Supplementary Information

Table of Contents

1. HPLC-ESI-HRMS analysis of crude products $\mathbf{3 m}$ S1
2. ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectroscopy of compounds $3 \quad$ S3

1. HPLC-ESI-HRMS Analysis of Crude Tandem Cyclization Products with ortho-Substituted

 N -Aryacrylamide as SubstrateSignificantly decreased yields of the desired compounds were observed when the ortho-substituted N-arylacrylamides were used as reaction substrates. The reaction mixture was much more complex. In these ortho-substituted cases, α-hydroxyl amide derivative (A) and simple C-C double bond Meerwein radical addition products (\mathbf{C}) were detected as major byproducts. Due to the steric effect, the intermolecular cyclization was not favored, thus, radical intermediate $\mathbf{1 1}$ (Scheme 4, in the manuscript) could be oxidized by trace oxygen in the reaction system to provide byproduct A or quenched through an H -atom abstraction process to afford byproduct \mathbf{C} (Scheme S 1).

Scheme S1. HPLC-ESI-HRMS analysis of crude product.

Because byproduct \mathbf{C} is a typical Meerwein radical addition product, our work mainly focused on the structure identification of byproduct A. We tried to isolate the byproduct A by silicon chromatography. However, the reaction product was complex and we didn't obtain pure compounds \mathbf{A}. Thus, we performed the MS/MS analysis of the crude product and hoped to confirm the structure of compound \mathbf{A} based on the MS/MS fragmentation behavior. As shown in Scheme 5, the MS/MS spectra of byproduct A showed a characteristic ion $[M+H-18]^{+}$at 311.1411 corresponding to the loss a $\mathrm{H}_{2} \mathrm{O}$ molecule from the cation $[\mathrm{M}+\mathrm{H}]^{+}$at 329.1487 . Based on the proposed reaction mechanism, a hydroxyl group should exist in compound A.

Scheme S2. MS/MS fragmentation pathway of byproduct A.

2. NMR Spectra of Compounds 3

Figure S1. ${ }^{1} \mathrm{H}$-NMR spectra of compound 3a.

Figure S2. ${ }^{13} \mathrm{C}$-NMR spectra of compound 3a.

Figure S3. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 b}$.

Figure S4. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 b}$.

Figure S5. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 c}$.

Figure S6. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 c}$.

Figure S7. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 d}$.

Figure S8. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 d}$.

Figure S9. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 e}$.

Figure S10. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 e}$.

Figure S11. ${ }^{1} \mathrm{H}$-NMR spectra of compound 3f.

Figure S12. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 f}$.

Figure S13. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 g}$.

Figure S14. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 g}$.

Figure S15. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 h}$.

Figure S16. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 h}$.

Figure S17. ${ }^{1} \mathrm{H}$-NMR spectra of compound 3i.

Figure S18. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 i}$.

Figure S19. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 j}$.

Figure S20. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 j}$.

Figure S21. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 k}$.

Figure S22. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 k}$.

Figure S23. ${ }^{1} \mathrm{H}$-NMR spectra of compound 31 .

Figure S24. ${ }^{13} \mathrm{C}$-NMR spectra of compound 31 .

Figure S25. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 m}$.

Figure S26. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 m}$.

Figure S27. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 n}$.

Figure S28. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 n}$.

Figure S29. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 0}$.

Figure S30. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 0}$.

Figure S31. ${ }^{1} \mathrm{H}$-NMR spectra of compound $\mathbf{3 p}$.

Figure S32. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 p}$.

Figure S33. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of compound $\mathbf{3 r}$.

Figure S34. ${ }^{13} \mathrm{C}$-NMR spectra of compound $\mathbf{3 r}$.

