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1. Introduction

In contemporary organic chemistry, the azide group is one of the functional groups that has
received the greatest increase in attention over the last decades [1,2]. In particular, the use of its
orthogonal reactivity to other functional groups has led to a broad range of applications. Thus,
cycloadditions with alkynes are routinely used in chemical biology [3–7] and material sciences [8–10].
While, in this context organic molecules with one azide group are widely accepted as standard
entities, small molecules with two or more azide groups attached to the same carbon atom are
quite uncommon. This lack of interest is at least a bit surprising, given the fact that reports
on carbonyl diazide date back to 1894, and ethyl 2,2-diazidoacetate was described first in 1908
(see below). However, the supposedly hazardous and explosive character of geminal diazides might
have hampered research efforts in the field, and up to now the chemical scope of geminal di- and
triazides has not been studied in full detail.

In the following review, we summarize the reports on the syntheses of organic geminal di- and
triazides as well as of carbonyl diazide and tetraazidomethane. We also present an overview on the
reactivity of these compounds revealed so far.

2. Carbonyl Diazide

The first record of carbonyl diazide (2) dates back to 1894, when Curtius and Heidenreich
reported its synthesis and some reactions performed for analytical purposes [11,12]. By treating an
aqueous solution of carbonyl dihydrazide dihydrochloride (1) with two equivalents of sodium nitrite
at low temperature the crystalline carbonyl diazide (2) was obtained (Scheme 1). The compound was
described as very volatile and highly explosive on impact or when exposed to bright light, and it
was noted that carbonyl diazide (2) reacts like phosgene. Since a direct confirmation for its structure
was not possible at this time, the diazide 2 was saponificated and an argentometric determination of
the azide content was performed. Moreover, treatment with aniline led to the corresponding urea 3,
a known compound at this time. Elemental analysis of carbonyl diazide (2) resulted in somewhat
imprecise figures, which was believed to be caused by the volatility and the small amounts of
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substance which were used due to its hazardousness. In 1924, 30 years later, Kesting pointed out, that
these inaccuracies may have arisen from impurities such as the symmetrical hydrazine-1,2-dicarbonyl
azide, which is formed as a by-product during the generation of carbonyl diazide [13].
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Scheme 1. Synthesis of carbonyl diazide (2) from carbonyl dihydrazide dihydrochloride (1) and 
transformation to diphenylurea (3). 

In a detailed examination, Curtius and Bertho then tried to elucidate the outcome of the thermal 
reactions between carbonyl diazide (2) and aromatic hydrocarbons [14]. Unfortunately, the result of 
these investigations is hardly conclusive: the original experiment basically consisted of heating 
carbonyl diazide (2) (prepared in situ from carbonyl dihydrazide dihydrochloride (1), Scheme 1) in 
several aromatic hydrocarbons, and the reaction mixtures were finally analyzed for their constituents. 
Surprisingly, aromatic amines 5 and pyridines 9 were identified as the major non-volatile products 
in all cases. Due to the concomitant formation of many unidentified products, the loss of several 
volatile compounds, and the fact that carbonyl diazide (2) was prepared in situ, the authors hesitated 
to give yields for the formation of 5 and 9. Nevertheless, the simple existence of amines 5 and 
pyridines 9 in the reaction mixtures requires an interesting reaction mechanism. To this end, Curtius 
and Bertho proposed two competitive mechanisms (Scheme 2): the formation of aromatic amines  
(5, path A) is explained by the thermal loss of two molecules of nitrogen from carbonyl diazide (2) 
forming a dinitrene 4. This very reactive species 4 was believed to undergo an insertion into the 
carbon-hydrogen bond of the aromatic hydrocarbons. Under high temperatures, and in the presence 
of water, the resulting urea derivatives 3 are then hydrolyzed to give aromatic amines 5 and carbon 
dioxide, which was indeed identified when analyzing the volatile products. The formation of pyridines 
(9, path B) was less clear and requires not only a rearrangement of the aromatic core, but also the 
cleavage of a methine group. In this case, the dinitrene 4 was believed to form an aziridine 6. After 
loss of carbon monoxide, which was also detected in the gas phase, this aziridine 6 might rearrange 
in an unspecified manner to give the pyridine core. The authors speculated on the existence of 
intermediates 7 and 8. The fate of the lost carbon atom, however, could not be clarified. Nevertheless, 
this early work is an impressive example for the reactive power of carbonyl diazide (2), a compound 
that was then forgotten for almost a century. 
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Scheme 2. Thermal reactions of carbonyl diazide (2) in aromatic hydrocarbons. 

The “rediscovery” of carbonyl diazide (2) by Willner et al. in 2010 resulted in a detailed description 
of its structure and physical properties [15]. By reacting sodium azide with fluoro- carbonyl chloride 
(10) in a sealed glass ampule, they were able to get pure carbonyl diazide (2) in small quantities as a 
white solid via fluorocarbonyl azide (11) as intermediate after fractionated condensation (Scheme 3). 

Scheme 1. Synthesis of carbonyl diazide (2) from carbonyl dihydrazide dihydrochloride (1) and
transformation to diphenylurea (3).

In a detailed examination, Curtius and Bertho then tried to elucidate the outcome of the thermal
reactions between carbonyl diazide (2) and aromatic hydrocarbons [14]. Unfortunately, the result
of these investigations is hardly conclusive: the original experiment basically consisted of heating
carbonyl diazide (2) (prepared in situ from carbonyl dihydrazide dihydrochloride (1), Scheme 1) in
several aromatic hydrocarbons, and the reaction mixtures were finally analyzed for their constituents.
Surprisingly, aromatic amines 5 and pyridines 9 were identified as the major non-volatile products
in all cases. Due to the concomitant formation of many unidentified products, the loss of several
volatile compounds, and the fact that carbonyl diazide (2) was prepared in situ, the authors hesitated
to give yields for the formation of 5 and 9. Nevertheless, the simple existence of amines 5 and
pyridines 9 in the reaction mixtures requires an interesting reaction mechanism. To this end, Curtius
and Bertho proposed two competitive mechanisms (Scheme 2): the formation of aromatic amines
(5, path A) is explained by the thermal loss of two molecules of nitrogen from carbonyl diazide
(2) forming a dinitrene 4. This very reactive species 4 was believed to undergo an insertion into
the carbon-hydrogen bond of the aromatic hydrocarbons. Under high temperatures, and in the
presence of water, the resulting urea derivatives 3 are then hydrolyzed to give aromatic amines 5 and
carbon dioxide, which was indeed identified when analyzing the volatile products. The formation
of pyridines (9, path B) was less clear and requires not only a rearrangement of the aromatic core,
but also the cleavage of a methine group. In this case, the dinitrene 4 was believed to form an
aziridine 6. After loss of carbon monoxide, which was also detected in the gas phase, this aziridine 6
might rearrange in an unspecified manner to give the pyridine core. The authors speculated on the
existence of intermediates 7 and 8. The fate of the lost carbon atom, however, could not be clarified.
Nevertheless, this early work is an impressive example for the reactive power of carbonyl diazide (2),
a compound that was then forgotten for almost a century.
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The “rediscovery” of carbonyl diazide (2) by Willner et al. in 2010 resulted in a
detailed description of its structure and physical properties [15]. By reacting sodium azide with
fluoro- carbonyl chloride (10) in a sealed glass ampule, they were able to get pure carbonyl
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diazide (2) in small quantities as a white solid via fluorocarbonyl azide (11) as intermediate after
fractionated condensation (Scheme 3). From this sample the authors obtained infrared, Raman and
UV/VIS spectra in the solid state, as well as in the gaseous phase. Furthermore the structure
was confirmed by X-ray diffraction. Of note, all experimental data were in good agreement with
several independent calculations [15–19]. Very interesting from a preparative point of view, carbonyl
diazide (2) is thermally stable with a defined melting point of 16 ˝C, and it shows a high impact
sensitivity. Regarding the reactivity of carbonyl diazide (2), the photolysis [20] and the thermal
decomposition [19,21,22] were investigated by means of infrared spectroscopy and theoretical
calculations (Scheme 3). The irradiation of matrix-isolated carbonyl diazide (2) with UV-light (255 nm)
causes the loss of molecular nitrogen and the formation of azido carbonyl nitrene 12, which rearranges
under visible light (455 nm) to give azido isocyanate (13). By further irradiation of azido isocyanate
(13) with UV-light (335 nm), carbon monoxide and molecular nitrogen are obtained as final products.
The pyrolysis of carbonyl diazide (2) was performed by passing diluted gaseous carbonyl diazide
(2) through a glass tube heated to 400 ˝C and trapping of the products. Via infrared spectroscopy,
metastable diazirinone (14) was identified as the major pyrolysis product.
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An alternative synthesis of carbonyl diazide (2) was presented by Stanton et al. [17]. Starting 
from triphosgene (15), carbonyl diazide (2) was generated through double substitution with 
tetrabutylammonium azide (Scheme 4). The substitutions occur on different reaction intermediates 
(16, 17, 18), which all lead to the same target. The product 2 was isolated by simple filtration of the 
ammonium salts followed by evaporation of the solvent. The infrared spectra obtained from carbonyl 
diazide (2), which was prepared this way, were identical to those from the abovementioned method by 
Willner et al. [15]. The major advantage of the protocol developed by Stanton et al. is the commercial 
availability of all the starting materials. The use of highly toxic fluorocarbonyl chloride (10) can be 
avoided, and the reaction can be carried out in solution at room temperature under experimentally 
simple conditions. 

Also noteworthy is the formation of carbonyl diazide (2) via hydrolysis of tetraazidomethane 
(105) (Scheme 22, below) [23]. As tetraazidomethane (105) is not an easily available starting material, 
this transformation cannot be considered useful for preparative purposes; the generation of 
tetraazidomethane (105) will be discussed below in greater detail. 
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An alternative synthesis of carbonyl diazide (2) was presented by Stanton et al. [17]. Starting
from triphosgene (15), carbonyl diazide (2) was generated through double substitution with
tetrabutylammonium azide (Scheme 4). The substitutions occur on different reaction intermediates
(16, 17, 18), which all lead to the same target. The product 2 was isolated by simple filtration of
the ammonium salts followed by evaporation of the solvent. The infrared spectra obtained from
carbonyl diazide (2), which was prepared this way, were identical to those from the abovementioned
method by Willner et al. [15]. The major advantage of the protocol developed by Stanton et al. is the
commercial availability of all the starting materials. The use of highly toxic fluorocarbonyl chloride
(10) can be avoided, and the reaction can be carried out in solution at room temperature under
experimentally simple conditions.

Also noteworthy is the formation of carbonyl diazide (2) via hydrolysis of tetraazidomethane
(105) (Scheme 22, below) [23]. As tetraazidomethane (105) is not an easily available starting
material, this transformation cannot be considered useful for preparative purposes; the generation
of tetraazidomethane (105) will be discussed below in greater detail.
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3. Geminal Diazides

3.1. Geminal Aliphatic Diazides

3.1.1. Synthesis

The first method reported for the synthesis of geminal diazides 21 is the direct substitution
of geminal dihalides 20 with sodium azide (Scheme 5), and this remains unquestionably one
of the most reliable and simplest methods until today. In 1908, Forster et al. succeeded in
isolating ethyl 2,2-diazidoacetate [24]. In their seminal report, the authors already mentioned the
hazardous character of this compound class, which mainly results from the risk of explosion [25,26].
In the subsequent decades, a series of α,α-diazidoesters [24,27,28], α,α-diazido-β-ketoesters [29,30],
α,α-diazidoketones [31], α,α-diazido-β-ketolactams [32], 2,2-diazidomalonates [33], heterocyclic
diazides [32,34–36] and benzylic diazides [25,37–41] were prepared using standard halide substitution
chemistry. As an alternative azide source, an insoluble polymeric ammonium azide resin was also
employed [42,43].
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Alternatively, diazidomalonates are available via the disproportionation of alkyl
2-bromomalonates 22 (Scheme 5) [44]. This reaction is of less use, since half the amount of the
alkyl 2-bromomalonate 22 is lost as alkyl malonate. However, as no monoazide is formed, the
reaction gives access to 2,2-diazidomalonates of high purity [45,46].

Electrophilic azide sources can also be used for the diazidation task. For example, phosphorous
ylides 19 were shown to give geminal diazides 21 when reacted with tosyl azide (Scheme 4) [27].
Likewise, Evans et al. observed geminal diazides 21 as minor by-products when the azidation of ester
enolates with 2,4,6-triisopropylbenzenesulfonyl azide was investigated [47].

Acetals and ketones can be easily transformed into geminal aliphatic diazides 21 with
trimethylsilyl azide (Scheme 5) [48]. This reaction is typically catalyzed with strong Lewis acids
(LA) like tin(IV) chloride. In principle, the transformation can be understood best as a simple
transacetalization. Ketones [49,50] or aldehydes [50,51] were also employed as starting materials
for the diazide generation; in these cases, tin(II) chloride was used as the preferred catalyst. The
method was further expanded to not only aromatic and aliphatic aldehydes, but also to heterocyclic
aldehydes [52]. Simple addition of catalytic amounts of sodium azide in combination with a crown
ether was shown to further promote this reaction [50]. Another variant showed that, by using
aluminium(III) chloride or titanium(IV) chloride as catalysts, aldehydes can directly be converted
to geminal diazides 21 with sodium azide instead of trimethylsilyl azide [53,54].

An unexpected formation of a geminal diazide 26 was reported by Swern and O’Hare
(Scheme 6) [55]. When the reactivity of 1,2-dimethylcyclobutene (25) was studied, the use of an excess
of iodine chloride and sodium azide led to a ring contraction and diazidation of the exocyclic carbon
atom. However, only the single example shown in Scheme 6 was presented, and the mechanism and
scope of this reaction was not surveyed. Related to the use of iodine chloride and sodium azide,
also bromine azide was used to transform, for example, nitroolefins into geminal diazides 28 via an
addition-elimination-addition sequence (Scheme 6) [56]. Furthermore, allene (29) was successfully
converted to geminal diazide 30 with iodine azide [57].
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The most recent diazidation-methods allow for the direct α-diazidation of benzylic
alcohols [58], ketones [58,59], internal olefins [59] and alkynes [60] as well as of malonates and
β-ketoesters [61] under oxidative conditions. In all cases the products are α,α-diazidocarbonyl
compounds. The oxidizing agents of choice are sodium periodate [58], IBX-SO3K (37) [59,61] and
N-iodosuccinimide [60]. The first one, sodium periodate, gave α,α-diazidoketones 32 in excellent
yields when applied to ketones 31 in combination with sodium azide (Scheme 7) [58]. A proposed
mechanism for this transformation includes the one-electron-oxidation of an azide ion, followed by
addition to the enol tautomer of a benzylic ketone 31. Further oxidation of the resulting benzylic
radical 33 then gives the α-azidoketone 34, which can undergo this cycle one more time to furnish
α-diazidoketones 32. The monoazide 34 was never found under the conditions, even when the
reaction was carried out with only one equivalent of sodium azide. From this result one can deduce
that the second azidation cycle has to be significantly faster than the first one.
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Another very mild and experimentally simple diazidation protocol developed by Kirsch et al.
uses IBX-SO3K (37) [62] in combination with catalytic amounts of sodium iodide and an excess of
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sodium azide at room temperature (Scheme 7) [61]. By using this method, a series of malonates and
β-ketoesters 35 were successfully converted into their corresponding diazides 36. The fundamental
mechanism is still under investigation, although it is plausible that iodination and subsequent
substitution takes place. This method was further expanded not only to ketones, but also to internal
olefins as starting materials [59]: Via a one-pot procedure the olefins were first reacted with IBX
and N-iodosuccinimide to give α-iodoketones, which then were diazidated using IBX-SO3K (37) and
sodium azide.

With internal alkynes 38 as starting materials and trimethylsilyl azide, Yanada et al. developed
a highly useful protocol for the synthesis of diazides (Scheme 7) [60]. The presence of moisture and
oxygen from the air is necessary for the reaction to proceed smoothly, but the exact role of water and
oxygen was not clarified. On the other hand, it was observed that additional water in the reaction
mixture led to markedly decreased yields, probably due to the fast hydrolysis of trimethylsilyl azide.
The origin of the carbonyl oxygen is also unclear. As a possible mechanism, the twofold addition of
iodine azide in a regioselective manner followed by the hydrolysis of the resulting geminal diiodide
is assumed.

3.1.2. Reactivity

There is only a limited number of publications that focus on the reactivity of geminal
aliphatic diazides 21. In most reports, diazides 21 are only mentioned as by-products or proposed
intermediates [31,34,35,47,63–79]. A few reports discuss thermodynamic and kinetic influences of the
azido group on the stability of carbocations [80–83] and calculated structures of geminal diazides [84].
In particular, the early reports about these substances and their reactivity are somewhat lacking in
data due to the lack of analytical tools. Nevertheless, these early reports contain highly valuable
hints about the outstanding reactions of geminal aliphatic diazides 21, even if the reaction products
could not be identified without a doubt. For example, Schroeter already postulated in 1909 that
the thermal decomposition of diazidodiphenylmethane (40) leads to the tetrazole derivative 41
(Scheme 8) [37], a degradation that was unequivocally confirmed some years later [39]. In contrast,
Lindemann and Mühlhaus found isoxazoles 43 and nitriles 45 when they studied the thermal
behavior of ortho- (42) and para-hydroxybenzylic diazides 44 [38]. Additionally, they obtained the
corresponding benzaldehydes of the diazides 42 and 44, when the thermolysis was performed in
ethanol. The latter observation could probably be explained by simple hydrolysis due to water in
the solvent. Unfortunately, the available analytical data are not sufficient for an all-encompassing
theory on the reaction mechanisms. However, a number of more recent publications also describe
protocols for the synthesis of benzonitriles by use of reagents such as sodium azide or trimethylsilyl
azide [36,53,54,85,86], and mostly benzylic diazides generated in situ are believed to be intermediates
or competitive products.
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The reaction of geminal diazides 21 under elevated temperatures has remained a major focus
for many years. For example, methyl 2,2-diazidomalonate (46) and derivatives 52 thereof were
thermally converted into tetrazoles 51 and 53 (Scheme 9) [87]. The originally proposed mechanism
consisted of the insertion of a nitrene into the oxygen-carbon bond followed by expulsion of
carbon dioxide. It is noteworthy that this decomposition pathway differs significantly from the
photochemical decomposition of geminal diazides as discussed below, and it was possible to achieve
a good control over the formation of differently substituted tetrazoles depending on whether the
reaction is carried out thermally or under irradiation with light [88]. Several additional examples for
tetrazole formation through thermal decomposition of geminal aliphatic diazides provide evidence
for the nitrene insertion mechanism [32,89,90]. However, a crossover experiment with isotope-labeled
starting materials showed product mixtures [46] indicating that, at some stage, an intermolecular
mechanism takes place. Based on these results, the mechanistic picture was refined, and an anionic
chain mechanism was suggested as outlined in Scheme 9. It was also found that, instead of elevated
temperatures, the use of catalytic amounts of Lewis acids like tin(IV) chloride or zinc(II) chloride can
lead to the formation of tetrazoles [48,49,51].
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When the thermal behavior of 3,3-diazido-2,4-dioxoquinolines 54 was studied, it was originally 
expected that tetrazole intermediates can be further converted into N-cyano moieties 55 (Scheme 10) 
[32]. Although this assumption turned out to be wrong, the data suggest that the isomeric diazo 
compounds 57 can be generated under the conditions [91]. Besides the diazo compound 57, the 
formation of a tetrazole 58 was also observed. It was proposed that both 57 and 58 were formed through 
tetrazole 56 as the common intermediate although the mechanistic pathway was not investigated at 
all. Moreover, other reports also postulate the occurrence of diazo species in the thermal degradation 
of a geminal diazide [92]. 

Ogilvie and Rank described the synthesis of 1,3,4-oxadiazoles 60 through heating of α,α-diazido-
β-ketoesters 59 (Scheme 11) [30]. The product formation was again explained with a mechanism 
based on nitrene formation followed by rearrangement. The structure of the 1,3,4-oxadiazoles 60 was 
unequivocally confirmed by comparison with samples that were synthesized through alternative routes. 
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When the thermal behavior of 3,3-diazido-2,4-dioxoquinolines 54 was studied, it was
originally expected that tetrazole intermediates can be further converted into N-cyano moieties 55
(Scheme 10) [32]. Although this assumption turned out to be wrong, the data suggest that the isomeric
diazo compounds 57 can be generated under the conditions [91]. Besides the diazo compound 57,
the formation of a tetrazole 58 was also observed. It was proposed that both 57 and 58 were
formed through tetrazole 56 as the common intermediate although the mechanistic pathway was
not investigated at all. Moreover, other reports also postulate the occurrence of diazo species in the
thermal degradation of a geminal diazide [92].

Ogilvie and Rank described the synthesis of 1,3,4-oxadiazoles 60 through heating of
α,α-diazido-β-ketoesters 59 (Scheme 11) [30]. The product formation was again explained with
a mechanism based on nitrene formation followed by rearrangement. The structure of the
1,3,4-oxadiazoles 60 was unequivocally confirmed by comparison with samples that were synthesized
through alternative routes.
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The photolysis of methyl 2,2-diazidomalonate (46) [45], 2,2-diazidomalonamides 52 [87] and 
diazidodiphenylmethane (40) [93] was studied by Moriarty et al. (Scheme 12). A range of different 
products were obtained, suggesting that more than one possible reaction pathway is involved. Several 
mechanistic aspects were presented including the formation of nitrene intermediates, which was also 
supported by EPR studies [40]. However, a conclusive mechanism explaining all the observations 
regarding diazide photolysis is still not available. From a synthetic point of view, tetrazole 62 was 
obtained as the major product upon irradiation of 46. Further irradiation of this intermediate 62 then 
leads to nitrogen loss, and methyl 5-methoxy-1,2,4-oxadiazole-3-carboxylate (63) is obtained. 2,2-
Diazidomalonamides 52 reacted in a similar way leading to tetrazoles 64. Diazidodiphenylmethane 
(40), on the other hand, shows a fully different product distribution (65, 41 and 66). More recent studies 
on the photochemistry of geminal benzylic diazides aided by DFT-calculations and isotope-labeling 
experiments also came to the result that, most likely, multiple reaction pathways are involved [43]. 

Besides intramolecular reactions of geminal aliphatic diazides, only a few intermolecular reactions 
are known. The first one is the formation of 2,2-diazidomalonamide (68) (Scheme 13) [33]: In the 
presence of ammonia, ethyl 2,2-diazidomalonate (67) is easily transformed into its amide 68. The azido 
groups are not directly involved in this reaction, but they seem to have a strong activating effect since 
with simple ethyl malonate the amide formation is significantly slower. Another intriguing reaction is 
the conversion of diazidodiphenylmethane (40) into N-phenylbenzamide (69) under the influence of 
strong acids [39]. This reaction is explained best by a sequence consisting of hydrolysis of the diazide 
40, the formation of a nitrene-intermediate due to the loss of molecular nitrogen and subsequent 
rearrangement. 

In an impressive report, the potential of geminal diazides as nitrene precursors was highlighted 
[94]: C60-Fullerene (70) was heated together with ethyl 2,2-diazidomalonate (67) (Scheme 14). The 
main product of this fullerene functionalization was a doubly bridged fulleroid 71. 
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Scheme 11. Synthesis of 1,3,4-oxadiazoles 60 from α,α -diazido-β-ketoesters 59.

The photolysis of methyl 2,2-diazidomalonate (46) [45], 2,2-diazidomalonamides 52 [87] and
diazidodiphenylmethane (40) [93] was studied by Moriarty et al. (Scheme 12). A range of different
products were obtained, suggesting that more than one possible reaction pathway is involved.
Several mechanistic aspects were presented including the formation of nitrene intermediates, which
was also supported by EPR studies [40]. However, a conclusive mechanism explaining all the
observations regarding diazide photolysis is still not available. From a synthetic point of view,
tetrazole 62 was obtained as the major product upon irradiation of 46. Further irradiation of this
intermediate 62 then leads to nitrogen loss, and methyl 5-methoxy-1,2,4-oxadiazole-3-carboxylate
(63) is obtained. 2,2-Diazidomalonamides 52 reacted in a similar way leading to tetrazoles 64.
Diazidodiphenylmethane (40), on the other hand, shows a fully different product distribution
(65, 41 and 66). More recent studies on the photochemistry of geminal benzylic diazides aided by
DFT-calculations and isotope-labeling experiments also came to the result that, most likely, multiple
reaction pathways are involved [43].

Besides intramolecular reactions of geminal aliphatic diazides, only a few intermolecular
reactions are known. The first one is the formation of 2,2-diazidomalonamide (68) (Scheme 13) [33]:
In the presence of ammonia, ethyl 2,2-diazidomalonate (67) is easily transformed into its amide 68.
The azido groups are not directly involved in this reaction, but they seem to have a strong activating
effect since with simple ethyl malonate the amide formation is significantly slower. Another
intriguing reaction is the conversion of diazidodiphenylmethane (40) into N-phenylbenzamide (69)
under the influence of strong acids [39]. This reaction is explained best by a sequence consisting
of hydrolysis of the diazide 40, the formation of a nitrene-intermediate due to the loss of molecular
nitrogen and subsequent rearrangement.

In an impressive report, the potential of geminal diazides as nitrene precursors was
highlighted [94]: C60-Fullerene (70) was heated together with ethyl 2,2-diazidomalonate (67)
(Scheme 14). The main product of this fullerene functionalization was a doubly bridged fulleroid 71.
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3.2. Geminal Vinyl Diazides 

The number of reports describing geminal vinyl diazides is, as one might expect, very small.  
In fact, only three molecules of this class (compounds 73–75) were synthesized until today (Scheme 15) 
[95–98]. It should be noted that the isolation of cyanocarbonimidoyl diazide (77) was also reported by 
Darzens in 1912 from the reaction of bromine cyanide (76) with sodium azide; however, the structure 
turned out to be wrong and was corrected by Hart in 1928 [99–101]. The geminal vinyl diazides 73–75 
appeared in the literature between 1982 and 1991. Their synthesis was possible via simple substitution 
of a chloride with sodium azide in a mixture of acetone and water at temperatures between −20 °C and 

Scheme 12. Photochemical decomposition of methyl 2,2-diazidomalonate (46),
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The number of reports describing geminal vinyl diazides is, as one might expect, very small.  
In fact, only three molecules of this class (compounds 73–75) were synthesized until today (Scheme 15) 
[95–98]. It should be noted that the isolation of cyanocarbonimidoyl diazide (77) was also reported by 
Darzens in 1912 from the reaction of bromine cyanide (76) with sodium azide; however, the structure 
turned out to be wrong and was corrected by Hart in 1928 [99–101]. The geminal vinyl diazides 73–75 
appeared in the literature between 1982 and 1991. Their synthesis was possible via simple substitution 
of a chloride with sodium azide in a mixture of acetone and water at temperatures between −20 °C and 
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3.2. Geminal Vinyl Diazides

The number of reports describing geminal vinyl diazides is, as one might expect, very
small. In fact, only three molecules of this class (compounds 73–75) were synthesized until today
(Scheme 15) [95–98]. It should be noted that the isolation of cyanocarbonimidoyl diazide (77) was also
reported by Darzens in 1912 from the reaction of bromine cyanide (76) with sodium azide; however,
the structure turned out to be wrong and was corrected by Hart in 1928 [99–101]. The geminal vinyl
diazides 73–75 appeared in the literature between 1982 and 1991. Their synthesis was possible via
simple substitution of a chloride with sodium azide in a mixture of acetone and water at temperatures
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between ´20 ˝C and ´15 ˝C. The diazide products were isolated by filtration (73 and 74) or direct
separation of the water-insoluble liquid (for 75). Methyl 3,3-diazido-2-cyanoacrylate (73) and ethyl
3,3-diazido-2-cyanoacrylate (74) were reported to be pale yellow to yellow-green crystalline solids,
which are stable in solution at ´15 ˝C for days, but decompose slowly at room temperature.
At 70 ˝C and 50 ˝C, respectively, 73 and 74 explode spontaneously. Analytical confirmation of the
structures was obtained from their infrared and NMR spectra as well as from mass spectrometry in
the case of methyl 3,3-diazido-2-cyanoacrylate (73) [95,96,98,102]. 2-(Diazidomethylene)malononitrile
(75) is described as an orange liquid. Infrared spectroscopy shows the azide stretching band at
2160 cm´1 [97]. Further analytical data for this compound are not available.
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While the photochemical decomposition was not examined in further detail, the thermal reaction 
of geminal vinyl diazides is well-studied (Scheme 17) [95–98,103–108]. The key intermediate is the very 
electrophilic [109] double acceptor-substituted N-cyanoimine 86. At temperatures over 20 °C, geminal 
vinyl diazides loose one molecule of nitrogen forming an azidoazirine 84, which spontaneously cyclizes 
to the tetrazole 85 [108]. After loss of a second molecule of nitrogen and subsequent rearrangement, 
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The reactivity of the geminal vinyl diazides appears to be pretty versatile [103]. Unfortunately,
several reports are, at least partially, contradictory, and we feel that some results are not free of doubt
since analytical evidence is missing. Nevertheless, there are two fundamental reactivities of geminal
vinyl diazides. The first one is the unimolecular thermal or photochemical decomposition. As shown
in Scheme 16, irradiation of a methanolic solution of methyl 3,3-diazido-2-cyanoacrylate (73) gives a a
low yield of methyl 2-cyano-3-methoxyacrylate (78) as a by-product (besides the thermal product 88
described below) [95,96,103]. Possible intermediates for this transformation are the free carbene 79,
the diazirine 80, the diazoacrylate 81 or the tetrazole 82.

Molecules 2015, 20, page–page 

11 

−15 °C. The diazide products were isolated by filtration (73 and 74) or direct separation of the water-
insoluble liquid (for 75). Methyl 3,3-diazido-2-cyanoacrylate (73) and ethyl 3,3-diazido-2-cyanoacrylate 
(74) were reported to be pale yellow to yellow-green crystalline solids, which are stable in solution at 
−15 °C for days, but decompose slowly at room temperature. At 70 °C and 50 °C, respectively, 73 and 
74 explode spontaneously. Analytical confirmation of the structures was obtained from their infrared 
and NMR spectra as well as from mass spectrometry in the case of methyl 3,3-diazido-2-cyanoacrylate 
(73) [95,96,98,102]. 2-(Diazidomethylene)malononitrile (75) is described as an orange liquid. Infrared 
spectroscopy shows the azide stretching band at 2160 cm−1 [97]. Further analytical data for this 
compound are not available. 

N3

N3

R

CN

Cl

Cl

R

CN

NaN3

(acetone/H2O)

72 R = CO2Me
R = CO2Et
R = CN

73
74
75

86%
70%

N Br
NaN3

N3 N

N3

CN
(H2O)76

77  
Scheme 15. Synthesis of all known geminal vinyl diazides. 

The reactivity of the geminal vinyl diazides appears to be pretty versatile [103]. Unfortunately, 
several reports are, at least partially, contradictory, and we feel that some results are not free of doubt 
since analytical evidence is missing. Nevertheless, there are two fundamental reactivities of geminal 
vinyl diazides. The first one is the unimolecular thermal or photochemical decomposition. As shown 
in Scheme 16, irradiation of a methanolic solution of methyl 3,3-diazido-2-cyanoacrylate (73) gives a 
a low yield of methyl 2-cyano-3-methoxyacrylate (78) as a by-product (besides the thermal product 
88 described below) [95,96,103]. Possible intermediates for this transformation are the free carbene 
79, the diazirine 80, the diazoacrylate 81 or the tetrazole 82. 

N3

N3

CO2Me

CN

73

hν

(MeOH)

CO2Me

CN

MeO

78

CO2Me

CN

CO2Me

CN

C CO2Me

CN

N
N

N2 C CO2Me

CN

NN
N

N

79 80 81 82  
Scheme 16. Photochemical reaction of methyl 3,3-diazido-2-cyanoacrylate (73). 

While the photochemical decomposition was not examined in further detail, the thermal reaction 
of geminal vinyl diazides is well-studied (Scheme 17) [95–98,103–108]. The key intermediate is the very 
electrophilic [109] double acceptor-substituted N-cyanoimine 86. At temperatures over 20 °C, geminal 
vinyl diazides loose one molecule of nitrogen forming an azidoazirine 84, which spontaneously cyclizes 
to the tetrazole 85 [108]. After loss of a second molecule of nitrogen and subsequent rearrangement, 

Scheme 16. Photochemical reaction of methyl 3,3-diazido-2-cyanoacrylate (73).

While the photochemical decomposition was not examined in further detail, the thermal reaction
of geminal vinyl diazides is well-studied (Scheme 17) [95–98,103–108]. The key intermediate is
the very electrophilic [109] double acceptor-substituted N-cyanoimine 86. At temperatures over
20 ˝C, geminal vinyl diazides loose one molecule of nitrogen forming an azidoazirine 84, which
spontaneously cyclizes to the tetrazole 85 [108]. After loss of a second molecule of nitrogen
and subsequent rearrangement, the N-cyanoimine 86 is generated. The N-cyanoimine 86 has
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been characterized in solution [97,108]; all isolation attempts led to polymerization [108,109]. The
existence of this intermediate 86 was also proven by cycloaddition with 2,3-dimethylbuta-1,3-diene
leading to the Diels-Alder product 87 [95–97,108,109]. In the presence of alcohols [95,96,108,109] or
amines [104–108], the N-cyanoimine 86 is immediately attacked at the electrophilic carbon and, after
elimination of hydrogen cyanide, isolable structures 88 and 89 are obtained in good yields. Reaction
of the N-cyanoimine 86 with hydrazines leads to 90 in an analogous fashion. Further cyclisation of 90
then generates 1,2,4-triazoles 91 [98].
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Scheme 17. Thermal reactions of geminal vinyl diazides. 

The other fundamental reactivity of geminal vinyl diazides 83 is the nucleophilic substitution of 
an azide group. Formally, this must be seen as a 1,4-addition followed by elimination of hydrazoic 
acid. The resulting vinyl azides 92 can, in most cases, be isolated in good yields as crystalline solids 
[98,102,104–108,110,111]. Because of the thermal instability of geminal vinyl azides 83, this reaction 
has to be performed at temperatures below −20 °C. Otherwise, the N-cyanoimine 86 (Scheme 17) 
would be generated before an intermolecular reaction can take place. As nucleophiles, primary 
[98,102,104,105,107,108,110,111] and secondary [102,107,111] amines, diamines [106,108,111] and 
hydrazines [98] were tested. With diamines, the substitution occurs either on two different molecules 
of the diazide 73 generating vinyl azides 93 [106,108,111] or on the same molecule delivering cyclic 
products 94 [106]. The reaction of simple amines with geminal vinyl diazides results in the substitution 
of one azide group, eventually affording vinyl azide 92 (Scheme 18). This vinyl azide species 92 was 
shown to undergo many different consecutive reactions giving access to a broad spectrum of nitrogen-
containing heterocycles like tetrazolylidenes [98,106,108,110,111], imidazolylidenes [110,111], oxazoles 
[106–108,110], 1,2,3-triazoles [102,111], azirines [102], 2-methylidene-3,4,5,6-tetrahydropyrimidines 
[106] and 2-methylidene-2,3-dihydroperimidines [106]. The definite outcome of the reaction strongly 
depends on the substitution pattern of the vinyl azide 92 and the precise reaction conditions 
[98,102,103,106–108,110,111]. Nevertheless, geminal vinyl diazides are neglected but valuable starting 
materials for the synthesis of heterocycles with uncommon substitution patterns. 
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The other fundamental reactivity of geminal vinyl diazides 83 is the nucleophilic substitution of
an azide group. Formally, this must be seen as a 1,4-addition followed by elimination of hydrazoic
acid. The resulting vinyl azides 92 can, in most cases, be isolated in good yields as crystalline
solids [98,102,104–108,110,111]. Because of the thermal instability of geminal vinyl azides 83, this
reaction has to be performed at temperatures below ´20 ˝C. Otherwise, the N-cyanoimine 86
(Scheme 17) would be generated before an intermolecular reaction can take place. As nucleophiles,
primary [98,102,104,105,107,108,110,111] and secondary [102,107,111] amines, diamines [106,108,111]
and hydrazines [98] were tested. With diamines, the substitution occurs either on two different
molecules of the diazide 73 generating vinyl azides 93 [106,108,111] or on the same molecule
delivering cyclic products 94 [106]. The reaction of simple amines with geminal vinyl diazides
results in the substitution of one azide group, eventually affording vinyl azide 92 (Scheme 18).
This vinyl azide species 92 was shown to undergo many different consecutive reactions giving access to a
broad spectrum of nitrogen-containing heterocycles like tetrazolylidenes [98,106,108,110,111],
imidazolylidenes [110,111], oxazoles [106–108,110], 1,2,3-triazoles [102,111], azirines [102],
2-methylidene-3,4,5,6-tetrahydropyrimidines [106] and 2-methylidene-2,3-dihydroperimidines [106].
The definite outcome of the reaction strongly depends on the substitution pattern of the vinyl
azide 92 and the precise reaction conditions [98,102,103,106–108,110,111]. Nevertheless, geminal
vinyl diazides are neglected but valuable starting materials for the synthesis of heterocycles with
uncommon substitution patterns.
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authors indicated, that the transfer of this mixture into a NMR tube led to an explosion. Surprisingly, 
the cycloaddition with dimethyl acetylenedicarboxylate did not yield the expected tris(1-triazolyl) 
compound having three identical triazole moieties. Instead, the depicted tristriazole 96 with only two 
1-triazolyl rings and one 2-triazolyl system was generated as evidenced by X-ray diffraction. It was 
assumed that, for steric reasons, the initially formed tris(1-triazolyl) compound rearranged to give 96. 
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In 2014, another class of geminal triazides, the α,α,α-triazidocarbonyls 98, was published by Kirsch 
et al. [59]. During the search for synthetic methods toward α-azidoesters, the α,α,α-triazidocarbonyls 
98 were found as the main product in the azidation of 3-oxocarboxylic acids 100. In related protocols, 
iodomethylketones 97 and terminal olefins 99 were employed as starting materials that were easier 
to handle (Scheme 20). All protocols have in common that IBX-SO3K (37) [62], the potassium salt of 
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4. Geminal Triazides

Triazidomethane (95), which was reported by Hassner et al. in 1990, is the archetype
molecule of the triazido compound class [42]. Although it was never isolated in pure form due
to its predicted volatility and hazardousness, the NMR-data and the cycloaddition reaction with
dimethyl acetylenedicarboxylate giving the tristriazole product 96 confirm its structure. The synthesis
of triazidomethane (95) was accomplished by mixing bromoform with a polymeric ammonium
azide reagent, followed by washing of the resin with diethylether and concentration of the
filtrate (Scheme 19). Triazidomethane (95) was obtained as a mixture together with diethylether
and unreacted bromoform. So far, the physical properties of triazidomethane (95) are completely
unknown. However, the authors indicated, that the transfer of this mixture into a NMR tube led to
an explosion. Surprisingly, the cycloaddition with dimethyl acetylenedicarboxylate did not yield the
expected tris(1-triazolyl) compound having three identical triazole moieties. Instead, the depicted
tristriazole 96 with only two 1-triazolyl rings and one 2-triazolyl system was generated as evidenced
by X-ray diffraction. It was assumed that, for steric reasons, the initially formed tris(1-triazolyl)
compound rearranged to give 96.
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In 2014, another class of geminal triazides, the α,α,α-triazidocarbonyls 98, was published
by Kirsch et al. [59]. During the search for synthetic methods toward α-azidoesters, the
α,α,α-triazidocarbonyls 98 were found as the main product in the azidation of 3-oxocarboxylic acids
100. In related protocols, iodomethylketones 97 and terminal olefins 99 were employed as starting
materials that were easier to handle (Scheme 20). All protocols have in common that IBX-SO3K
(37) [62], the potassium salt of sulfonated 2-iodoxybenzoic acid (IBX), was used as oxidant and

20054



Molecules 2015, 20, 20042–20062

sodium azide as the azide source. The structure of the triazido products 98 was verified by 15N-NMR
experiments and by triple cycloaddition with cyclooctyne. Based on preliminary experiments, the
mechanism of the conversion of 3-oxocarboxylic acid 100 was assumed to start with the iodination
of the enolizable position followed by decarboxylation. The resulting iodomethylketone 103 then
undergoes substitution to furnish an azidomethylketone 104. This cycle consisting of iodination and
substitution is passed two more times to end up with the triazides 101.
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5. Tetraazidomethane 

With a weight ratio of 93% nitrogen to 7% carbon, tetraazidomethane (105) may be the nitrogen-
richest organic compound one could think of. The only report on this molecule was published in 2007 
by Banert et al. [23]. In contrast to triazidomethane (95) [42], tetraazidomethane (105) is not available 
via direct substitution of carbon halides like tetrabromomethane. Instead, trichloroacetonitrile or 
alternatively triazidocarbenium hexachloroantimonate (106) were chosen as starting materials 
(Scheme 21). In the first case, treatment of trichloroacetonitrile with sodium azide in acetonitrile at  
50 °C for 18 h yielded, after aqueous work up, tetraazidomethane (105), which was directly further 
converted with cyclooctyne. The cycloaddition product 107 was confirmed by X-ray diffraction. A 
pure sample of tetraazidomethane (105) could be isolated as a colorless liquid by preparative gas 
chromatography. It was fully characterized via IR, NMR, GCMS and HRMS. 

Tetraazidomethane (105) shows some expected and several unexpected reactivities besides  
the cycloaddition of cyclooctyne (Scheme 22). With Lewis acids like antimony pentachloride the 
triazidocarbenium salt 108 is formed. Under aqueous conditions carbonyl diazide (2) and two 
equivalents of hydrazoic acid are generated. More unexpected, the reaction of tetraazidomethane (105) 
with phosphines leads to the loss of ten nitrogen atoms, and the unusual cyanamide 109 is obtained as 
the product. With norbornene or norbornadiene, tetraazidomethane (105) does not undergo a simple 
cycloaddition. Instead, mixtures of aminotetrazoles 110–113 were isolated; these tetrazoles 110–113 are 
most likely generated in a multistep sequence. In view of these results, tetraazidomethane (105) is a very 
interesting compound with much research work left to explore the unique reactivity of this molecule. 
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5. Tetraazidomethane

With a weight ratio of 93% nitrogen to 7% carbon, tetraazidomethane (105) may be the
nitrogen-richest organic compound one could think of. The only report on this molecule was
published in 2007 by Banert et al. [23]. In contrast to triazidomethane (95) [42], tetraazidomethane
(105) is not available via direct substitution of carbon halides like tetrabromomethane. Instead,
trichloroacetonitrile or alternatively triazidocarbenium hexachloroantimonate (106) were chosen as
starting materials (Scheme 21). In the first case, treatment of trichloroacetonitrile with sodium azide
in acetonitrile at 50 ˝C for 18 h yielded, after aqueous work up, tetraazidomethane (105), which
was directly further converted with cyclooctyne. The cycloaddition product 107 was confirmed by
X-ray diffraction. A pure sample of tetraazidomethane (105) could be isolated as a colorless liquid by
preparative gas chromatography. It was fully characterized via IR, NMR, GCMS and HRMS.

Tetraazidomethane (105) shows some expected and several unexpected reactivities besides
the cycloaddition of cyclooctyne (Scheme 22). With Lewis acids like antimony pentachloride the
triazidocarbenium salt 108 is formed. Under aqueous conditions carbonyl diazide (2) and two
equivalents of hydrazoic acid are generated. More unexpected, the reaction of tetraazidomethane
(105) with phosphines leads to the loss of ten nitrogen atoms, and the unusual cyanamide 109
is obtained as the product. With norbornene or norbornadiene, tetraazidomethane (105) does not
undergo a simple cycloaddition. Instead, mixtures of aminotetrazoles 110–113 were isolated; these
tetrazoles 110–113 are most likely generated in a multistep sequence. In view of these results,
tetraazidomethane (105) is a very interesting compound with much research work left to explore
the unique reactivity of this molecule.
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6. Outlook

This review summarized the mentions of geminal di- and triazides in the literature. While
easy methods for their preparation are available, not many researchers have had the courage to do
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chemistry with these compounds. Alternative methods for their synthesis and the elucidation of
their reactivities are not nearly as established as one would expect for a compound class the early
members of which have been known for more than 100 years. Hence, geminal organic diazides
are, in principle, still a “young” class of molecules, and the lack of interest may have simply arisen
from their possibly hazardous character, which cannot be denied. In particular, knowledge on their
reactivities and synthetic potential seem to be notoriously underdeveloped. Despite a few reports,
promising approaches to illuminate the chemical possibilities of geminal diazides have not been
further pursued, in many cases. The same is true for geminal triazides, which have only been known
for a short period of time, but are easily available, too. Besides the reported basic reactivities, the
use of those compounds in high-energetic materials or for heterocycle synthesis remains to be further
studied. We encourage researchers to step into this promising and stimulating field where is open
space for new discoveries.
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