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Abstract: Speed, a relatively low requirement for computational resources and high effectiveness
of the evaluation of the bioactivity of compounds have caused a rapid growth of interest in
the application of machine learning methods to virtual screening tasks. However, due to the
growth of the amount of data also in cheminformatics and related fields, the aim of research
has shifted not only towards the development of algorithms of high predictive power but also
towards the simplification of previously existing methods to obtain results more quickly. In the
study, we tested two approaches belonging to the group of so-called ‘extremely randomized
methods’—Extreme Entropy Machine and Extremely Randomized Trees—for their ability to
properly identify compounds that have activity towards particular protein targets. These methods
were compared with their ‘non-extreme’ competitors, i.e., Support Vector Machine and Random
Forest. The extreme approaches were not only found out to improve the efficiency of the
classification of bioactive compounds, but they were also proved to be less computationally
complex, requiring fewer steps to perform an optimization procedure.

Keywords: virtual screening; compounds classification; extreme entropy machine; extremely
randomized trees

1. Introduction

Machine learning methods have recently gained extreme popularity for virtual screening
tasks, providing much assistance in identifying of potentially active compounds in large chemical
compound libraries. However, the increasing size of datasets, has led to higher computational
expenses, and in some cases, the time needed to construct a predictive model makes a study
unprofitable or even impossible because of memory limitations. To address the problem of
computational expenses for large datasets in machine-learning based virtual screening, an extremely
randomized learning approach was applied.

The main idea behind this family of methods is to reduce the computational and memory
complexity of the statistical analysis by performing randomization instead of certain parts of
an optimization procedure. For example, a nonlinear, random projection [1] could be performed
instead of computing a full kernel matrix, which is required by Support Vector Machine. Another
example is the random selection of the feature threshold [2].

In this study, we applied the extremely randomized learning to the problem of chemical
compounds classification in order to improve the prediction accuracy and reduce the computational
complexity of calculations. Two such approaches were tested: Extreme Entropy Machine (EEM) [3]
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and Extremely Randomized Trees (ET) [2] which were compared with the corresponding standard
method—Support Vector Machine (SVM) [4] and Random Forest (RF) [5], respectively. Given the
effectiveness and speed of the tested methods on one hand and huge amount of data processed in
virtual screening procedures on the other, such ‘extreme’ algorithms can gain wide application in the
search for new bioactive compounds.

2. Experimental Section

2.1. Datasets

The classification studies were aimed at the actives/true inactives and actives/decoys, generated
according to the Directory of Useful Decoys (DUDs) procedure [6], discrimination: two sets with
a different number of compounds and sets containing compounds belonging to both of these
‘inactivity’ groups—i.e., mixed true inactives and DUDs; the sets were formed by merging the set
of true inactives and the smaller set of DUDs (details on the compositions of particular datasets are
provided in Table 1).

The ChEMBL database [7] was a source of active and inactive compounds with experimentally
verified activity towards selected protein targets. The molecules for which the activity was quantified
in Ki or IC50 parameter were taken into account and they were considered active when the Ki was
lower than 100 nM (or IC50 below 200 nM) and inactive, when the Ki was above 1000 nM (for IC50,
the threshold was set at 2000 nM). The following targets were considered in this study: serotonin
receptors 5-HT2A [8], 5-HT2C [9], 5-HT6 [10], 5-HT7 [11], histamine receptor H1 [12], muscarinic
receptor M1 [13] and HIV related protein—HIV integrase (HIVi) [14].

Table 1. The number of compounds present in a particular dataset.

Target/Dataset True Actives True Inactives DUD 1 DUD 2

5-HT2A 1835 851 1697 3388
5-HT2C 1210 926 1072 2136
5-HT6 1490 341 1443 2883
5-HT7 704 339 633 1264
M1 759 938 317 631
H1 635 545 556 1107
HIVi 101 914 83 163

The sets of decoys were prepared from ZINC database [15] according to the procedure described
by Huang et al. [6]. It was preceded by the calculation for all ZINC compounds and all previously
prepared sets of actives the following descriptors: logP, molecular weight (MW), number of hydrogen
bond acceptors (HBA), number of hydrogen bond donors (HBD), and number of rotatable bonds
(rotB) using ChemAxon tools [16]. For each considered target, the ZINC database was limited to
the structures with the same number of HBA, HBD and rotB and with logP and MW values differing
by no more than 10% in comparison to the active molecules. Further ZINC database narrowing
was obtained by the calculation of Tanimoto coefficients towards known ligands and rejection of
those structures, for which its values were higher than 0.7 (provision of physicochemical similarity
and structural dissimilarity). For each set of active compounds, molecules with the lowest Tanimoto
coefficient values were selected in such a number that the actives:decoys ratio was approximately
1 : 1 (DUD 1) and 1 : 2 (DUD 2).

The compounds were represented by the fingerprints generated with the PaDEL-Descriptor [17]
software package: E-state Fingerprint (EstateFP, 79 bits) [18], Extended Fingerprint (ExtFP,
1024 bits) [19], Klekota and Roth Fingerprint (KlekFP, 4860 bits) [20], MACCS Fingerprints
(MACCSFP, 166 bits) [21], Pubchem Fingerprint (PubchemFP, 881 bits), and Substructure Fingerprint
(SubFP, 308 bits). EEM with Tanimoto projection and ET, as well as their ‘non-extreme’
competitors—SVM with radial basis kernel and RF, respectively—were applied as a classification
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tools with the use of the scikit-learn machine learning package. The details on the settings of
each method and the ranges of parameters tested during the optimization procedure are provided
in Table 2.

Balanced accuracy (BAC) was applied as the measurement of classification efficiency:

BAC(TP, FP, TN, FN) =
1
2

(
TP

TP + FN
+

TN
TN + FP

)
.

This particular statistic was selected because of the class imbalance in the datasets considered. Each
of the methods tested uses an internal mechanism to maximize this statistic by weighting samples of
the smaller class (SVM, RF, ET) or by being designed to address an imbalance (EEM).

Table 2. The range of parameters tuned during the optimization of the algorithms used.
C hyperparameter denotes the strength of fitting to the data, γ is the width of the RBF kernel used in
Support Vector Machine (SVM), h is the number of random projections (limited also by the number of
training samples; in case h exceeded the number of examples in the training set, it was reduced to the
dataset size) and ‘no of trees’, referring to the number of trees, is the size of each forest.

Method Optimized Parameters With Range

EEM h ∈ {1000, 1500, 2000, 2500, 3000} C ∈ {1000, 104, 105, 106, 107}
SVM γ ∈ {0.1, 0.01, 0.001, 0.0001} C ∈ {0.1, 1, 10, 100, 1000}
ET no of trees ∈ {10, 50, 100, 200, 500}
RF no of trees ∈ {10, 50, 100, 200, 500}

2.2. Methods

SVM is a very popular, maximum margin linear model used for binary classification. To work
with non-linear decisions, a particular kernel (K) must be selected, a function that denotes the scalar
product. During the optimization procedure, a training algorithm analyzes a Gram matrix (a matrix
of the form Gij = K(xi, xj), where xi is ith training sample), which leads to the quadratic memory
requirements in terms of training set size. For a cheminformatics application, in which the number
of chemical compounds can be huge [22], this becomes an impediment. At the end of the procedure,
SVM reduces the number of remembered training samples via the selection of the support vectors, but
during the optimization procedure, it analyzes all of them, leading to cubic computational complexity
(the exact complexities of each algorithm are given in Table 3). Although it can be extremely effective
in the identification of potentially active compounds, the SVM performance strongly depends on
the settings under which it is run, the C and γ parameters values in particular. C is responsible for
controlling the tradeoff between the correct classification and a large margin, whereas γ defines how
fast RBF similarity vanishes with growing Euclidean distance between vectors.

Table 3. Comparison of the computational complexity of all models. N is the number of training
samples, d the number of features, h a predefined constant (much smaller than N), K the number of
trees in a forest and k a predefined constant (much smaller than d).

Method Training Complexity Classifying Complexity

EEM O(Nh2) O(hd)
SVM O(N3) O(Nd)
ET [2] O(KkN log N) O(Kk)
RF [2] O(KdN log N) O(Kd)

In EEM, this restriction of analyzing all the samples is removed by the introduction of
random projections in place of the kernel. A possible method used in this paper for defining such
random projections is the random selection of a subset of the training samples and the subsequent
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computation of only part of the original Gram matrix (i.e., only the columns corresponding to the
selected compounds). Furthermore, entropy based optimization is performed in the new, random
projected space, which can be solved extremely quickly (O(Nh2), where h is the number of selected
compounds and N is the size of the training set). Contrary to SVM, EEM has a closed form solution of
the optimization problem, which makes the return of an exact solution much more probable (SVM has
a convex optimization function, meaning that optimization converges to a global optimum; however,
due to numerical errors and stability, it often stops before the true solution is achieved).

In summary, two main differences exist between SVM and EEM. First, SVM fully optimizes
which samples become support vectors, which is expensive both computationally and in terms of
memory. EEM uses randomization to limit the set that might be used as a support vector competitor
(i.e., the base of the projected space) and performs the optimization later on. Consequently EEM is
a much more efficient approach. A second difference arises from a different formulation of the final
optimization procedure, which, despite similarities [3], is much simpler and can be solved orders of
magnitude more quickly.

RF is currently one of the most successful out of the box methods for building classifiers [23].
It grows a set of decision trees, modified in two significant ways. First, in each internal node,
only a random subset of all the features is considered, which helps the model not to overfit. Later,
during the optimization procedure, an optimal threshold to split the training set is selected, creating
a decision rule. Second, each tree works with a slightly different training set, which is achieved by
the introduction of bagging, in which training sets are constructed by sampling with replacement
from the original training set. These two small modifications lead to a significant increase in the
generalization capability. The final prediction for a given sample is the averaged prediction from all
individual trees.

However, it appears that the model can be strengthened even further by randomization of the
threshold selection for each decision rule. Instead of performing internal optimization, thresholds
are simply selected at random, and the best one is chosen. This slight modification leads to the
construction of the ET model and even better generalization abilities with the simultaneous reduction
of the computational complexity of the model.

For both SVM and EEM, as well as for RF and ET, the ‘extreme’ counterpart changes
an optimization element into a randomized process. Although it might be counterintuitive that
random action could be better than a well-optimized approach, it is a common phenomenon in
machine learning [1,24,25].

A sample analysis of the decision boundaries arrived at by each of the methods tested and
their generalization abilities are shown in Figure 1. This figure shows three simple, two-dimensional
datasets split randomly into training and test sets (in a 1:1 proportion) that are modeled using each
of the methods described (SVM and EEM use the exact same hyperparameters, as do RF and ET). In
each example, the ‘extreme’ method achieves a higher generalization score. Furthermore, EEM builds
much more general decision boundaries than SVM (which allows better density estimation), thus
confirming earlier claims about the use of randomization to address overfitting. ET, in contrast, builds
‘smoother’ decision boundaries than RF, again because of high randomization, and consequently has
better generalization capabilities.
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Figure 1. Comparison of the classification of simple 2D datasets with all models used. The number
above a particular picture denotes the generalization accuracy.

3. Results and Discussion

The following aspects were the main focus for the analysis of the results: the effect of
the application of the extreme approach on the classification effectiveness and the computational
complexity of the algorithms used in the study together with the difficulty of their optimization
procedure. The results were compared for the optimal conditions for the particular set of experiments
(protein/representation).

The analysis of both training and classifying complexity (Table 3) indicates that the extreme
approaches are less complex than the corresponding standard methods for both of these comparisons.
The training complexity of EEM is much lower for both of the analyzed parameters (training and
classification) and is equal to O(Nh2) and O(hd), respectively, whereas for SVM, it is O(N3) and
O(Nd), where N is the number of training samples and h is a predefined constant that is much
smaller than N. When ET is compared with RF, it has O(KkN log N) training and O(Kk) classifying
complexity for ET, and the competitors for RT are equal toO(KdN log N) andO(Kd) for training and
classification, respectively, where K is the number of trees in a forest and k is analogous to h and is
a predefined constant much smaller than d.

The detailed results for the selected sets of experiments (discrimination between actives and
two groups of inactives—true inactives and DUDs) are presented in Table 4 (the results for the
other datasets are placed in the Supporting Information). This is a global analysis of the results;
i.e., all the methods are presented simultaneously. The highest BAC values obtained for a particular
target/fingerprint pair are marked with an asterisk sign, whereas the winner of a particular pair
(EEM-SVM and ET-RF) is indicated in bold.

In general, the classification accuracy was very high, with BAC values exceeding 0.9 in the
majority of cases. Depending on the fingerprint, the most effective method varied: EEM provided the
highest BAC values of all the tested methods—for MACCSFP for all targets considered, for SubFP for
all but one protein, for 5 of 7 targets for PubchemFP and for 4 of 7 targets when KlekFP was used to
representat the compounds. For the other fingerprints the results varied—for EstateFP, EEM and ET
provided the highest BAC values for 3 proteins, whereas SVM and RF won only once. In contrast,
when compounds were represented by ExtFP, SVM provided the highest number of best BAC values
(4), but the other three experiments were won by EEM. When the ‘extreme’ and standard approaches
were compared, in general, the former methods gave higher BAC values than their ‘non-extreme’
competitors (as indicated values in bold). For some fingerprints, when the classification effectiveness
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was very high, some draws occurred (their higher number was observed for PubchemFP, in which
differences in BAC values were obtained only for M1 and HIVi for the ‘extreme’ and ‘non-extreme’
approaches). However, for all the remaining fingerprints, a clear advantage of EEM and ET over SVM
and RF, respectively, was observed. Because the BAC values were already very high in most cases
(greater than 0.95), the improvement gained from the ‘extreme’ approach was not much, usually no
more than 1 percentage point. However, other features, such as the computational complexity and
the simple optimization procedure, make EEM and ET preferable to the standard methods.

The results were also analyzed in a slightly different, non-standard manner. Table 5 shows the
results for all datasets and methods, in a way, that the method ‘chooses’ the best representation of
the compounds and all fingerprints are considered simultaneously. In this case, the classification
is much more effective, with BAC values approaching or equal to 1 for experiments discriminating
actives from DUDs and over 0.9 or close to this threshold for the majority of actives/true inactives
experiments. For both the DUDs datasets, the ‘extreme’ approaches also provided the highest BAC
scores in the majority of cases—EEM in 4 of 7 cases and ET in 5 of 7 cases for the first DUDs dataset and
both of these methods for all but one target in the extended DUDs dataset. When active compounds
were identified among true inactives, EEM was the most effective approach for 5 of 7 proteins, and
when the set of inactives was formed both by true inactives and DUDs, this method was the best in 4
of 7 cases. A pairwise comparison between EEM/SVM and ET/RF revealed that EEM surpassed SVM
in the majority of cases and that ET surpassed RF for most of the target/fingerprint combinations. For
actives/DUDs recognition, EEM and ET surpassing SVM and RF occurred in all the cases (including
draws), whereas when the set of inactives also contained some true inactive molecules, ‘extreme’
methods won in 4 of 7 (EEM) and in 3 of 7 trials (ET), plus one draw that occurred in the latter case.

We conducted an additional analysis, an empirical estimation of the position in the ranking in
which a particular machine learning method is placed (the ranking refers here to the arrangement
of methods according to the decreasing BAC values). Figure 2, shows heat maps with probabilities
that a particular method would assume a particular position in such ranking when all experiments
were taken into account and when each particular dataset was considered separately. All the heat
maps clearly indicate that EEM is most likely to provide the highest classification efficiency—in all
the situations considered, the probability that the best results would be obtained by this method was
the highest, with the second position in the ranking being the runner-up in all cases.

Finally, for the selected target/fingerprint combinations, the methods were compared in terms
of the difficulty of finding optimal parameters—EEM and SVM are shown in Figure 3 and ET and
RF in Figure 4. Both figures show examples of target/fingerprint pairs; all the remaining data
are in the Supporting Information. Both types of analyses clearly indicate that the optimization of
EEM is much easier than that of SVM. Not only are the BAC scores obtained for particular sets
of parameters tested higher for EEM than SVM, but it is also noteworthy that, in general, EEM is
a much more stable method than SVM in terms of the prediction efficiency and can be considered
as safer for unexperienced users—the variability of BAC values are significantly lower for EEM,
whereas for SVM, improper conduct of the optimization procedure could lead to BAC values as
low as 0.5. A similar conclusion can be drawn from the ET/RF comparison in which a number of
trees was optimized during the training procedure. The top portion of the Figure 4 indicates that the
BAC values depend on the number of trees—in both cases analyzed, the BAC values for ET were
significantly higher for both target/fingerprint examples. Moreover, ET is also much more stable
(similar to EEM), when the number of trees is changed—the BAC values changed by up to 15% for
ET, but for RF, the BAC values changed by approximately 25% when the number of trees was varied.
A similar situation occurred, when the probability of obtaining at least a given BAC score for each
model was analyzed, although, the difference between ET and RF is not as evident in this case, but
the probabilities are slightly higher (1–2 percentage points) for ET.
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Table 4. BAC results for actives/true inactives and DUDs datasets. Asterisk indicates the highest
BAC values obtained for a particular target/fingerprint pair.

EstateFP EEM SVMrbf ET RF SubFP EEM SVMrbf ET RF

5-HT2A
∗0.936 0.928 0.932 0.935 5-HT2A

∗0.968 0.964 0.967 0.964
5-HT2C 0.913 0.920 0.923 ∗0.927 5-HT2C

∗0.951 0.945 0.935 0.940
5-HT6 0.964 0.961 ∗0.967 0.965 5-HT6

∗0.984 0.980 0.982 0.981
5-HT7

∗0.925 0.920 ∗0.925 0.922 5-HT7
∗0.976 0.974 ∗0.976 ∗0.976

M1
∗0.925 0.917 0.916 0.912 M1

∗0.967 0.965 0.965 0.960
H1 0.922 0.918 ∗0.927 0.925 H1

∗0.970 0.968 0.967 0.965
HIVi 0.968 ∗0.983 0.971 0.971 HIVi 0.980 0.980 ∗0.985 ∗0.985

PubchemFP EEM SVMrbf ET RF ExtFP EEM SVMrbf ET RF

5-HT2A
∗0.999 ∗0.999 ∗0.999 ∗0.999 5-HT2A

∗0.986 0.982 0.979 0.975
5-HT2C 0.999 0.999 ∗1.000 ∗1.000 5-HT2C

∗0.982 0.980 0.981 0.979
5-HT6

∗0.999 ∗0.999 ∗0.999 ∗0.999 5-HT6 0.991 ∗0.992 0.989 0.988
5-HT7

∗0.999 ∗0.999 ∗0.999 ∗0.999 5-HT7 0.981 ∗0.982 0.978 0.977
M1 0.996 0.994 ∗0.998 0.995 M1

∗0.976 0.973 0.971 0.965
H1

∗1.000 ∗1.000 0.999 0.999 H1 0.972 ∗0.977 0.967 0.962
HIVi

∗1.000 0.994 0.995 0.990 HIVi 0.984 ∗0.990 0.980 0.980

KlekFP EEM SVMrbf ET RF MACCSFP EEM SVMrbf ET RF

5-HT2A
∗0.992 0.988 0.986 0.983 5-HT2A

∗0.984 0.981 0.978 0.976
5-HT2C

∗0.991 0.986 0.980 0.975 5-HT2C
∗0.982 0.977 0.975 0.972

5-HT6 0.999 0.999 ∗1.000 ∗1.000 5-HT6
∗0.988 ∗0.988 0.981 0.979

5-HT7 0.987 ∗0.989 0.981 0.980 5-HT7
∗0.982 0.975 0.979 0.975

M1
∗0.977 0.974 0.964 0.956 M1

∗0.975 ∗0.975 0.965 0.962
H1

∗0.987 0.981 0.986 0.984 H1
∗0.975 ∗0.975 0.974 0.974

HIVi 0.984 0.980 0.984 ∗0.989 HIVi
∗0.989 0.984 0.984 0.978

Table 5. Comparison of the BAC scores obtained for each experiment, in which the method chooses
the best fingerprint. Asterisk indicates the highest BAC values obtained for a particular target.

True Inactives EEM SVMrbf ET RF trueInact/DUDs EEM SVMrbf ET RF

5-HT2A
∗ 0.882 0.875 0.862 0.852 5-HT2A 0.918 ∗0.919 0.917 0.918

5-HT2C 0.875 ∗0.885 0.883 0.881 5-HT2C
∗0.904 0.899 0.901 0.895

5-HT6
∗0.901 0.895 0.888 0.885 5-HT6 0.965 ∗0.967 0.965 0.962

5-HT7
∗0.876 0.868 0.847 0.825 5-HT7

∗0.924 0.921 0.907 0.907
M1

∗0.888 0.882 0.885 0.887 M1
∗ 0.899 0.890 0.890 0.893

H1
∗0.919 0.913 0.908 0.911 H1

∗0.928 0.923 0.926 0.927
HIVi 0.911 ∗0.920 0.867 0.859 HIVi 0.899 ∗0.919 0.867 0.858

DUD 1 EEM SVMrbf ET RF DUD 2 EEM SVMrbf ET RF

5-HT2A
∗ 0.999 ∗0.999 ∗0.999 ∗0.999 5-HT2A

∗0.999 ∗0.999 ∗0.999 ∗0.999
5-HT2C 0.999 0.999 ∗1.000 ∗1.000 5-HT2C

∗1.000 0.999 ∗1.000 ∗1.000
5-HT6 0.999 0.999 ∗1.000 ∗1.000 5-HT6 0.999 0.999 ∗1.000 ∗1.000
5-HT7

∗0.999 ∗0.999 ∗0.999 ∗0.999 5-HT7
∗0.999 ∗0.999 ∗0.999 ∗0.999

M1 0.996 0.994 ∗0.998 0.995 M1
∗0.996 0.994 ∗0.996 ∗0.996

H1
∗1.000 ∗1.000 0.999 0.999 H1

∗1.000 ∗1.000 ∗1.000 0.999
HIVi

∗1.000 0.994 0.995 0.990 HIVi
∗0.995 ∗0.995 0.990 0.990
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(a)

(b) (c)

(d) (e)

Figure 2. Heat maps that visualize the probability of a given method being at a particular
position in ranking: (a) All experiments together; (b) actives/true inactives dataset; (c) actives/true
inactives + DUDs dataset; (d) actives/DUD 1 dataset; (e) actives/DUD 2 dataset.
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(a) (b)

Figure 3. Visualization of the optimization procedure for Support Vector Machine (SVM) and Extreme
Entropy Machine (EEM) for the selected datasets: (a) M1 with KlekFP; (b) 5-HT2A with SubFP. In the
top rows—BAC scores obtained for a particular set of hyperparameters values during a grid search.
At the bottom—a plot of the probabilities of obtaining at least a given BAC score (T) from a given
model assuming a random selection of hyperparameters from the grid of hyperparameters used.

(a) (b)

Figure 4. Visualization of the optimization procedure of ET and RF for selected datasets: (a) 5-HT6

with ExtFP; (b) HIVi with PubchemFP. In the top row—BAC scores obtained for a particular number
of trees. In the bottom row—a plot of the probabilities of obtaining at least a given BAC score (T) from
a given model assuming a random selection of the number of trees from the tested range.
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4. Conclusions

In this study, new types of algorithms were introduced for the tasks connected with
the evaluation of the biological activity of chemical compounds—Extreme Entropy Machine
and Extremely Randomized Trees. Both methods were compared with their ‘non-extreme’
analogues—Support Vector Machine and Random Forest, respectively. The results indicated that
EEM and ET performed better than their ‘non-extreme’ competitors: SVM and RF, respectively. EEM
and ET were also proved to be less computationally complex. Moreover, a careful analysis of the
course of the optimization procedure for both of these algorithms showed the significant simplicity
of both of the ‘extreme’ approaches tested and less variability in the predictive power of the models
depending on the values of the optimized parameters. Because virtual screening procedures use
a high amount of data and the libraries evaluated by this approach often contain an enormous number
of structures, the computational simplifications and ease of performing the optimization procedure
make the ‘extreme’ approaches tested valuable methods for tasks connected with the search for new
bioactive compounds in large libraries of molecules.
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