Supplementary Information

Table of Contents

1.	HPLC-ESI-HRMS analysis of crude products 3m	S 1
2.	¹ H-NMR and ¹³ C-NMR spectroscopy of compounds 3	S3

1. HPLC-ESI-HRMS Analysis of Crude Tandem Cyclization Products with *ortho***-Substituted** *N***-Aryacrylamide as Substrate**

Significantly decreased yields of the desired compounds were observed when the *ortho*-substituted *N*-arylacrylamides were used as reaction substrates. The reaction mixture was much more complex. In these *ortho*-substituted cases, α -hydroxyl amide derivative (**A**) and simple C-C double bond Meerwein radical addition products (**C**) were detected as major byproducts. Due to the steric effect, the intermolecular cyclization was not favored, thus, radical intermediate **11** (Scheme 4, in the manuscript) could be oxidized by trace oxygen in the reaction system to provide byproduct A or quenched through an H-atom abstraction process to afford byproduct **C** (Scheme S1).

Scheme S1. HPLC-ESI-HRMS analysis of crude product.

Because byproduct **C** is a typical Meerwein radical addition product, our work mainly focused on the structure identification of byproduct A. We tried to isolate the byproduct **A** by silicon chromatography. However, the reaction product was complex and we didn't obtain pure compounds **A**. Thus, we performed the MS/MS analysis of the crude product and hoped to confirm the structure of compound **A** based on the MS/MS fragmentation behavior. As shown in Scheme 5, the MS/MS spectra of byproduct A showed a characteristic ion $[M + H - 18]^+$ at 311.1411 corresponding to the loss a H₂O molecule from the cation $[M + H]^+$ at 329.1487. Based on the proposed reaction mechanism, a hydroxyl group should exist in compound **A**.

Scheme S2. MS/MS fragmentation pathway of byproduct A.

2. NMR Spectra of Compounds 3

Figure S1. ¹H-NMR spectra of compound 3a.

Figure S2. ¹³C-NMR spectra of compound 3a.

Figure S3. ¹H-NMR spectra of compound 3b.

Figure S4. ¹³C-NMR spectra of compound 3b.

Figure S5. ¹H-NMR spectra of compound **3c**.

Figure S6. ¹³C-NMR spectra of compound 3c.

Figure S7. ¹H-NMR spectra of compound 3d.

Figure S8. ¹³C-NMR spectra of compound 3d.

Figure S9. ¹H-NMR spectra of compound 3e.

Figure S10. ¹³C-NMR spectra of compound 3e.

Figure S11. ¹H-NMR spectra of compound 3f.

Figure S12. ¹³C-NMR spectra of compound 3f.

Figure S13. ¹H-NMR spectra of compound 3g.

Figure S14. ¹³C-NMR spectra of compound 3g.

Figure S15. ¹H-NMR spectra of compound 3h.

Figure S16. ¹³C-NMR spectra of compound 3h.

Figure S17. ¹H-NMR spectra of compound 3i.

Figure S18. ¹³C-NMR spectra of compound 3i.

Figure S19. ¹H-NMR spectra of compound 3j.

Figure S20. ¹³C-NMR spectra of compound 3j.

Figure S21. ¹H-NMR spectra of compound 3k.

Figure S22. ¹³C-NMR spectra of compound 3k.

Figure S23. ¹H-NMR spectra of compound 3I.

Figure S24. ¹³C-NMR spectra of compound 3I.

S14

Figure S25. ¹H-NMR spectra of compound 3m.

Figure S26. ¹³C-NMR spectra of compound 3m.

Figure S28. ¹³C-NMR spectra of compound 3n.

Figure S29. ¹H-NMR spectra of compound 30.

Figure S30. ¹³C-NMR spectra of compound 30.

Figure S31. ¹H-NMR spectra of compound 3p.

Figure S32. ¹³C-NMR spectra of compound 3p.

Figure S34. ¹³C-NMR spectra of compound 3r.