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Abstract: Box-Behnken design (BBD), one of the most common response surface methodology
(RSM) methods, was used to optimize the experimental conditions for ultrasound-assisted
extraction of polysaccharides from Rhynchosia minima root (PRM). The antioxidant abilities and
anticancer activity of purified polysaccharide fractions were also measured. The results showed
that optimal extraction parameters were as follows: ultrasound exposure time, 21 min; ratio of
water to material, 46 mL/g; ultrasound extraction temperature, 63 ˝C. Under these conditions,
the maximum yield of PRM was 16.95% ˘ 0.07%. Furthermore, the main monosaccharides
of purified fractions were Ara and Gal. PRM3 and PRM5 exhibited remarkable DPPH radical
scavenging activities and reducing power in vitro. PRM3 showed strong inhibitory activities on
the growth of MCF-7 cells in vitro. The above results indicate that polysaccharides from R. minima
root have the potential to be developed as natural antioxidants and anticancer ingredients for the
food and pharmaceutical industries.
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1. Introduction

Ultrasound-assisted extraction, by means of ultrasonic vibration, can facilitate the release
of components from sample matrices [1]. Due to the cavitation in a strong acoustic field, this
widely used extraction technique has a lot of advantages, such as taking less extraction time,
synchronously processing a large number of extraction samples, and increasing the diffusion
rate [2,3]. Response surface methodology (RSM), a validated collection of statistical and mathematical
techniques, is commonly used to optimize and evaluate complex experimental process factors and
their interactions [4]. Furthermore, RSM needs less experimental trials and labor than many other
optimized approaches [5]. The Box-Behnken design (BBD), one of the most used RSM methods, plays
a pivotal role in arranging and interpreting the optimal experiments. Currently, multiple literatures
have reported that ultrasound-assisted extraction with RSM is commonly applied in analyzing
bioactive components of plants, such as Chrysanthemum morifolium flower heads [6], Ligusticum
rhizomes [7], sweet basil [8], and sugar beet [9].
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Rhynchosia minima root, a traditional medicinal herb, is used to alleviate skin abscesses, upper
respiratory infections, or joint pains. Our previous results indicated that its polysaccharides showed
strong anticancer activity against human lung cancer A549 and liver cancer HepG2 cells in a
dose-dependent manner [10]. In order to further develop and explore this valuable resource, there
is a pressing demand to obtain extensive crude polysaccharides in a short span of time. To reduce
time and energy consumption, thus, it is urgent to optimize the extraction conditions for isolating
the polysaccharides from R. minima roots. In the present study, we optimized the ultrasound-assisted
extraction parameters based on BBD, including ultrasound exposure time, ratio of water to material
and ultrasound extraction temperature, to maximize the polysaccharide yield of R. minima roots.
In addition, the obtained crude polysaccharides were isolated, purified and lyophilized. Antioxidant
activity and anticancer activity of purified fractions were also evaluated in vitro.

2. Results and Discussion

2.1. Single Factor Experimental Analysis

The effects of various extraction parameters, including ultrasound exposure time, ratio of water
to material and ultrasound extraction temperature, on the yield of polysaccharides were measured
using the one variable at a time approach [11]. The effect of ultrasound exposure time on the yield
of PRM is shown in Figure 1a. Various times (5, 10, 20, 30, 40 and 50 min) were examined, while
other extraction variables were kept as follows: ratio of water to material, 50 mL/g; ultrasound
extraction temperature, 50 ˝C. The yield of PRM increased rapidly for increasing ultrasound exposure
times ranging from 5 to 20 min. Thereafter, however, it reached a plateau with a slight decrease,
which might be due to polysaccharide degradation after extended ultrasonic-assisted extraction [12].
To avoid energy consumption and reduce the extraction time, 20 min was selected as the optimum
ultrasound exposure time for PRM production.
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Figure 1. Effect of different extraction factors ((a) ultrasound exposure time, min; (b) ratio of water 
to material, mL/g; (c) ultrasound extraction temperature, °C) on the extraction yield of PRM. The 
effects of ultrasound exposure time, ratio of water to material and ultrasound extraction temperature 
were first studied by a single-factor design as follows: only one factor was changed while the other 
factors were kept constant in each independent experiment. The effect of each factor was evaluated 
by determining their yield of PRM. 

The effect of ratio of water to material on the yield of PRM is shown in Figure 1b. The other 
variables were fixed as follows: ultrasound exposure time, 20 min; ultrasound extraction temperature, 
50 °C. It was clear that PRM yield rose and peaked at the ratio of 40 mL/g. Therefore, 40 mL/g was 
chosen as the optimum ratio of water to material. 

The effect of ultrasound extraction temperature on the yield of PRM was investigated with the 
ratio of water to material, 40 mL/g; ultrasound exposure time, 20 min. As shown in Figure 1c, the 
yield of PRM increased sharply when the ultrasound extraction temperature rose from 40 to 60 °C, 
and leveled off with further temperature increases. Thus, the optimal ultrasound extraction 
temperature was 60 °C. 

2.2. Fitting the Models 

According to the single factor experiment results, BBD with seventeen runs was applied to 
optimize the three independent extraction variables, including ultrasound exposure time (A); ratio 
of water to material (B); and ultrasound extraction temperature (C). Table 1 showed the BBD matrix 

Figure 1. Effect of different extraction factors ((a) ultrasound exposure time, min; (b) ratio of water
to material, mL/g; (c) ultrasound extraction temperature, ˝C) on the extraction yield of PRM. The
effects of ultrasound exposure time, ratio of water to material and ultrasound extraction temperature
were first studied by a single-factor design as follows: only one factor was changed while the other
factors were kept constant in each independent experiment. The effect of each factor was evaluated
by determining their yield of PRM.

The effect of ratio of water to material on the yield of PRM is shown in Figure 1b. The other
variables were fixed as follows: ultrasound exposure time, 20 min; ultrasound extraction temperature,
50 ˝C. It was clear that PRM yield rose and peaked at the ratio of 40 mL/g. Therefore, 40 mL/g was
chosen as the optimum ratio of water to material.

The effect of ultrasound extraction temperature on the yield of PRM was investigated with the
ratio of water to material, 40 mL/g; ultrasound exposure time, 20 min. As shown in Figure 1c,
the yield of PRM increased sharply when the ultrasound extraction temperature rose from 40 to
60 ˝C, and leveled off with further temperature increases. Thus, the optimal ultrasound extraction
temperature was 60 ˝C.
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2.2. Fitting the Models

According to the single factor experiment results, BBD with seventeen runs was applied to
optimize the three independent extraction variables, including ultrasound exposure time (A); ratio
of water to material (B); and ultrasound extraction temperature (C). Table 1 showed the BBD matrix
and the experimental PRM yields. Regression analysis revealed that the yield of PRM (Y) and three
independent variables could be expressed by the following second-order polynomial equation:

Y “ 16.46 ` 0.62A ` 0.75B ` 0.96C´ 0.25AB ` 0.33AC´ 0.16BC´ 4.52A2´ 0.63B2´ 1.56C2 (1)

where Y is the experimental yield of PRM; A, B and C are the coded factors of ultrasound exposure
time, ratio of water to material and ultrasound extraction temperature, respectively.

Table 1. BBD with the experimental and predicted values for the yield of PRM.

Run
Coded Actual

Yield (%) Predicted Yield (%)A a B a C a A a B a C a

1 0 0 0 20 40 60 16.82 16.46
2 0 0 0 20 40 60 16.71 16.46
3 ´1 0 1 10 40 70 10.08 10.40
4 1 0 ´1 30 40 50 10.01 9.70
5 ´1 ´1 0 10 30 60 9.67 9.70
6 1 1 0 30 50 60 12.46 12.43
7 0 ´1 1 20 30 70 14.99 14.65
8 1 0 1 30 40 70 12.29 12.29
9 0 1 1 20 50 70 15.80 15.83
10 0 0 0 20 40 60 16.66 16.46
11 ´1 1 0 10 50 60 12.03 11.68
12 0 ´1 ´1 20 30 50 12.43 12.41
13 0 0 0 20 40 60 15.62 16.46
14 1 ´1 0 30 30 60 11.09 11.43
15 0 1 ´1 20 50 50 13.87 14.21
16 ´1 0 ´1 10 40 50 9.13 9.13
17 0 0 0 20 40 60 16.02 16.46

a A-Ultrasound exposure time (min); B-Ratio of water to material (mL/g); C-Temperature (˝C).

Statistical analysis of this model was performed using one-way ANOVA. The results (Table 2)
indicated that the model was significant (p < 0.0001), but lack of fit was not significant (p > 0.05), which
revealed that this model could be well fitted to the experimental data and appropriately describe the
relationship between the extraction variables and the response value [6].

Table 2. ANOVA results for the yield of PRM.

Source Sum of Squares df a Mean Square F-Value p-Value

Model 116.50 9.00 12.94 51.44 <0.0001
A b 3.05 1.00 3.05 12.12 0.0102
B b 4.46 1.00 4.46 17.71 0.0040
C b 7.45 1.00 7.45 29.60 0.0010
AB 0.24 1.00 0.24 0.96 0.3609
AC 0.44 1.00 0.44 1.75 0.2276
BC 0.10 1.00 0.10 0.39 0.5537
A2 84.32 1.00 84.32 335.12 <0.0001
B2 1.43 1.00 1.43 5.67 0.0488
C2 9.63 1.00 9.63 38.28 0.0005

Residual 1.76 7.00 0.25
Lack of fit 0.67 3.00 0.22 0.82 0.5481
Pure error 1.09 4.00 0.27

Correlation total 118.26 16.00
R2 = 0.9851 Adj-R2 = 0.9660 CV = 3.78%

a df is the degree of freedom; b A-Ultrasound exposure time (min); B-Ratio of water to material (mL/g);
C-Temperature (˝C).
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The coefficient of variation (CV) was 3.78, which indicated that this model had good precision
and reliability. The coefficient of determination (R2) and adjusted coefficient of determination
(Adj-R2) were 0.9851 and 0.9660, respectively, which indicated that this polynomial model had
adequate accuracy and general applicability [13]. In this regard, the three independent variables
(A, B and C) and two quadratic terms (A2 and C2) were significant, but the three interactions (AB, AC
and BC) were not significant.

2.3. Response Surface Analysis

The mutual interactions of independent and dependent variables on the yield of PRM could
be visualized by three dimensional (3D) response surface plots and two dimensions contour plots
(Figure 2). Each 3D plot represented the number of combinations of the two-test variables. The shapes
of contour plots represented the significance of the mutual interactions. Circular contour plots
indicated that the interactions were non-significant, whereas elliptical contours demonstrated the
interactions were significant [14].
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From these response surface plots (Figure 2) and one-way ANOVA analysis (Table 2), it was
evident that ultrasound extraction temperature was the most significant factor affecting the yield of
PRM, followed by the ratio of water to material and ultrasound exposure time. The suitability of
the model quadratic equations for predicting the optimal response values was checked using the
selected conditions. The optimal conditions were adjusted as followed: ultrasound exposure time,
20.6 min; ratio of water to material, 45.5 mL/g; ultrasound extraction temperature, 62.9 ˝C. Under
these conditions, the predicted yield was 16.82%. However, considering the practical operability, the
operated conditions were modified as follows: ultrasound exposure time, 21 min; ratio of water to
material, 46 mL/g; ultrasound extraction temperature, 63 ˝C. Under the above modified conditions,
the yield of PRM was 16.95% ˘ 0.07% (n = 3), which agreed well with the predicted yield and
simultaneously confirmed this model was satisfactory and valid.

2.4. Monosaccharide Composition of Purified Fractions

The HPLC results showed that each detectable monosaccharide had a single sharp peak
(Figure 3a). PRM1, PRM3 and PRM5 had similar monosaccharide compositions but with different
molar ratios. The molar ratios of Man, Rha, GlcA, GalA, Glc, Gal, Ara in PRM1 and PRM3 were
0.5:0.6:1.4:0.2:0.3:15.8:36.7 (Figure 3b) and 0.5:0.4:1.4:0.5:2.3:26.7:23.9 (Figure 3c), respectively, while
the molar ratio of Man, Glc, Gal, Ara in PRM5 was 1.9:3.0:45.7:5.4 (Figure 3d). Gal and Ara were
the main components of the three purified polysaccharides, which was in line with our previous
results [10].
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scavenging activity was tested. The results are shown in Figure 4a. PRM3 and PRM5 exhibited stronger 
scavenging activity than PRM1, while they all were far lower than that of vitamin C. At 8 mg/mL, the 
percentages of scavenging for PRM1, PRM3 and PRM5 were 6.55%, 26.53% and 35.13%, respectively. 
In addition, the IC50 values of PRM1, PRM3 and PRM5 were 343.24, 24.32 and 13.98 mg/mL, 
respectively. This results indicated that PRM5 could supply more hydrogen atoms than PRM1 and 
PRM3 [15]. 
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Figure 3. HPLC analysis of monosaccharide composition of standard (a); PRM1 (b); PRM3 (c);
and PRM5 (d). The three polysaccharides were hydrolyzed with trifluoroacetic acid, labeled with
PMP, and analyzed with a Waters e2695 HPLC instrument.

2.5. In Vitro Antioxidant Activity of Purified Fractions

In order to determinate the antioxidant activity of PRM1, PRM3 and PRM5, the DPPH radical
scavenging activity was tested. The results are shown in Figure 4a. PRM3 and PRM5 exhibited
stronger scavenging activity than PRM1, while they all were far lower than that of vitamin C.
At 8 mg/mL, the percentages of scavenging for PRM1, PRM3 and PRM5 were 6.55%, 26.53% and
35.13%, respectively. In addition, the IC50 values of PRM1, PRM3 and PRM5 were 343.24, 24.32 and
13.98 mg/mL, respectively. This results indicated that PRM5 could supply more hydrogen atoms
than PRM1 and PRM3 [15].
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The reducing power assay reveals the electron donating activity and can be used to evaluate the
potential antioxidant activity of polysaccharide fractions [16,17]. As shown in Figure 4b, the reducing
abilities of all fractions increased with the increasing concentration. In addition, PRM3 and PRM5
displayed better reducing capacity than PRM1. At 8 mg/mL, the reducing power of these fractions
were in the order of PRM3 « PRM5 > PRM1.
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It was well-known that the anticancer activity of polysaccharide might be associated with its
monosaccharide composition, molecular weight, and structural conformation [19,20]. Our previous
study observed that PRM3 with moderate uronic acid contents and low molecular weight could
exhibit potent anticancer activities in vitro [10]. In this study, PRM3 also possessed strong antioxidant
activity in vitro, which indicated that PRM3 was a powerful source of hydrogen atoms and was
good at transferring electrons [15,21,22]. However, the mechanism of the in vitro antioxidant
activity and anticancer activity of these polysaccharide fractions is still not clear, and needs to be
further investigated.

3. Experimental Section

3.1. Materials and Reagents

R. minima roots were purchased from an apothecary shop (Pingtan County, Fujian, China). The
roots were dried, crushed and grounded into fine powder, and then stored in a desiccator to prevent
any contact of moisture before experiments. 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium
bromide (MTT), 1,1-diphenyl-2-picryhydrazyl (DPPH), DEAE Cellulose-52 and Sephadex G-150
were purchased from Sigma-Aldrich Co., Ltd. (St. Louis, MO, USA). All other reagents were of
analytical grade and purchased from Aladdin Industrial Corporation (Shanghai, China).

3.2. Optimal Extraction of PRM

The dried R. minima roots were ground into fine powder by a high speed disintegrator
(YB-1000A, Yunbang Instrument Co., Ltd., Zhejiang, China). To remove lipids, pigments and other
impurities, the powder was extracted three times with anhydrous ethanol at 60 ˝C, each for 5 h. Then,
the purified sample powder was filtrated and air dried for further utilization.

3.2.1. Single Factor Experiments

The polysaccharides of R. minima roots (PRM) was extracted using an ultrasound-assisted
extraction method. Three major influencing factors (ultrasound exposure time, ratio of water to
material, ultrasound extraction temperature) were selected for this experiment. The effects of these
three factors on the yield of PRM were studied by a single factor design. Briefly, each single factor
experiment was performed separately. The ultrasound exposure time range was from 5 to 50 min,
while the ratio of water to material range was from 10 to 60 mL/g, and the ultrasound extraction
temperature ranged from 40 to 80 ˝C. When one factor was changed, the other factors were left
unchanged in each experiment. The effect of each factor was measured by determining the yield
of PRM. The extraction yield (%) of PRM was determined by the phenol-sulfuric acid method [23]
and calculated using the following equation:

PRM yield pY, %q “
CˆVˆN

W
ˆ 100 (2)

where C is the concentration of polysaccharide calculated from the calibrated regression equation
(µg/mL); V is the total volume of extraction solution (mL); N is the dilution factor; and W is the
weight of R. minima roots powder (µg).

3.2.2. BBD and Statistical Analysis

In the present evaluation, the Design Expert Package (Version 8.0.5b, 2010, Stat-Ease Inc.,
Minneapolis, MN, USA) was employed for the experimental design, model building and regression
analysis. According to the single factor experiment results, the best conditions of each variable,
including ultrasound exposure time (A), the ratio of water to material (B) and extraction temperature
(C), on the yield of PRM (Y) was confirmed, and then BBD was used to obtain the optimal extraction
conditions for the extraction of PRM. These three factors were studied at three levels, coded ´1, 0
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and +1 for low, intermediate and high values, respectively. The levels of independent variables and
the experimental runs for BBD are shown in Table 1. Seventeen runs based on BBD with three center
points were carried out. To predict the optimized conditions, a second-order polynomial model was
used to reflect the effect of the three independent variables on the yield of PRM [24]:

Y “ β0 `

3
ÿ

i“1

βiXi `

3
ÿ

i“1

βiiX
2
i `

3
ÿ

i“1

3
ÿ

j“i`1

βijXiXj (3)

where Y is the response variable; β0, βi, βii and βij are the regression coefficients for
intercept, linearity, square and interaction, respectively; Xi and Xj are the independent variables
(i ­“ j), respectively.

The obtained data was analyzed by the statistical module of the Design Expert software 8.0.5.
The equations were validated by analysis of variance (ANOVA) analysis. Three-dimensional plots
and their respective contour plots were drawn to determine the individual and interaction effects of
the tested variables on the response. Additionally, the hump of the three-dimensional plots could be
used to identify their respective optimal parameters.

3.3. Preparation of Purified Fractions

The extracts of R. minima roots were precipitated with a five-fold volume of anhydrous
ethanol, deproteinized with Sevag solution (chloroform-butyl alcohol, 4:1), and re-precipitated with
anhydrous ethanol for 12 h at 4 ˝C. The precipitate was collected, freeze-dried, and named crude
PRM. The crude PRM was further purified by DEAE-52 cellulose and Sephadex G-150 column
chromatography. As a result, three fractions were obtained and coded as PRM1, PRM3 and PRM5.
Each fraction was collected, concentrated, and dried for further use.

3.4. Monosaccharide Composition of Purified Fractions

The monosaccharide compositions of the purified fractions were analyzed by a HPLC
method [25]. Briefly, 10 mg samples were hydrolyzed with 3 mL of 2 mol/L trifluoroacetic
acid (TFA) at 100 ˝C for 8 h in a sealed tube. The hydrolysates were vacuum evaporated to
remove the excess acid with methanol. Then, they were derivatized with 300 µL of 0.5 mol/L
1-phenyl-3-methyl-5-pyrazolone (PMP) under alkaline conditions. The monosaccharide derivatives
were analyzed by a Waters e2695 HPLC system (Waters Co., Milford, MA, USA), equipped with
a reverse phase C18 column (250 mm ˆ 4.6 mm, 5 µm, Waters Co.), and detected by UV–Vis
DAD detector. The PMP derivatives (10 µL) were injected and eluted with 83% phosphate buffer
(0.1 mol/L, pH 6.7) and 17% acetonitrile (v/v) at a flow rate of 1.0 mL/min at room temperature. The
UV detection wavelength was 245 nm.

3.5. In Vitro Antioxidant Activity of Purified Fractions

3.5.1. Assay of DPPH Radical Scavenging Activity

DPPH radical scavenging activity was evaluated according to a previously described
method [26]. Briefly, 50 µL of PRM1, PRM3 and PRM5 solutions (0.0625, 0.125, 0.25, 0.5, 1, 2, 4
and 8 mg/mL) were incubated with 150 µL of 0.3 mmol/L DPPH methanol solution for 20 min at
room temperature. Then, the absorbance was read at 517 nm (SpectraMax M5, Molecular Devices,
Sunnyvale, CA, USA). The DPPH radical scavenging activity was calculated by the following
equation. The half maximal inhibitory concentration (IC50) value was determined from their
dose-response curve:

DPPH radical scavenging activity p%q “
ADPPH ´Asample

ADPPH
ˆ 100 (4)
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where ADPPH is the absorbance of the DPPH radical solution without sample and Asample is the
absorbance of the DPPH radical solution with the tested samples.

3.5.2. Assay of Reducing Power

Reducing power was measured according to a previous method [27]. Briefly, 50 µL of PRM1,
PRM3 and PRM5 solutions (0.0625, 0.125, 0.25, 0.5, 1, 2, 4 and 8 mg/mL) were incubated with 50 µL
of 0.2 mol/L phosphate buffered saline (pH 6.6) and 50 µL of 1% potassium ferrocyanate (w/v) for
20 min at room temperature. Then, 50 µL of 10% trichloroacetic acid, 10 µL of 0.1% ferric chloride and
400 µL distilled water were added to the mixture. After 20 min, the absorbance was read at 700 nm
(SpectraMax M5).

3.6. In Vitro Anticancer Activity of Purified Fractions

The human breast cancer MCF-7 cells were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA) and cultured in DMEM culture solution (10% fetal bovine serum,
100 U/mL penicillin, and 100 µg/mL streptomycin) with 5% CO2 at 37 ˝C. The in vitro anticancer
activities of PRM1, PRM3 and PRM5 were measured by the MTT colorimetric method [28]. MCF-7
cells were suspended and seeded in 96-well plates and incubated for 24 h at a concentration of
5000 cells/well. PRM1, PRM3 and PRM5 solutions (0.0625, 0.125, 0.25, 0.5, 1, 2, 4 and 8 mg/mL)
were added into the wells. After incubation for 24 h and 48 h, respectively, 100 µL MTT (5 mg/mL)
was added and incubated for 4 h at 37 ˝C. Then, culture media were removed and 100 µL DMSO was
added to each well. Absorbance was measured at 570 nm using a microplate reader (SpectraMax M5).
The inhibitory rate of cell growth was calculated according to the formula:

Inhibitory rate p%q “
Acontrol ´Asample

Acontrol
ˆ 100 (5)

where Asample and Acontrol are the absorbance of groups with and without purified fractions
treatment, respectively.

3.7. Statistical Analysis

Results were expressed as means ˘ standard deviation (SD) and each experiment was repeated
three times. The difference was tested by one-way ANOVA, p < 0.05 was considered to be
statistically significant.

4. Conclusions

In the present study, a rapid and sensitive ultrasound-assisted extraction technique was used
to extract polysaccharides from R. minima roots. During this procedure, BBD was simultaneously
applied to optimize the extraction parameters. The following optimum ultrasound-assisted extraction
conditions were obtained: ultrasound exposure time, 21 min; ratio of water to material, 46 mL/g;
ultrasound extraction temperature, 63 ˝C. Under these conditions, the experimental yield of PRM
was 16.95% ˘ 0.07%. Moreover, all purified polysaccharide fractions had similar monosaccharide
compositions. PRM3 and PRM5 exhibited potent antioxidant activities in vitro against DPPH radicals
in a concentration-dependent manner. Purified fractions also showed reasonable anticancer activity
in vitro against human breast cancer MCF-7 cells in a dose-dependent manner. This study provides
a convenient and efficient extraction method for isolating polysaccharides from R. minima roots.
In addition, it indicates that PRM3 can be developed as a potential antioxidant and active anticancer
ingredient for the functional foods and pharmaceutical industries.
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