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Abstract: In this review, a comprehensive overview of advances in the supramolecular 

complexes of carbohydrates and poorly soluble drugs is presented. Through the complexation 

process, poorly soluble drugs could be efficiently delivered to their desired destinations. 

Carbohydrates, the most abundant biomolecules, have diverse physicochemical properties 

owing to their inherent three-dimensional structures, hydrogen bonding, and molecular 

recognition abilities. In this regard, oligosaccharides and their derivatives have been utilized 

for the bioavailability enhancement of hydrophobic drugs via increasing the solubility or 

stability. By extension, polysaccharides and their derivatives can form self-assembled 

architectures with poorly soluble drugs and have shown increased bioavailability in terms of 

the sustained or controlled drug release. These supramolecular systems using carbohydrate 

will be developed consistently in the field of pharmaceutical and medical application. 

Keywords: poorly soluble drugs; carbohydrates; supramolecular complexation; bioavailability 

enhancement 
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1. Introduction 

Poorly soluble drugs belong to Biopharmaceutics Classification System (BCS) class II (low 

solubility/high permeability) and IV (low solubility/low permeability) materials [1]. The poor aqueous 

solubility of drugs has been a main obstacle in drug discovery and development, since it results in poor 

bioavailability at the active site [2]. With increasing molecular weight and log p values, the solubility of 

drugs decreases. Actually, 40% of drug candidates have been listed as practically insoluble (<100 μg/mL), 

whereas only 8% of new drug candidates have shown both high solubility and permeability [1,3]. To enhance 

the bioavailability of insoluble drugs, various techniques, including use of co-solvents, micronization, salt 

formation, and supramolecular complexation have been reported [4,5]. In the case of most non-intravenous 

administrations, the bioavailability is much less than 100%, because all drugs may not be adsorbed and 

metabolized before the delivery at the target site. This review aims to shed light on the supramolecular 

complexation of drugs with carbohydrates for bioavailability enhancement with flexibility and simplicity 

in the design and resulting in a considerable increase in the solubility and dissolution of drugs. 

Supramolecular chemistry is defined as “chemistry beyond the molecule” and its importance has been 

established by the award of the 1987 Nobel Prize in chemistry [6]. For biochemical interactions, the 

classical lock-and-key model has been changed and extended. Biomolecular architectures such as proteins, 

DNA, and bio-membranes are rather formed by supramolecular interactions, and they regulate the 

biological processes [7,8]. A lot of bioinspired materials have also been developed using supramolecular 

chemistry [9]. Self-assembly, molecular recognition, metal coordination, folding, and host-guest chemistry 

are the sophisticated concepts of supramolecular chemistry [10,11]. They are mainly composed of various 

noncovalent interactions including hydrogen bonding, dipole-dipole interactions, van der Waals forces, 

pi-pi interactions, and electrostatic interactions between molecules [12]. 

Hydrogen bonding plays crucial roles in biological molecular recognition together with other noncovalent 

interactions [13]. Carbohydrates (CnH2nOn), the key molecules in Nature, are polyhydroxyaldoses or ketoses, 

which are the possible hydrogen bonding donors and/or acceptors. They are also coated onto all the cells 

and involved in various types of supramolecular interactions. Through cooperative hydrogen bonding, 

carbohydrate recognition mediates cell-cell interactions, pathogenesis, and immune responses [14,15]. 

To the supramolecular chemist, the recognition ability of carbohydrates can be useful for the biomedical 

application such as drug delivery and development. Therefore, carbohydrate-based drug development has 

grown rapidly as a promising and exciting research field. In particular, the supramolecular association of 

carbohydrates with drugs could enhance the bioavailability of poorly soluble drugs. The strategies are varied, 

depending on the carbohydrate types such as monosaccharides, oligosaccharides, and polysaccharides. 

2. Monosaccharides 

2.1. Prodrug System 

Using monosaccharides, drug-monosaccharide conjugates can be used as a type of prodrug. An anticancer 

drug, dodetaxel, was conjugated with the glucose moiety, resulting in 52-fold increase in its solubility 

compared to the original drug [16]. Glucuronide prodrugs of doxorubicin and glycosyllonidamine have 

been reported [17–19]. Several antitumor agents such as bleomycin, anthracycline, and mithramycin also 

have a glycosidic moiety in their intrinsic structures. Their water solubility can be increased by the 
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modulation of their hydrophilicity, and the glycosylated drugs can take advantage of the recognition by 

glucose transporters [20]. As another example, when a neurotransmitter for antiparkinsonian agents is 

glycosylated, the glycoconjugate could be delivered into the central nervous system across the blood brain 

barrier [21,22]. Some peptide drugs have been glycosylated, and their physicochemical and pharmacological 

properties also changed [23,24]. They undergo enzymatic hydrolysis in plasma, and the free drugs can 

be released and become active for in vivo investigation. 

2.2. Glycosylated Carrier 

For drug delivery, various carriers such as liposomes, micelles, dendrimers, micro/nanoparticles, and 

micro/nanocapsules are available [25–27]. The use of monosaccharides offers the characteristic effects for 

the advanced carrier system of poorly soluble drugs [28]. Since carbohydrate binding proteins are present 

on different cell surfaces, glycosylated carriers can be designed for targeted delivery [29]. Furthermore, 

galactose-, fucose-, and mannose-conjugated carriers show bioadhesive properties, stability/solubility 

enhancement, and reduced immunogenicity/toxicity [30–32]. In terms of solubility of poorly soluble 

drugs, the limited effect of monosaccharides can be overcome by the use of oligosaccharides. 

3. Oligosaccharides 

3.1. Binary Systems 

3.1.1. Cyclic Oligosaccharides and the Derivatives 

Cyclodextrin (CD): In 1896, the use of CD glucosyltransferase (CGTase) allowed a practical production 

of CD from starch. CDs are cyclic α-D-1,4 glucans, most commonly composed of 6, 7 and 8 glucosidic 

units called α-, β-, and γ-CD, respectively (Figure 1a). The macrocycles can maintain a conformationally 

constrained structure compared to linear structures. The respective cavity diameters of α-, β-, and γ-CDs 

are in the ranges 4.7–5.3, 6.0–6.5, and 7.5–8.3 Å, and the height of the torus is 7.9 Å in all  types [33,34]. 

In 1911, the first noncovalent host-guest inclusion complexation of CD and other molecules was reported, 

and the first drug/CD patent was disclosed in 1953 [35,36]. With the characteristic cone or torus shape, 

various drugs containing ibuprofen, itraconazole, diclofenac, or atenolol have been incorporated into the 

cavity of β-CD even now, with a significant enhancement in the stability or solubility [37–40]. This is 

reasonable because CD can prevent crystallization, increase the dissolution of hydrophobic drugs, and 

protect the degradation of labile drugs by shielding guests with the hydrophobic cavity and the external 

layer of hydrophilic carbohydrates. They may also decrease the drug toxicity by making the drug more 

effective at lower doses. Furthermore, the native CD has Generally Regarded as Safe (GRAS) status in 

the United States and is found in many pharmaceutical and biomedical products. 

CD derivatives: β-CD is generally used owing to its easy availability and appropriate size, however 

its solubility in water is relatively low (1.8%) because of the intramolecular hydrogen bonding and strong 

order on the surrounding water [41]. To improve the complexation ability and aqueous solubility, CD 

derivatives have been synthesized (Figure 1b), and the aqueous solubilities of hydroxypropyl (HP-), 

methyl (M-), and sulfobutylether (SBE-) β-CDs are >60%, 50%, and 50%, respectively [34]. Using  

HP-β-CD, nonpolar drugs such as itraconazole, indomethacin, hydrocortisone, cisapride, and mitomycin 
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were marketed in the complex form in Europe and the United States [42,43]. HP-β-CD is also much more 

toxicologically benign than the natural β-CD [44]. In the case of M-β-CD or SBE-β-CD derivatives,  

the antibacterial chloramphenicol or the antifungal voriconazole have been introduced as complex 

solution formulations. However, because M-β-CD has hemolytic activity based on the complexation 

with cholesterol from membranes, its oral administration is limited [45]. Using ionic interactions, 

carboxymethyl- and (2-hydroxy-3-(trimethylammonio)propyl) β-CDs have been investigated for their 

solubilizing effect with oppositely charged drugs [46]. Finally, dimeric or oligomeric β-CD have attracted 

much attention as versatile receptors for molecular recognition [47]. Two or more hydrophobic complexation 

sites can enhance the stability, selectivity, and flexibility towards various nonpolar drugs. For example,  

the complexes of titanocene or paclitaxel with CD dimer are fairly soluble in water (Figure 1c), and the 

bioavailability is dramatically improved compared to the original drug [48,49]. 

 

Figure 1. Oligosaccharide hosts in binary system. (a) CD; (b) CD derivatives; (c) CD dimer; 

(d) Large CD; (e) CyS; (f) CyS derivatives; (g) Cys dimer; and (h) Linear oligosaccharides. 

Large CDs: The large CD comprising more than eight glucose units was isolated from the reaction mixture 

of CGTase and starch in 1957 by French and co-workers (Figure 1d) [50]. The CDs containing nine to 13 
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glucoses are sequentially called as δ-, ε-, ζ-, η-, and θ-CD. δ-CD (CD9) is found to be not a doughnut-shaped 

but rather elliptic boat-shaped, and has shown a solubilization effect for large guests such as digitoxin 

and spironolactone [51,52]. CD10, CD14 and CD26 also display distorted structures containing double 

band-flip motifs owing to their inherent flexibility [53,54]. Although the complex itself is less stable than 

the rigid α-, β-, and γ-CDs, the flexible complex may be better for the effective release of drugs [55]. 

Furthermore, a variety of cavity sizes can be useful for special guests not geometrically suitable for α-, 

β-, and γ-CDs. 

Cyclosophoraoses (CyS) and the derivatives: CyS isolated from Rhizobium species are cyclic β-1,2 

glucans containing 17 and 40 glucose residues (Figure 1e). In 1984, CyS17 were found to exhibit the 

complexation ability with hydrophobic guests including indomethacin, propericiazine, reserpine, and 

steroids [56]. The cavity was considered to be able to accommodate three-dimensionally extended guest 

molecules, and the diameter and depth of the cavities were estimated as 9 and 15 Å according to the 

CPK models. Besides, CyS17-24 efficiently complexed with paclitaxel, indomethacin, or luteolin [57–59]. 

The molecules are shaped such as a distorted and flexible ring, and the possibility of a different molecular 

mechanism for the complexation from the typical inclusion complexation by CD was suggested [60,61]. 

They could also be substituted by various functional groups including carboxymethyl, hydroxypropyl, 

sulfated, or methyl groups (Figure 1f) [62–65]. CyS oligomers were also designed (Figure 1g), and the 

cooperative complexation enhanced solubility and bioavailability of fisetin [66]. Because the functionalized 

CyS17-24 provide the additional space and property for guests, they are expected to behave as promising 

solubilizers for poorly soluble drugs. 

3.1.2. Linear Oligosaccharides 

Further, host-guest complexation was not found to be the exclusive property of cyclic structures.  

In 1989, it was demonstrated that cell-cell recognition is initiated by direct oligosaccharide-oligosaccharide 

interactions, indicating hydrophobic effects are responsible for the interaction [67]. In carbohydrate-protein 

interactions, stacking and non-polar interactions between sugar and tryptophan or phenylalanine residues 

of proteins were also observed, together with hydrogen bonds or metal coordination [68]. From this  

point of view, the hydrophobic character of linear carbohydrates was investigated with fluorescence 

probes, and the host-guest complexation might involve an induced-fit type adjustment [69]. Non-cyclic 

hexadecasaccharide has been reported as an effective complexing agent for pyrimethamine, haloperidol, 

or isoflavonoids (Figure 1h) [70–72]. In fact, the solubility of the antimalarial drug pyrimethamine  

and antipsychotic medication haloperidol was increased 42- and 87-fold in water by complexing with 

succinoglycan dimer D3 [70,71]. Even in octasaccharides, a solubility enhancement of pindolol was 

described, and their cytotoxic effect was low enough to warrant further study [73]. Recently, an acyclic 

cucurbit[n]uril molecular container has also been reported to overcome potential limitations such as  

the structural rigidity and slow dissociation kinetics of macrocyclic cucurbit[n]urils [74]. Acyclic 

oligosaccharides would be flexible hosts to recognize a broad range of poorly soluble drugs and provide 

high dissociation kinetics. 
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3.1.3. Preparation of Inclusion Complexes 

To overcome the practical problems, including long processing time, the use of excessive solvent,  

and multistep synthesis, practical preparation methods have been developed as follows. The preparation 

can be optimized depending on the substrates. 

Kneading [75]: In this method, carbohydrate hosts were placed in a mortar and wetted with little 

amount of water or hydro-alcoholic solution. Subsequently, the drug was added to the host paste, and 

the mixture was kneaded for a specified time. Finally, the kneaded sample was dried. 

Freeze-drying [76,77]: Drugs and carbohydrate hosts were dissolved in water to achieve equilibrium, 

and the solutions were frozen by immersion in liquid nitrogen, and the frozen solutions were lyophilized. 

Spray-drying [78]: Aqueous solutions of carbohydrate hosts and alcoholic solution of drugs are mixed 

to produce a clear solution. The solution is then spray-dried using a spray dryer. 

3.1.4. Analysis of Inclusion Complex 

1. UV-Vis spectroscopy—Measurement of drug solubility enhancement by complexation. 

2. Nuclear Magnetic Resonance (NMR) spectroscopy—1H-NMR is a suitable method for the 

evaluation of noncovalent interactions at the molecular level [79]. To elucidate the intermolecular 

interaction of inclusion complexes, two-dimensional NMR spectroscopy (Nuclear Overhauser 

enhancement spectroscopy (NOESY) or Rotating frame nuclear Overhauser effect spectroscopy 

(ROESY)) has also been frequently used, because two protons located within 5 Å induce an NOE 

crosspeak [80]. 

3. Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC)—TGA curves 

describe the weight losses of pure components and the complexes. DSC is performed to characterize 

the solid-state interactions for the inclusion complexes as compared to the melting points [81]. 

4. Fourier Transform Infrared (FTIR) spectroscopy—The analysis of the vibrational changes upon 

the inclusion of drugs with a host. 

5. X-ray Powder Diffractometry (XRPD)—The powder diffraction patterns of drugs and complex 

are compared. In principle, drugs displayed sharp peaks, which are the characteristics of an organic 

molecule with crystallinity, and the complex shows different patterns with crystalline drugs. 

6. Scanning Electron Microscopy (SEM)—The surface morphology of the pure and complexed form 

is investigated. The morphological changes are frequently analyzed to evaluate the interaction 

between drugs and host [82,83]. 

7. Electrospray mass spectrometry (ESI-MS)—Determination of molecular association of 

noncovalent bonding. 

8. Computational method (Molecular modeling)—The appropriate binding mode of complex 

between host and drug can be derived from molecular docking simulations [84]. 

3.1.5. Phase Solubility Studies 

The complexation between drugs and carbohydrates is caused by forming dynamic non-covalent bonds, 

which increases the aqueous solubility of drugs. In phase-solubility diagram (Figure 2), the solubility 
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enhancement of drugs is assessed as a function of host concentration [85]. Based on the shape of the 

plot, the diagram is classified as AP, AL, AN, BS, or Bi [42]. 

 

Figure 2. Phase solubility diagram. 

A type profile: In this profile, the apparent solubility of drugs increases as a function of host concentration. 

The AL graph indicates a linear increase in solubility, whereas AP and AN type graphs indicate a positive 

and negative deviation from linearity, respectively. Although AN systems are not easy to interpret, AP 

type suggests the formation of a higher-order complex with respect to the host. In AL type, a plot of drug 

concentration (Dt) vs. host concentration (Ht) for the formation of Dm-H complex gives a linear line with 

the intercept and the slope is defined as: 

slope = mKS0
m/(1 + KS0

m) (1)

where, if m is known, the K value can be calculated from the slope and intercept (S0, the intrinsic solubility 

of the drug in water). 

If the complex has a 1:1 drug:host ratio, the complexation is an equilibrium governed by an equilibrium 

constant (K1:1) calculated based on the linear phase-solubility profiles (AL type) using the following equation:  

K1:1 (M−1) = slope/S0(1 − slope) (2)

In this case, the slope is always less than unity [86]: 

In the case of 2:1 drug:host complexation, the slope of the AL type diagram is less than two, and the 

association constant (K2:1) is determined by the following equation [87]: 

K2:1 (M−1) = slope/S0
2(2 − slope) (3)

B type profile: When the system forms complexes with limited solubility, the diagram is B type, 

which is usually observed with β-CD. BS type is derived from the initial soluble complex and insoluble 

complex at the maximum point. Bi style indicates that the complex is too insoluble to increase the isotherm. 
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3.1.6. Drug Delivery and CD Elimination from the Drug/CD Complexes 

Complexation certainly involves the issue of the mechanism(s) of drug release. The answer is thought 

to be dissociation owing to dilution, protein binding, tissue uptake of drugs, competitive displacement 

of drugs from the complex, and host elimination [88,89]. These drug/host complexes may alter drug 

metabolism route, biodistribution, and tubular reabsorption, and thereby the bioavailability of drugs can 

be changed. In particular, myricetin [90], isotretinoin [91], benznidazole [92], and etodolac exhibit 9.4-, 

4.7-, 3.6-, and 2.5-fold increases in bioavailability upon addition of drug/CD derivative complexes for their 

oral administration [93]. As well as, the CDs are ultimately digested by bacteria in the gastrointestinal tract 

or colon to monosaccharides or gases including carbon dioxide, hydrogen, and methane [94]. 

3.2. Ternary Systems 

Ternary systems have been designed to improve the shortcomings of the above binary systems.  

In general, the main property of carbohydrate hosts is the modification of the physicochemical and 

biological characteristics of poorly soluble drugs by complex formation. Using another factor, ternary 

complexes could be more efficient for the solubility and bioavailability of drugs with the use of a small 

amount of carbohydrates. As modifiers, organic acids such as ascorbic acids, citric acids, and tartaric 

acids are used together with β-CD, and they can modulate the pH under aqueous conditions [95,96]. 

Accordingly, the solubility, stability, and phase solubility types are simultaneously affected. Besides, 

arginine, co-solvent, and a suitable water-soluble polymer also provided a synergistic effect for improving 

drug solubility in the presence of CD [97–99]. By adding the third auxiliary substance, lecithin, the 

solubility, dissolution, and stability of drugs were better than that those of the original drugs and binary 

systems [100]. Based on the amphiphilic properties of lecithin, the hydrophobic interactions with drugs, 

hydrogen bonding with HP-β-CD, and the cooperative advantage is greater than the simple statistical 

contributions of individual components. 

3.3. Multinary Systems 

3.3.1. CD Amphiphiles 

CD can even be conjugated to lipid molecules, and the amphiphile forms a micellar or vesicular 

system via self-assembly [101–104]. The resulting structure provides a higher drug loading, stable colloidal 

system, and controlled drug release. The first amphiphilic CDs were synthesized by Kawabata et al.,  

in 1986, and the alkylsulfinyl β-CD showed interesting molecular assembly properties [105]. Recently, 

anthraquinoyl-, hexadecyl-, sulfated hexanoyl-modified β-CDs were developed for the delivery of anticancer 

(paclitaxel, docetaxel), and antiviral (acyclovir) drugs [106–108]. Supramolecular amphiphiles are of 

significant interest as hybrid materials with inclusion capacity and nanoparticulate properties [101]. 

3.3.2. CD Pendent Polymers 

At the same time, CD-containing polymers have been explored for novel drug delivery platforms and 

are more suitable in medication for parenteral adminstration than the natural β-CD [109,110]. The systems 

consist of the polymeric, assembled network, and host-guest complexation, allowing the effective loading 
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and controlled release of drugs. Depending on the crosslinkers, soluble or insoluble β-CD polymers are 

obtained. Hyper-crosslinked CDs were first called nanosponges in 1998 [111], and insoluble polymers 

have been used as excipients in preparing tablets, suspensions, and capsules for drug carriers with soluble 

CD polymers [112,113]. For doxorubicin delivery to treat some leukemias and cancers, quaternary 

ammonium crosslinked β-CD and β-CD-centered amphiphilic polymers were achieved [114,115]. The 

three-dimensional architecture of CD pendent polymers usually forms hydrogels or nanoparticles, which 

are potentially superior in the biomedical and pharmaceutical fields. 

4. Polysaccharides 

Polysaccharides are polymeric carbohydrate molecules composed of monosaccharide units bound 

together by glycosidic linkages. They vary depending on their sources and structural units, and are easily 

available, inexpensive, eco-friendly, and biocompatible materials. Based on their primary sequence, they 

can adopt certain shapes (secondary structures like ribbons and helices) and the ordered specific structure 

(tertiary structures of multiple ribbons and helices) formed via energetically favorable interactions [116]. 

Sometimes, quaternary structures have shown higher levels of organization. Using these supramolecular 

polysaccharides, multi-dimensional carrying systems were prepared to control the drug release in a 

desirable manner. 

4.1. Polysaccharide Drug Conjugates 

In 1975, the concept of polymer-drug conjugates was introduced for the first time for the delivery of 

hydrophobic drugs to their sites of action [117]. The conjugates alter the biodistribution and circulation 

time of the original drugs. So far, hyaluronic acid [118,119], dextran [120], chitosan [121], heparin [122], 

alginate [123], pullulan [124], arabinogalactan [125,126], and starch have all been developed as  

drug conjugation platforms [127]. Hyaluronic acid is an anionic polysaccharide containing alternating 

disaccharide units of D-glucuronic acid and N-acetyl-D-glucosamine linked by β-1,4 glycosidic linkages. 

In the structure, the hydroxyl and carboxylic acid groups provide the appropriate sites for the conjugate. 

Because it has a strong affinity for the cancer cell marker, CD44, the selective adsorption is an additional 

advantage for the anticancer bioavailability [128]. Dextran is a glucan with mostly α-1,6 glycosidic 

linkages and has been approved as a plasma expander [129]. Chitosan is a biopolymer of β-(1-4)-linked 

D-glucosamine and N-acetyl-D-glucosamine, and the reactive amine group is important for chemical 

modification. The muco-adhesive property and the insolubility at pH 7.4 are considered for the 

development into advanced materials. Heparin is a highly sulfated glycosaminoglycan and has been used 

as the anticoagulant. Alginate is a linear copolymer of β-1,4-mannuronate and α-guluronate, and its  

gel-forming ability via calcium binding is a characteristic property. Pullulan is a neutral polysaccharide 

composed of maltotrioses linked by α-1,4 and α-1,6 bond types, and starch consists of helical amylose 

and branched amylopectin. Arabionogalactan is a heteropolymer consisting of arabinose and galactose. 

Among these, hyaluronic acid, carboxymethyl dextran, and oxidized dextran conjugates have entered 

clinical trials [118,130–132], showing improved adverse reaction profiles, enhanced therapeutic 

efficacy, and target-oriented properties. 
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4.2. Supramolecular Architectures for Polysaccharide Drug Carriers 

Polysaccharides provide supramolecular architectures derived from cooperative intra- and interchain 

association by hydrogen bonding, dipole and ionic interactions, and solvation (Figure 3). Supramolecular 

structures have distinct structural characteristics and functions that are not shown in monosaccharide 

units. Furthermore, their reactive groups (hydroxyl, amino, and carboxylic acid) can be easily modified, 

and various polysaccharide derivatives have been synthesized as novel supramolecular architectures. The 

driving forces for the three-dimensional structures are classified as noncovalent and covalent methods 

(Table 1). Supramolecules can provide the high encapsulation efficiency and cell internalization, 

decrease side effects, and protect the liable drugs via supramolecular complexation. As a result, they are 

designed for controlled drug release to maintain a constant drug concentration for the desired time with 

minimum side effects. 

 

Figure 3. Polysaccharide-based advanced materials and supramolecular architectures for 

biomedical applications. The supramolecular architecture is formed by noncovalent methods 

such as hydrogen bonding (a); metal coordination (b); ionic interaction (c); hydrophobic 

interaction (d); and covalent methods using cross-linkers (e). 
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Table 1. Polysaccharide-based carriers for the bioavailability enhancement of poorly soluble drugs. 

Supramolecular Forces Used Polysaccharides Architecture Types Drugs References 

Non-covalent 
bond 

Hydrogen 
bond 

Hydrolyzed xyloglucan Hydrogel 
Ondansetron  
Indomethacin  
Mytomycin C 

[133–136] 

Hydroxypropyl Methylcellulose Hydrogel Indomethacin [137] 

Metal 
coordination 

Alginate-calcium ion Nanoparticle 
Rifampicin,  
Doxorubicin 

[138,139] 

N-succinyl chitosan-alginate Hydrogel Nifedipine [140] 
Alginate-calcium carbonate Hydrogel Ibuprofen [141] 

Ionic 
interaction 

Chitosan-tripolyphosphate Nanoparticle Ciprofloxacin [142] 

Chitosan-tripolyphosphate-hydroxypropylcyclodextrin Nanoparticle 
Furosemide,  

Triclosan 
[143] 

Chitosan-tripolyphosphate-dextran sulfate Microsphere Ibuprofen [144] 
Chitosan-dextran sulfate Nanoparticle Amphotericin B [145] 

Chitosan-glycyrrhetic acid Nanoparticle Glycyrrhetic acid [146] 
Chitosan-β-glycerophosphate Hydrogel Paclitaxel [147] 
Carrageenan Dextran sulfate Nanosphere Ciprofloxacin [148] 

Hydrophobic 
interaction 

Ceramide modified hyaluronic acid Nanoparticle 
Docetaxel,  

Doxorubicin 
[149,150] 

Deoxycholic acid modified hyaluronic acid Nanoparticle Paclitaxel [151] 
Histidine modified hyaluronic acid Nanoparticle Doxorubicin [152] 

Pullulan acetate Nanoparticle Silymarin [153] 
Cholesterol modified chitosan Nanoparticle Epirubicin [154] 

Deoxycholic acid-modified chitosan Nanoparticle 
Adriamycin,  
Doxorubicin 

[155,156] 

5β-cholanic acid modified chitosan Nanoparticle 
Paclitaxel,  

Camptothecin 
[157,158] 

  



Molecules 2015, 20 19631 
 

 

Table 1. Cont. 

Supramolecular Forces Used Polysaccharides Architecture Types Drugs References 

Non-covalent 
bond 

Hydrophobic 
interaction 

Stearic acid-g-chitosan Nanosphere Doxorubicin [159,160] 
N-acetyl histidine-conjugated glycol chitosan Nanoparticle Paclitaxel [161] 

Cholic acid modified dextran Nanosphere Indomethacin [162] 

CD polymer-dextran polymer Nanogel 
Benzophenone, 

Tamoxifen 
[163] 

Acetylated chondroitin sulfate Nanogel Doxorubicin [164] 

Covalent 
bond 

Cross-linker or 
Copolymer 

Chitosan (glutaraldehyde, sulphuric acid) Microsphere 
Diclofenac,  

Docetaxol Clozapine 
[165–167] 

Polyacrylamide-g-chitosan copolymer Microsphere Nifedipine [168] 

Chitosan-Pluronic copolymer Nanoparticle 
Indometacin, 
Doxorubicin 

[169,170] 

Pullulan-g-poly(l-lactide) copolymers Hydrogel Doxorubicin [171] 
Poly(dl-lactide-co-glycolide)-grafted pullulan Nanosphere Adriamycin [172] 

Cellulose-graft-poly(l-lactide) copolymers Nanosphere Paclitaxel [173] 

Dextran-b-poly(DL-lactide-coglycolide) copolymer Nanosphere 
Doxorubicin, 

Amphotericin B 
[174,175] 

Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer Nanoparticle Doxorubicin [176] 
Dextran-b-poly(ε-caprolactone) Nanoparticle Doxorubicin [177] 

Chondroitin sulfate-Pluronic copolymer Nanoparticle Doxorubicin [178] 
Starch (epichlorohydrin) Microsphere Ampicillin [179] 

Hyaluronic acid (1,3-diaminopropane) Hydrogel Ibuprofen [180] 
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Among non-covalent bonds, hydrogen bonding is basically involved to make the supramolecular association 

of polysaccharides. With the same β-1,4-D-glucan backbone, xyloglucan and cellulose have ribbon-like shapes, 

and the modified structures can form hydrogel structures based on non-covalent interactions [133–137]. 

Carboxyl (–COOH) groups in alginate are able to interact with divalent metals, and the resulting structures 

have been used for isoniazid, doxorubicin, nifedipine, and ibuprofen delivery [138–141]. On the other 

hand, cationic chitosan has been reported to form ionic self-assemblies by Coulombic interaction  

with various anionic molecules. The ionic interaction produces self-assembled delivery systems with  

well-defined shapes and dimensions (nano/micro-particles, hydrogels and films, Table 1. The other factor 

can be hydrophobic interactions caused by various hydrophobically modified polysaccharides, where the 

hydrophobic groups range from acetyl groups to lipid molecules [149,153,154,159,164]. The hydrophobized 

carrier might effectively adsorb and deliver the target guest via supramolecular chemistry [181]. Cross-linkers 

such as glutaraldehyde [165], epichlorohydrin [179], and 1,3-diamino-propane [180] can produce irreversible 

supramolecular architectures, which are also prepared from co-polymer structures with polyacrylamide [168], 

polylactic acid [171], and poly-ε-caprolactone [177]. Throughout physical and chemical forces,  

various carbohydrate architectures are observed such as microspheres, nanoparticles, films and hydrogels, 

which properties and advantages for the representative drug delivery system are discussed in the 

following subsections. 

4.2.1. Nano-Particles (Spheres) 

Nanoparticle entrapping drugs can penetrate cells and tissue gaps, and be delivered to the target organ 

with their nanosized dimensions. Particularly, polysaccharide-based nanoparticles control release profiles 

based on the biodegradability and stimuli (pH or temperature)-responsive structural changes [182,183]. 

The major problems such as the cytotoxicity and degradation products of nanoparticles can also be solved 

based on their biocompatibility and biodegradability. The hydrophilic groups (hydroxyl, amino, and 

carboxyl groups) in polysaccharides provide bio-adhesive properties forming non-covalent bonds with 

biological tissues. Furthermore, some polysaccharides have recognition ability on specific cell types, 

allowing targeted delivery. These materials have the additional potential to combine diagnosis and therapy, 

and can be applied to nanomedicine. In this respect, polysaccharide (mostly dextran or chitosan)-coated 

magnetic nanoparticles have been attractive for drug delivery owing to their improved drug absorption, 

their prolonged blood residence time and target-specific delivery [184]. 

4.2.2. Microspheres 

Polysaccharide-based microspheres can encapsulate many types of drugs, localize delivery of drug, 

and are easily administered through a syringe needle [185]. They have been commonly developed for 

treating many respiratory diseases, and the microsphere size is decisive for the release rate of drugs. The 

drug-polysaccharide supramolecular interactions and porosity may be other important factors. For 

pulmonary delivery, large particles may deposit in the respiratory tract before the target site, whereas small 

particles can aggregate before reaching the desired location. Depending on the polysaccharide species or 

molecular weight, the average particle sizes are varied by changing the solution viscosity [186]. The 

preparation methods for microsphere using polysaccharides are solvent extraction [187], spray-drying [188], 

emulsion-crosslinking [166,179,189] and precipitation [190]. The conventional preparation methods 
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have also been modified for property improvement. In the spray drying method, good sphericity and a 

narrow size distributions could be obtained, however the burst effect and fast drug release need to be 

solved. Using the w/o/w emulsion-spray drying method, famotidine was released for several hours with 

a sustained type from chitosan microsphere, and wetting agents could be utilized to increase the release 

rate [191]. 

4.2.3. Membrane (Film) 

Membranes are mainly designed to control the release rate in transdermal delivery of drugs, and the 

applied materials can be used as tablet coatings, patches and wound dressings. The bio-adhesive and  

film-forming properties of polysaccharides are helpful for layer-by-layer type supramolecular structures [192]. 

Multilayers for the controlled delivery of drugs have advantages in terms of loading multiple components 

into interlayers and releasing the drugs sequentially layer-by-layer [193]. Although these films are 

regarded as more appropriate for hydrophilic drugs than hydrophobic ones [194,195], chitosan films 

were fabricated and used for local delivery of paclitaxel, and the biodegradation by lysozyme was used 

to control the drug release [196]. 

4.2.4. Hydrogels 

Hydrogels are water-swollen and hydrophilic membranes with pseudo-plastic properties that absorb 

a high amount of water to maintain their shape. Water can penetrate into the interstitial spaces of the 

three-dimensional polysaccharide network, providing hydrogel-like artificial tissues [197]. The highly 

porous structure allows loading drugs into the gel matrix and subsequent drug release [198]. Furthermore, 

the physical properties are elastically active and have low interfacial tension in biological fluids. The 

drug release from hydrogels can be controlled by swelling, diffusion, and degradation [199]. As well as, 

the charge distribution and chemical modification in polysaccharide structures contributes to it along 

with the surface state or porosity. In many cases, since polysaccharides are resistant to degradation by 

gastric and intestinal bacteria and susceptible to digestion by colonic microbial flora, they have been 

studied as colon-specific drug delivery systems [200]. 

5. Conclusions 

Supramolecular complexation of carbohydrates and poorly soluble drugs efficiently enhances the 

bioavailability of drugs. In the structure of carbohydrates, –OH and –CH groups provide the sites for 

hydrogen bonding and hydrophobic interactions, respectively. Furthermore, various modified carbohydrates 

can expand the scope of available drugs as well as the architecture. With monosaccharides, the targeted 

delivery of drugs was mainly considered. Typical binary complexes using linear and cyclic oligosaccharides 

were developed for poorly soluble drugs as two-dimensional systems, and the aqueous drug solubility 

was clearly enhanced by the binary system. In the intermediate version, tertiary complexes with another 

factor could reinforce the effect. Further, multiple complexes and polysaccharide-based supramolecules 

were recently studied as three-dimensional drug delivery systems. So far, various combinatorial hybrid 

materials of carbohydrates have been successfully developed for advanced drug carrier systems. Therefore, 

novel materials based on carbohydrates will be promising for advanced applications in the biomedical 
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and pharmaceutical fields. Further, these works will improve micro/nano fabrication technology,  

bio-mimetics, and tissue engineering based on the supramolecular carbohydrate architecture. 
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