ +	݁ିା௚  transitions {the (	ܣሚଶ ∑ 	)ା௚ term energy T0 is 0.785 eV or 6331.77 cm−1}. 

The "1π௨" orbital is a bonding combination of all 2݌	గ orbitals on all three atoms, while "4σ௚ଶ" 
and "3σ௨ଵ" orbitals are close lying and not strongly bonding in character. The small separation of these 

Figure 1. Relative energies of B2Np´,0,`q versus B-N-B bond distance in various level of methods
(a, a') cation; (b, b') radical and (c) anion.

When the molecule has D8 h symmetry, the real wave-function must transform as an irreducible
representation of the D8h point group. However, when the two B–N bonds are asymmetrically
stretched, “4σ2

g” and “3σ1
u” become near degenerate, while 6σ and 7σ MOs have the same symmetry.

Because of this vicinity, the singly excited state of rcores 6σ, 7σ has a rather strong interaction with
single and triple excitations. It is known however, that approximate electronic structure methods
could suffer from an artifactual symmetry-breaking effect which would thus be confused as a real
Jahn-Teller distortion. DFT methods such as B3LYP incorrectly underestimate the second-order
Jahn-Teller distortion which leads the B3LYP calculations to predict a symmetric structure with too
much high frequency for the anti-symmetric stretch. However, at this point, the “UHF” solution for
the ground state wave-function exists [23].
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Table 1. Geometric and electronic structures of B2Np´,0,`q in ground and exited states.

State

EepppHartreeqqq

|αyConfiguration |βyConfiguration re pB1 Nq A1ppp2, 1, 3, ´́́2, ´́́1qqq

(*Ne) Total Energy of |α˚y Total Energy of |βy ˚, Virtual ** re pNB2q A2ppp2, 1, 3, ´́́1, ´́́2qqq

pHomo´ Lumoq˚˚

ĂX 2Σ+ ´104.0781959 a rAs ,π4,σ2,σ1 |αy “ ´0.44641 a rBsσ1 |βy “ ´0.26180 a 1.3189 a A1 “ 179.9499 a

pC8vq ´104.0820328 a1 ˚E p |αyq p´34.87083q a ˚p´34.15046q a 1.3185 a A2 “ 179.9602 a

(*17e) ´104.0754917 a2 ˚ ˚ p´0.48614q a
˚ ˚ p´0.17697q a

ĂX
2
Σ`u ´104.0781959 b rA1sπ4

u, 4σ2
g, 3σ1

u |αy “ ´0.44641 b rB1s , 4σ1
g |βy “ ´0.26180 b 1.3187 b A1 “ 180.0 b

pD8hq ˚p´34.87079q b ˚p´34.15042q b 1.3187 b A2 “ 180.0 b

˚ ˚ p´0.48614q b ˚ ˚ p´0.17697q b

ĂX
2
Σ`u ´103.6396773 d rA1sπ4

u, 4σ2
g, 3σ1

u |αy “ ´ 0.42477 d rB1s , 4σ1
g |βy=-0.24844 d 1.3176 d A1 “ 180.0 d

pD8hq ˚p´34.74888q d ˚p´34.06924q d 1.3176 d A2 “ 180.0 d

(*17e) ˚ ˚ p´0.49245q d ** p´0.18742qd

ĂX
2
Σ`u ´104.159145 f rA1sπ4

u, 4σ2
g, 3σ1

u |αy “ ´0.44701 f rB1s , 4σ1
g |βy “ ´0.26341 1.3275 f A1 “ 180.0 f

pD8hq ´104.1355512 n ˚p´34.86501q ˚p´34.14329q 1.3275 A2 “ 180.0

˚ ˚ p´0.48249q ˚ ˚ p´0.17779q
ĂA

2
Σ`g ´104.1047582 k rA1sπ4

u, 4σ1
g, 3σ2

u |αy “ ´0.44638 u rA1sπ4
u, 4σ1

u,“ ´0.26134 1.3154 k A1 “ 180.0 k

(*17e) ´104.0781729 K1 ˚p´34.8744q u ˚p´34.15408q 1.3154 k A2 “ 180.0 k

˚ ˚ p´0.48626q u ˚ ˚ p´0.17666q
rB

4 ś
g ´104.0297022 h rA1sπ4

u,π2
g,σ

1
g |αy “ ´0.26899 h rA1s ,π2

u |βy ´ 0.49646 1.3079 h A1 “ 180.0 h

(*17e) ´104.0141196 a ˚p´35.04484q h ˚p´33.74801q 1.3079 h A2 “ 180.0 h

˚p´0.30125q h ˚ ˚ p´0.50595q
ĂX

1
Σ`g ´104.1965676 a rA1s 1π4

u, 4σ2
g, 3σ2

u “ ´0.13904 a 1.3291 a A1 “ 179.9322 a

(*18e) ´104.2019114 a1 ˚E p |αyq “ ´32.48647 a 1.3291 A2 “ 179.9462

´104.1950169 a2 ˚ ˚´0.36286
ĂX

1
Σ`g ´104.1965676 b ˚E p |αyq “ ´32.48644 b 1.3291 b A1 “ 180.0 b

(*18e) 1.3291 A2 “ 180.0
ĂX

1
Σ`g ´104.1145486 c rA1sπ4

u,σ2
g,σ2

u “ ´0.13454 c 1.3459 c A1 “ 179.8967 c

(*18e) ´104.1162881 c1 1.3459 c A2 “ 179.9181 c

´104.112568 c2
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Table 1. Cont.

State

EepppHartreeqqq

|αyConfiguration |βyConfiguration re pB1 Nq A1ppp2, 1, 3, ´́́2, ´́́1qqq

(*Ne) Total Energy of |α˚y Total Energy of |βy ˚, Virtual ** re pNB2q A2ppp2, 1, 3, ´́́1, ´́́2qqq

pHomo´ Lumoq˚˚

ĂA
3
Πu ´104.0884685 a [C]π4

u, 3σ1
u, 1π1

g |αy=´0.03986 h rC1sπ4
u,, 4σ1

g |βy = ´0.01559 hq 1.3422 h A1 “ 180.0 h

(*18e) ´104.1164696 h ˚E p |αyq “ ´32.79721 h ˚E p |βyq “ ´32.26335 h 1.3422 A2 “ 180.0

´104.0809447 a1 ˚ ˚´0.25941 h ˚ ˚´0.14777 h

´104.0792592 a2

ĂX
1
Σ`g ´103.7454365 a rDsp1π4

uq, p4σ2
g=´0.57788 aq 1.2938 a A1 “ 180.7911 a

(*16e) ´103.8054934 a1 ˚E p |αyq “ ´36.52419 a 1.2938 a A2 “ 180.6276 a

´103.7545006 a2 ˚ ˚´0.17926a

ĂX
1
Σ`g ´103.6023122 m rDsp1π4

uq, p4σ2
g=´0.57803 gq 1.3156 m A1 “ 179.981m

(*16e) ´103.3012055 g ˚E p |αyq “ ´36.51985 g 1.3156 m A2 “ 179.985m

´103.8377401 f ˚ ˚´0.17944 g 1.3003 h

´103.7903312 h 1.3004 h

rB 3Σg ´103.7609202 a
!

rA1s 4σ1
g, 3σ1

u,π4
u,
)

a  

rA1s ,π2
u |βy “ ´0.75222

( a 1.2976 a A1 “ 180.0 a

(*16e) ´103.7767141 h π2
u |αy “ ´0.74323 a ˚E p |βyq p´35.72475qa 1.2976 a A2 “ 180.0

´103.7628505 a1 ˚E p |αyq p´37.33372q a ˚ ˚ p´0.52131q a

´103.7590557 a2 ˚ ˚ p´0.53385q a

(a) QCISD/EPR-II, (a'') MP4D/EPR-III//QCISD/EPR-III, (m) CASSCF (a'') MP4SDQ/EPR-III//QCISD/EPR-III, (d) CASSCF (11, 12)/UHF, (g) CASSCF(10,12)rohf AUG-cc-pvqz,
(b) QCISD/EPR-III(θconst “ 180.0q, r A s : 1σ2, 2σ2, 3σ2, 4σ2, 5σ2, (c) QCISD/EPR-II, rA1s : 1σ2

g, 1σ2
u, 2σ2

g, 3σ2
g, 2σ2

u; (c') MP4D/EPR-II//QCISD/EPR-II, rB s : σ1,σ1,σ1,σ1,σ1,π2;
(c'') MP4SDQ/EPR-II//QCISD/EPR-II, [B1]: 1σ1

g, 2σ1
g, 1σ1

u, 3σ1
g, 2σ1

u, 1π2
u, (f) CBS-lq, (h) QCISD(T)/EPR-III, [C]: 1σ2

g, 1σ2
u, 2σ2

g, 3σ2
g, 2σ2

u, 4σ2
g, rC1s : 1σg, 1σu, 2σg, 3σg, 2σu, (n) CBS4O, (u)

TD/EPR-II (k) TD/EPR-III//QCISD (T)/EPR-III, (k') TD/EPR-III//QCISD /EPR-III, [D]: 1σ2
g, 2σ2

g,1σ2
u, 3σ2

g, 2σ2
u. Total energy of |βy and the energy of virtual orbital are shown with

“*” and “**” symbols, respectively.
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Table 2. NBO, electric potential, gradient of electric potential pLq, atomic occupancies, and Fock Matrix data of B2Np´,0, +) in ground and exited states.

State BEp1 –NEp2 –BEp3 L “
EPpBq ´ EPpNq

RpppBNqqq
Hybrids Coefficient& Eacceptorpjq ´́́ EDonorpiq Atomic Occupancies

(*Ne) ˚̊̊Fock Matrix pppFi,j, a.u.qqq

ĂX
2
Σ`u NEp2 “ ´18.3638 a p5.32q, p5.32q |ψyBDp1q “ 0.91SP1.01

N1
` 0.41 SP2.46a

B2
|ψyBD˚p2q ´ |ψyBDp1q “ 2.01 |αyN : 2s0.772P0.84

x 2P0.84
y 2P0.87

z

(*17e) BEp1 “ BEp3 ´ 11.3464 a |ψyBDp2q “ 0.96SP1.0
N1
` 0.29SP1.0a

B2
* 0.094 |αy B : 2s0.762P0.79

x 2P0.79
y 2P0.40

z

|ψyBDp3q “ 0.96SP1.0
N1
` 0.29SP1.0a

B2
|ψyBD˚p3q ´ |ψyBDp1q “ 1.00 |βyN : 2s0.802P0.86

x 2P0.86
y 2P0.83

z

|ψyBD˚p1q “ 0.28SP1.0
N1
´ 0.95 SP1.0a

B2
* 0.089 |βy B : 2s0.502P0.69

x 2P0.69
y 2P0.16

z

|ψyBD˚p2q “ 0.42SP1.01
N1
´ 0.90 SP0.95a

B3
|ψyBD˚p1q ´ |ψyBDp2q “ 0.7

|ψyBD˚p3q “ 0.70SP0.97
B2
´ 0.70 SP0.97a

B3
* 0.029

ĂX
1
Σ`g NEp2 “ ´18.6013 a p5.25q, p5.25q |ψyBDp1q “ 0.90SP1.01

N1
` 0.43 SP2.26a

B2
|ψyBD˚p3q ´ |ψyBDp1q “ 1.94 |αy ,βyN : 2s1.592P1.70

x 2P1.70
y 2P1.66

z

(*18e) BEp1 “ BEp3 ´ 11.6190 a |ψyBDp2q “ 0.66SP1.0
N1
` 0.75SP1.0a

B2
* 0.107 |αy ,βyB : 2s0.972P0.14

x 2P0.14
y 2P0.37

z

|ψyBDp3q “ 0.95SP1.0
N1
` 0.32SP1.0a

B2
|ψyBD˚p1q ´ |ψyBDp1q “ 0.73

|ψyBD˚p1q “ 0.44SP1.01
N1
´ 0.90 SP2.24a

B2
*0.021

|ψyBD˚p2q “ 0.75SP1.0
N1
´ 0.67 SP1.0a

B3
|ψyBD˚p3q ´ |ψyBDp3q “ 1.94

|ψyBD˚p3q “ 0.32SP1.0
N1
´ 0.94 SP1.0a

B3
* 0.107

rB 3Σ+ NEp2 “ ´18.10657 h p5.43q, p5.43q |ψyBDp1q “ 0.90SP1.0
N1
` 0.42 SP0.72 h

B |ψyBD˚p3q ´ |ψyBDp1q “ 1.98 |αyN : 2s0.782P0.81
x 2P0.81

y 2P0.87
z

(*16e) BEp1 “ BEp3 ´ 11.0485 h |ψyBDp2q “ 0.96SP1.0
N1
` 0.26SP1.0h

B * 0.119 |αy B : 2s0.722P0.92
x 2P0.92

y 2P0.44
z

|ψyBDp3q “ 0.96SP1.0
N1
` 0.26SP1.0h

B |ψyBD˚p1q ´ |ψyBDp2q “ 0.77 |βyN : 2s0.772P0.87
x 2P0.87

y 2P0.86
z

|ψyBD˚p1q “ 0.42SP1.0
N1
´ 0.90 SP1.0h

B2
* 0.028 |βy B : 2s0.102P0.62

x 2P0.62
y 2P0.08

z

|ψyBD˚p2q “ 0.26SP1.01
N1
´ 0.96 SP0.95h

B3
|ψyBD˚p1q ´ |ψyBDp2q “ 0.7

|ψyBD˚p3q “ 0.42SP1.0
N1
´ 0.90 SP0.72h

B3
* 0.029

ĂA
3
Πu NEp2 “ ´18.5665 h p5.19q, p5.19q |ψyBDp1q “ 0.91SP1.0

N1
` 0.40 SP1.62h

B2
|ψyBD˚p3q ´ |ψyBDp1q “ 1.94 |αyN : 2s0.752P0.81

x 2P0.60
y 2P0.86

z

(*18e) BEp1 “ BEp3 ´ 11.5955 h |ψyBDp2q “ 0.97SP1.0
N1
` 0.26SP1.0h

B2
* 0.107 |αy B : 2s0.742P0.09

x 2P0.70
y 2P0.43

z

|ψyBDp3q “ 0.91SP1.0
N1
` 0.40SP1.62h

B3
|ψyBD˚p4q ´ |ψyBDp1q “ 1.01 |βyN : 2s0.802P0.87

x 2P0.90
y 2P0.86

z

|ψyBDp4q “ 0.70SP0.51
B2
` 0.70SP0.51

B3
* 0.064 |βy B : 2s0.462P0.06

x 2P0.04
y 2P0.16

z

|ψyBD˚p1q “ 0.4SP1.0
N1
´ 0.91 SP1.62h

B2
|ψyBD˚p1q ´ |ψyBDp2q “ 0.73

|ψyBD˚p2q “ 0.26SP1.0
N1
´ 0.97 SP1.0h

B3
* 0.021

|ψyBD˚p3q “ 0.40SP1.0
N1
´ 0.91 SP1.62h

B3

|ψyBD˚p4q “ 0.70SP0.51
B2
´ 0.70 SP051h

B3

The Fock Matrix
`

Fi,j, a.u.
˘

data have been shown with star symbol “*”. (a) QCISD/EPR-III, (h) QCISD(T)/EPR-III.
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Table 3. Isotropic Fermi contact coupling (IFCC) of B2Np0q in ground (ĂX
2
Σ`u ) and exited

( rB
4 ś

g) states.

State ∆ “““ r2 ´́́ r1 IFCCrrr f p∆qsss ∆θ “““ θ1 ´́́ θ1 IFCCrrr f pθqsss
(*Ne) θcons “““ 180.0 N, B1, B2 rcons “““ 1.3176 N, B1, B2

ĂX
2
Σ`u (*17e)

∆ “ 0.000 ´29.81, 428.6, 428.6 ∆θ “ 0.0 ´29.81, 428.6, 428.6
∆ “ 0.010 ´29.76, 386.2, 469.7 ∆θ “ 2.0 ´29.81, 428.71, 428.71
∆ “ 0.020 ´29.11, 348.2, 508.1 ∆θ “ 3.0 ´29.81, 428.77, 428.77
∆ “ 0.030 ´28.02, 316.1, 541.9 ∆θ “ 5.0 ´29.81, 428.95, 428.95
∆ “ 0.040 ´26.64, 290.3, 570.2 ∆θ “ 10.0 ´29.83, 429.84, 429.84
∆ “ 0.050 ´25.12, 270.7, 592.6 ∆θ “ 20.0 ´29.87, 433.44, 433.44
∆ “ 0.060 ´23.54, 256.7, 609.5 ∆θ “ 30.0 ´29.86, 439.68, 439.68
∆ “ 0.070 ´21.98, 247.6, 621.3 ∆θ “ 40.0 ´29.61, 448.75, 448.75
∆ “ 0.080 ´20.46, 242.7, 628.7 ∆θ “ 50.0 ´28.85, 460.82, 460.82
∆ “ 0.082 ´20.10, 242.1, 629.8 ∆θ “ 60.0 ´27.16, 475.86, 475.86
∆ “ 0.085 ´19.72, 241.6, 630.9 ∆θ “ 70.0 ´24.06, 493.31, 493.31
∆ “ 0.086 4.35, 60.3, 899.9 ∆θ “ 80.0 ´18.57, 512.55, 512.55
∆ “ 0.087 4.46, 59.4, 901.2 ∆θ “ 90.0 ´10.65, 533.75, 533.75
∆ “ 0.090 4.79, 56.6, 904.7

rB
4 ś

g

∆ “ 0.000 20.26, 377.8, 377.8
∆ “ 0.010 20.26, 381.2, 377.9
∆ “ 0.020 20.26, 384.5, 377.9
∆ “ 0.030 20.28, 387.8, 377.9
∆ “ 0.040 20.30, 391.2, 377.9
∆ “ 0.050 20.30, 394.4, 377.9
∆ “ 0.060 20.38, 397.8, 377.9
∆ “ 0.070 20.44, 401.0, 377.8
∆ “ 0.080 20.50, 404.27, 377.7

It is prudent to employ a highly correlated method which can use a large number of reference
determinants to recover dynamic and static correlations. In this work, the results of EPR-III basis
sets are monotonous through the comparison between different situations. Although (in Table 1) the
difference between the two positions of global minima and local minima for both |αy and |βy is 8.77
cm´1, our calculations show that the total energies for both of them are the same (i.e., ´104.0781959).
This is due to the fact that the spin orbital energies are related to the small bending angles of A1 and A2

which have an extremely low bending frequency (70 cm´1). Harmonic frequencies were determined
at the QCISD/EPR-III//prop=EPR and characterized by 228.79 cm´1 (ϑ1 “ ϑ

1
1, bending mode “πu”),

1178.64 cm´1 (ϑ2, symmetric stretching “σg”) and 2146.42 (ϑ3, asymmetric stretching “σu”). The IR
and Raman intensities for ϑ3 are 10165.0 and 0.00, respectively, while the “ϑ2” mode has intensity in
Raman (51.0) but zero intensity in the IR region.

As it is shown in Table 1, the energy difference between two states of (ĂA
2
Σ`g ) and (ĂX

2
Σ`u q

{(k ´ a) and (k – k1)} are 5829.75 cm´1 and 5834.79 cm´1, respectively. Those values are close to
the photoelectron spectroscopy calculation results which Asmis et al. have shown [2]. They have
discussed that the signal observed in the 355 nm and 266 nm photoelectron spectra of B2 N´

has been indicated as due to a photodetachment from the rX1 Σ`g q to the ground and lowest

excited state of neutral B2N {rX2 Σ`u q and p rA2 Σ`g q with a linear symmetry and assigned to

the rX1 Σ`g Ñ rX2 Σ`u ` e´ and rX1 Σ`g Ñ rA 2 Σ`g ` e´ transitions {the p rA2 Σ`g q term energy T0

is 0.785 eV or 6331.77 cm´1}.
The “1πu” orbital is a bonding combination of all 2p π orbitals on all three atoms, while “4σ2

g”
and “3σ1

u” orbitals are close lying and not strongly bonding in character. The small separation of these
two orbitals accounts for the small energy required to promote the molecule from the ground state to
the first exited state at 5829.75 cm´1. The difference between (k ´ a) and (k ´ k1) is « 5 cm´1 which
is near 8.77 cm´1 (different between C2V{C8 V and C8V{D8h of strata/stratum). In addition rB

2 ś
g

(exited state above the ĂA
2
Σ`g ) is subject to the Renner-Teller effect, leading to a complicated pattern of

bending vibrational levels. Our calculation shows the existence of a larger gap between 3σu and 1πg

orbitals, thereby placing the transition to
“

A1
‰

π4
u, 4σ2

g, 1π1
g with rB

2 ś
g state much higher in energy.
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Analysis of the vibronic structure of the rB
2 ś

g´
ĂpX

2
Σ`u q band system shows the transition to rB2 ś

g

at 19,452 cm´1. Nevertheless, the nonbonding character of 1πg and 3σu orbitals implies no significant
change in B–N bond lengths in this transition, as it is observed by Ding et al. [56]. Therefore, in spite

of rA2Σ`
pgq, the “ rB

2 ś
g” excited configuration does contribute to the ground state wave function as a

subject of Renner-Teller effect.
It is notable that the electron configuration sequences for the |αy and |βy situations are not

the same and as shown in Table 1. These sequences correspond to
“

A1
‰

and
“

B1
‰

for |αy and |βy,
respectively, which result the sequences of “1σg ą 1σu ą 2σg” for |αy and “1σg ą 2σg ą 1σu” for
|βy. They indicate the relation between Centro-symmetric and electron correlations in various levels
from UHF and DFT to the CASSCF and MRCI methods for the magnitude of the barrier energies. As a
result, if the molecule has a barrier at the Centro-symmetric structure, the barrier is not extraordinarily
high, and if a high barrier were present, the vibrational level of the ground state would be thermally
populated and transitions from this level would be sharp. Ding shows that in order to decide whether
a barrier exists at the Centro-symmetric configuration, the energies of the pϑ3q levels in the ground
state would have to be measured, and the resulting set of levels used to deduce the potential function
along the anti-symmetric stretching coordinate, Q3. For even values of v3, this would be possible in
principle by either dispersed fluorescence or stimulated emission pumping spectroscopy. In practice,
however, it appears that these levels will be difficult to reach owing to poor Franck-Condon factors.
For odd values of ϑ3, a direct infrared absorption study provides the best method for the accurate
measurement of those levels [56].

Although the observation of excitations involving uneven quanta of the anti-symmetric
stretching mode, v3, indicates a breakdown of the Franck–Condon (FC) approximation, it cannot be
the only results from Herzberg–Teller vibronic coupling between the (rX2 Σ`u q) and (p rA2 Σ`g q) states
involving the v3 mode.

In Table 2, the NBO calculation shows that the 2sN orbital is considered to be primarily core-like,
forming the 3σg orbital, though, of course, some mixing of the 2sN orbital into the other σg orbitals
ix expected. NBO analysis of the orbital containing the unpaired electron in BNB shows that most of
the spin density is located in the boron sp orbitals. The boron atomic orbitals are best described as a
“sp” hybrid, directed away from the nitrogen atom however, bonding with respect the σP orbital on
the nitrogen atom. The 2σu orbital is a bonding combination of the 2pσ orbital on the central nitrogen
atom with 2spσ hybrid orbitals on the two borons. The 1πu orbital is a bonding combination of all 2pπ
orbitals on all three atoms, while “4σg” and “3σu” orbitals are close lying and not strongly bonding
in character.

The hyperfine parameters were calculated for the linear geometry with a bond length
of 1.3176 Å via a CASSCF optimization at several levels of configuration interaction and exited states
(Table 3).

Aiso in the ground state for boron atoms varies from 428.6 MHz at ∆ “ 0.0 to 241.6 MHz at
∆ “ 0.085 for B1 and from 428.6 MHz at ∆ “ 0.0 to 630.9 MHz at ∆ “ 0.085 for B2 while
the nitrogen Aiso varies smoothly from ´29.81 MHz (∆ “ 0.0) to ´19.72.0 MHz (∆ “ 0.085).
There is a critical point for Aiso (both in B and N) between ∆ “ 0.085 and ∆ “ 0.086 where the
data reverses to 4.35, 60.3and 899.9 for N, B1 and B2 respectively (Table 3), indicating the symmetry
breaking in point charges or distances in this region. The dipolar hyperfine coupling constants
exhibited negligible dependence on bound. The highest occupied orbital containing the unpaired
electron is σu orbital with most of the electron density on the boron atoms. Symmetry constrains
this orbital to have only “σP” orbital contributions from nitrogen with no “s” character so that the
isotropic hyperfine parameter from nitrogen is small and arises mostly from spin polarization effects.

The molecular isotropic hyperfine pAisoq values for BNB can be obtained from the experimental

“A||” and “AK”: Aiso “
p2AK ` A||q

3
“

8π
3

gegNβeβN<δprq ą (10)
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As a result, the experimental data are B1 = B2 = 451 and N = ´14.0 [4] which are close to our
calculated results. Isotropic hyperfine interaction including “g” tensor for BNB shows the large boron
isotropic amount. Thus, the properties of the g tensor eliminate the possibility of a low exited 2Πg
state for the radical. The averaged vibrations of B–N bond lengths, IFCC r f p∆qs and IFCC r f pθqs can
be shown, even if the ground state is precisely linear, quasi-linear or the geometry at the potential
minimum went through a symmetry breaking to form a C8 v structure.

In this study, we have focused on the charge distribution of boron and nitrogen atoms to exhibit
the charge breaking (Table 1). As it is shown in Figures 1 and 2 the symmetry breaking in point
charge distribution does not only indicate a barrier energy in the regions of 100–160 cm´1 [9,22,23]
or 20 cm´1 [20], but also it creates several SB through the asymmetry stretching (or interaction
between asymmetry stretching and bending) with different barrier energies from high to small values
(about 5 cm´1) (Figure 1).
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Figure 2. Relative energies of B2N(−, 0, +) vs. B-N-B bond angle in various level of methods for anion, 
cation and radical forms of BNB respectively 

Therefore, the symmetry-breaking barrier has a dynamic changing with no Centro-symmetric 
form, and it depends on wave function or charge distribution. Furthermore, a large barrier can be 
estimated via fixed-node diffusion Monte Carlo methods in which ܦஶ௛ and ܥஶ௩ ROHF WFs (with 
symmetric stretching) have energies separated by a gap as big as 0.5 milli Hartree approximately [57]. 
In the case of ܥஶ௏ symmetry solutions, there are two degenerate solutions which correspond to a 
single electron, localized on either one of the two “different” boron atoms, as can be observed from a 
natural bond analysis. A linear combination between these two solutions will restore the ܦஶ௛ 
symmetry of the WF, but this WF would be different from the original ܦஶ௛ solution where the single 
electron is delocalized over the two boron atoms [57]. 
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Figure 2. Relative energies of B2Np´,0,`q vs. B-N-B bond angle in various level of methods for anion,
cation and radical forms of BNB respectively

Therefore, the symmetry-breaking barrier has a dynamic changing with no Centro-symmetric
form, and it depends on wave function or charge distribution. Furthermore, a large barrier can be
estimated via fixed-node diffusion Monte Carlo methods in which D8 h and C8v ROHF WFs (with
symmetric stretching) have energies separated by a gap as big as 0.5 milli Hartree approximately [57].
In the case of C8V symmetry solutions, there are two degenerate solutions which correspond to a
single electron, localized on either one of the two “different” boron atoms, as can be observed from
a natural bond analysis. A linear combination between these two solutions will restore the D8h
symmetry of the WF, but this WF would be different from the original D8h solution where the single
electron is delocalized over the two boron atoms [57].
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As shown in Figure 3, based on Knight’s reports [4] {(in which the variation of energy with bond
angle for finding a minimum around (100˝) have been discussed}, a cyclic radical or anion B2Np´,0q

in our calculations has not been observed, though, for cation, there is a bulge in the curve at 90˝ in
MP4DQ and MP4DSQ methods which indicates a cyclic B2N+.
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At the SCF level, the lowest energy corresponds to a bent molecule with an angle of 100°, however, 
for the QCISD (T), MP4DQ, MP4DSQ and HF/aug-cc-pVTZ calculations (Figure 2) the linear structure 
clearly has the lowest energies for radical and anion structures. Martin [7] has shown a cyclic B2N 
(2B2) via reactions of pulsed laser produced boron and nitrogen atoms in a condensed argon stream 
(at higher laser power reactions) and has discussed that the vibration 882.3 cm−1 must be considerably 
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in the 3000–6500 cm−1 regions. The 882.3 cm−1 one is assigned to the anti-symmetric B-N stretching 
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measure the v1. 

The electronic transition energy σg → σu excitation is less than 6000 cm−1, which indicates that the 
higher overtones of the cyclic B2N (2B2 state) vibrations will display significant vibronic interaction 
effects. The failure to observe cyclic B2N in the 2B2 state by ESR [4] is most likely due to the differences 
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Figure 3. Isotropic Fermi contact coupling (IFCC) of B2N(0): (a) Function of angles changing;
(b) Function of distances changing. The axes for nitrogen and borons have different scales; (a') IFCC
for Nin a short scale between ´30 to ´29.8 indicates of IFCC breaking and (a'') different IFCC of B
and N in a short scale.

At the SCF level, the lowest energy corresponds to a bent molecule with an angle of 100˝,
however, for the QCISD (T), MP4DQ, MP4DSQ and HF/aug-cc-pVTZ calculations (Figure 2) the
linear structure clearly has the lowest energies for radical and anion structures. Martin [7] has shown
a cyclic B2N (2B2) via reactions of pulsed laser produced boron and nitrogen atoms in a condensed
argon stream (at higher laser power reactions) and has discussed that the vibration 882.3 cm´1 must
be considerably an-harmonic. This possibility receives substantial support from the five combination
bands observed in the 3000–6500 cm´1 regions. The 882.3 cm´1 one is assigned to the anti-symmetric
B-N stretching fundamental v3(b2) of cyclic B2N and the 1998.4 cm´1 combination band is the sum
of v1 (a1), the symmetric B-N stretching fundamental, and v3. The difference 1998 ´ 882 = 1116 cm´1

can help to measure the v1.
The electronic transition energy σg Ñ σu excitation is less than 6000 cm´1, which indicates

that the higher overtones of the cyclic B2N (2B2 state) vibrations will display significant vibronic
interaction effects. The failure to observe cyclic B2N in the 2B2 state by ESR [4] is most likely due to
the differences in production and relaxation of the energized evaporated species. The fact that the
radical BNB might be converted to cation BNB towards the cyclic B2N (due to the laser ionization
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effect) can be predicted from Martin’s study. In addition, Becker et al. [58] used laser ionization
mass spectrometry to study the formation of BnN`m clusters ions in laser plasma which resulted in
production of BNB cation whereas our calculations resulted in production of cyclic B2N+.

In a simple form, the best Lewis structure representation (Scheme 2) is the pair of resonance
structures, i.e., “.B=N=B:” and “: B=N=B.” These structures have a formal +1 charge on nitrogen and
a formal´1/2 charge on each boron, but the difference in electronegativity gives rise to a net-negative
charge density on the nitrogen atom. Radical of B2Np0q is stabilized by six resonance structures of the
linear forms and three resonance structures of cyclic forms (with various distributions) as follows:
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Scheme 2. Lewis structures representation of BNB in three forms of radical, anion and cation. 
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Scheme 2. Lewis structures representation of BNB in three forms of radical, anion and cation.

Although in some structures of the six resonances, the nitrogen is negative and the two borons
are positive, in our ESP calculations for B2Np0q with different levels of theory, nitrogen is always
positive and close to zero while the two boron atoms are always negative near zero and the converse
appears for the B2N(+) species. The atomic charges via 4516 points for one of the ESP fitting at
QCISD/EPR-III level of theory for radical shows the values of 0.076055, ´0.037580 and ´0.038476
for N and two boron atoms, respectively.

All in all, the nuclear hyperfine of various states are shown in Table 3 and Figure 3.

The nitrogen and one of the boron atoms in rB
4 ś

g state are independent of “∆” during hyperfine

coupling calculation. Although these two states rB
4 ś

g and ground state) can interact along the
anti-symmetric stretching as a reason of SB problem in BNB radical, the lack of the “correct”
per-mutational symmetry of the wave-functions which arises due to the oversimplification of the
wave function is a major reason for spontaneous symmetry breaking.

For the sextuplets contaminating C8V symmetry 2Σ+: 1σ2, 2σ2, 3σ2, 4σ2, 5σ2, 6σ2, 7σ1, 1π2, 1π2

and 6Σ+: : 1σ2, 2σ2, 3σ2, 4σ2, 5σ2, 6σ2, 1π2, 7σ1, 1π2 the dynamic correlation would be even smaller [1].
With a cc-pVQZ basis set and high correlation, the single reference CCSD (T) energy gap between
the symmetric and asymmetric configurations is 136 cm´1 [23] which is reduced to 99 cm´1 in the
RMR CCSD (T) method [14]. An additional extended discussion would be reported in a subsequent
publication concerning strata/stratum (S/s) configuration.

We have reinvestigated the anion form at the QCISD (T), QCISD, CCSD (T), MP4SDQ, MP4D
and full space CASSCF levels of theory employing Aug-CC-PVTZ and EPR-III basis sets. Although

by our calculations the cyclic B2 N´ anion structure cannot be predicted to lie above the ĂX
1

Σ`g
ground state, it is notable that the lowest stable bent solution for B2Np´q should be a 3B2 state and
not a single state.

Harmonic frequencies were determined at the QCISD/EPR-III//prop = EPR and characterized
by 224.70 cm´1 (ϑ1 “ ϑ

1
1, bending mode “πu”) and 1203.42 cm´1 (ϑ2, symmetric stretching “σg”) and
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1837.50 (ϑ3, asymmetric stretching “σu”). The IR and Raman intensities for ϑ3 are 1494.6 and 0.00,
respectively, while the ϑ2” mode has intensity in Raman (39.97), but zero intensity in IR region. The

valence orbital occupancy of ground state (ĂX
1

Σ`g q is: 1σ2
g, 1σ2

u, 2σ2
g, 3σ2

g, 2σ2
u, 1π4

u, 4σ2
g, 3σ2

u, while the
lowest excited triplet state in the D8 h representation for anion form has calculated (Table 1) and is

predicted to be a ĂA
3
Πu state, lying 2.94 eV {ĂA

3
Πu paq ´ rX1Σ`g paq in Table 1} above the ĂX

1
Σ`g state

(with the calculated value of 2.7 eV anion with photoelectron spectroscopy of B2Np´q).
The energies of |αy and |βy valance occupied MOs for the first triplet of exited state

´

1σ2
g, 1σ2

u, 2σ2
g, 3σ2

g, 2σ2
u, 4σ2

g, 1π4
u, 4σ1

u, 1π1
g

¯

are 1π1
g |αy “ ´0.03986, 4σ1

u |αy = ´0.23701 and
 

1π2
u |αy “ ´0.25466, ´0.25136

(

meanwhile, for |βy are
 

1π2
u |βy “ ´0.28802,´0.27730

(

, and
4σ2

g |βy “ ´0.01559. The total energy for |αy is more than the total energy for |βy which indicates
more correlation in anion form compared to the other two forms of BNp`, 0q.

However, the unrestricted QCISD (T) wave function is considerably spin-contaminated and
characterized by a large T1 value. The rA3 Σ`g excited state corresponding to the promotion of an
electron from the highest occupied molecular orbital (HOMO), 3σu, to the 4σu MO is predicted to be

considerably above the ĂA
3
Πu state.

4516 points have been used for fitting the atomic charges to electrostatic potential and the charges
of ESP in this fitting are: {N = 0.891292, B = ´0.945425, B = ´0.945867}. Nitrogen is always positive
while the two boron atoms are always negative and it is appeared conversely for the B2Np`q in which
the nitrogen in cation is negative and two borons are positive in all ESP calculations. Both of the two
highest occupied orbitals are predominantly nonbonding with the electron density localized mainly
on the “terminal” boron atoms.

Isotropic Fermi contact coupling (IFCC) of B2N(0) as a function of angles and distances is shown
in Table 4 and Figure 3. Although the symmetry breaking cannot be seen in the IFCCt f p∆rqu, it can
be seen in the IFCCt f p∆θqu for the nitrogen in range of angles between ∆θ “ (50, ´50) (Figure 3a').
On the other hand, the SB has not been observed for the ∆ p∆θq = ∆θB ´∆θN in range of ∆θ “ (5, ´5)
(Figure 3a''). It seems that nitrogen in SB problem plays a major role and it depends on asymmetry
bond changing and angle deformation interaction pπu ` σuq .

Table 4. {TQ#: Traceless Quadrupole moment (Debye-Ang)}; (§) Charges from ESP fitting and
Isotropic Fermi Contact Couplings (MHz) (IFCC).

State Ee pHartreeq Bδq1 –Nδq2 –Bδqpq3 TQ#
xx

(* Ne) IFCC(N,B1,B2) TQyy
TQzz

ĂX 2Σ+ ´104.0781959 a δq1 “ δq3 “ ´0.015 a ´1.8265 a

pC8vq ´104.0820328 a1 δq2 “ 0.03 a 0.8644 a

(*17e) ´104.0754917 a”
´29.8, 427.2, 429.6 a 0.9621 a

ĂX
2
Σ`u ´104.0781959 b δq1 “ δq3 “ ´0.015 b 0.9621 b

pD8hq δq2 “ 0.03 b 0.9621 b

´104.159145 f ´29.9, 428.2, 428.2 b ´1.9241 b

ĂX
2
Σ`u ´103.6396773 d δq1 “ δq3 “ ´0.0165 d Qxx “ ´16.5 d

pD8hq δq2 “ 0.033d Qyy “ ´16.5 d

(*17e) Qzz “ ´19.8 d

ĂX
2
Σ`u ´104.159145 f δq1 “ δq3 “ ´0.0045 f 0.8928 f

pD8hq ´104.1355512 n δq2 “ 0.009 0.8928
´1.7855

ĂA
2

´104.1047582 k 137.9, 817.0, 817.0 u ´17.87 u

(*17e) ´104.0781729 K1 ´17.87 u

´20.80 u

rB
4 ś

g ´104.0297022 h 20.26, 377.84, 377.84 h 1.0334
(*17e) ´104.0141196 a -2.4251

1.3917
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Table 4. Cont.

State Ee pHartreeq Bδq1 –Nδq2 –Bδqpq3 TQ#
xx

(* Ne) IFCC(N,B1,B2) TQyy

TQzz

ĂX
1

´104.1965676 a δq1 “ δq3 “ ´0.934 ´14.8029 a

(*18e) ´104.2019114 a1 δq2 “ 0.868 a 7.4015 a

´104.1950169 a”
´14.98, 211.91, 211.91 7.4015 a

ĂX
1

δq1 “ δq3 “ ´0.934 7.4015 b

(*18e) ´104.1965676 b δq2 “ 0.868 b 7.4015 b

´14.803 b

ĂX
1

´104.1145486 c δq1 “ δq3 “ ´0.987 ´15.7996 c

(*18e) ´104.1162881c1 δq2 “ 0.974 c 7.8992 c

´104.112568 c” 7.9004 c

ĂA
3
Πu ´104.0884685 a δq1 “ δq3 “ ´0.65 h 2.444 h

(*18e) ´104.1164696 h δq2 “ 0.3 6.5747
´104.0809447 a1 ´9.0187

ĂX
1

´103.7454365 a δq1 “ δq3 “ 0.805 a 8.0329 a

(*16e) ´103.8054934 a1 δq2 “ ´0.611 ´4.0164
´103.7545006 a2 ´4.0164

ĂX
1

´103.6023122 m δq1 “ δq3 “ 0.828 f 7.009 m

(*16e) ´103.3012055 g δq2 “ ´0.656 f ´3.505 m

´103.8377401 f ´3.505 m

rB 3Σg ´103.7609202 a δq1 “ δq3 “ 0.763 a ´3.6992 a

(*16e) ´103.7767141 h δq2 “ ´0.525 a ´3.6992
´103.7628505 a1 7.3983

(a) QCISD/EPR-III; (d) CASSCF(11,12)/UHF; (a') MP4D/EPR-III//QCISD/EPR-III; (m) CASSCF(10,12)/EPR-II;
(a'') MP4SDQ/EPR-III//QCISD/EPR-III; (g) CASSCF(10,12)rohfAUG-cc-pvqz; (b) QCISD/EPR-III;
(c) QCISD/EPR-II; (c') MP4D/EPR-II//QCISD/EPR-II; (c'') MP4SDQ/EPR-II//QCISD/EPR-II; (f)

CBS-lq; (h) QCISD(T)/EPR-III; (n) CBS4O; (u) TD/EPR-II; (k) TD/EPR-III//QCISD(T)/EPR-III; (K ')

TD/EPR-III//QCISD/EPR-III.

The role of nitrogen can also be discussed regarding the quadrupole moment. In Table 1, the
traceless quadrupole moments in several ground and exited states are listed and it can be seen that
the tensors of TQxx and TQyy are equal and positive, while TQzz is negative when the symmetry of
radical is D8 h (in ground state). However, all three components are negative in the exited state for

p rA2Σ`g q and their values are in a large scale in comparison to those in ground state while for rB
4 ś

g

they are irregular in the range of ground states. So, rB4 ś
g´

ĂX
2
Σ+ interaction should be stronger than

rA2Σ`g ´ĂX
2
Σ`. These results are the same for the anion in ground state of ĂA

3
Πu and the excited

state of ĂA
3
Πu and the suitable interaction of ĂA

3
Πu ´ĂA

3
Πu can be predicted (it is rX

1
Σ`g ´ rB 3Σg

for cation). In other words, the quadrupole moment for BNB is highly sensitive to angle deformation
and bond distance changing, so it can be discussed for any SBs in terms of quadrupole moment.

Based on our previous work [59], we have modified the Columbic term of the Schrödinger
equation for the definition of parameters “αα1 and ββ1”. The left part in the chart for the three curves
of anion, cation and radical of these parameters are straight towards up and down (Figure 4) and their
values are 1.293, 1.310 and 1.329 for cation, radical and anion, respectively. In the right part there is
a point splitting between two curves of α1 and β1(1.303, 1.316 and 1.339 for cation, radical and anion,
respectively) indicating a proper region for charge stability distribution in the SB problem.
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Figure 4. Parameters of Charge correction coefficients, vs. changing of boron and nitrogen distances 
for B2N(−, 0, +) for anion , cation and radical. 
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Figure 4. Parameters of Charge correction coefficients, vs. changing of boron and nitrogen distances
for B2Np´,0,`q for anion , cation and radical.

5. Conclusions

In this study, we have shown that the SB problem is not a real phenomenon; it is a
hidden function depending on various variables such as charge distribution, bond length, IFCC,
primitive Gaussians, trial wave-function properties, frozen core electrons and most importantly,
non-Born–Oppenheimer approximation approach. While the nuclear repulsion energy of B2Np´,0,`q

in Born–Oppenheimer approximation mostly depends on the variables such as B-N bond length,
using large and larger basis sets and more and more electron correlation are doomed to result in
wrong limit for the energy level of SB barriers or SB estimation. It is prudent to employ a highly
correlated method which can use a large number of reference determinants to recover dynamic and
static correlations. We have shown that the SB is generally applied to the failure of the electronic wave
function in order to be transformed as an irreducible representation of the molecular point group, so
the failure of the electronic wave function is purely artifactual. It is not wise to conclude that the
only special level of theory on the symmetry breaking for BNB is real (which has been concluded
in reference [9]) because there exist some hidden variables in the electronic wave functions which
should be considered. We have found that the symmetry breaking (SB) for some hidden variables
(such as charge distribution) not only exhibit an energy barrier, it also creates several SBs through the
asymmetry stretching with bending mode interaction.
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