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Figure S1. 1H-NMR and 13C-NMR spectra of 3. 
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Figure S2. 1H-NMR and 13C-NMR spectra of 4. 
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Figure S3. 1H-NMR and 13C-NMR spectra of 5. 
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Figure S4. 1H-NMR and 13C-NMR spectra of 7. 

7 



   S5 
 

 

 

 

Figure S5. 1H-NMR and 13C-NMR spectra of 8. 
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Figure S6. Time course of the crosslink yields with PNA3b at 37 °C (A) and 50 °C (B). 



   S7 
 

 

  

 

Figure S7. Molecular modeling of the complex in the PNA3b/DNA (A) and PNA3b/RNA (B). 

Molecular modeling of the complex was performed with MacroMoldel using OPLS2005 in 

water. These results suggested that AOVP in PNA might form the two hydrogen bonds with 

a target thymine in DNA and showed higher reactivity by the proximity effect. On the other 

hand, AOVP in PNA might not form the hydrogen bond with a target uracil in RNA. Thus, 

PNA3b might exhibit the higher reactivity with DNA than RNA. 
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