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Abstract: Maslinic acid is a pentacyclic triterpene found in a variety of natural sources, 
ranging from herbal remedies used in traditional Asian medicine to edible vegetables and 
fruits present in the Mediterranean diet. In recent years, several studies have proved that 
maslinic acid exerts a wide range of biological activities, i.e. antitumor, antidiabetic, 
antioxidant, cardioprotective, neuroprotective, antiparasitic and growth-stimulating. 
Experimental models used for the assessment of maslinic acid effects include established 
cell lines, which have been often used to elucidate the underlying mechanisms of action, 
and also animal models of different disorders, which have confirmed the effects of the 
triterpene in vivo. Overall, and supported by the lack of adverse effects in mice, the results 
provide evidence of the potential of maslinic acid as a nutraceutical, not only for health 
promotion, but also as a therapeutic adjuvant in the treatment of several disorders. 
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1. Introduction 

Maslinic acid, also known as crategolic acid or (2α,3β)-2,3-dihydroxyolean-12-en-28-oic acid 
(Figure 1), is a pentacyclic triterpene widely distributed in the plant kingdom. In the last decades, and 
in response to an increasing interest to identify new natural molecules with beneficial effects on health, 
maslinic acid has been isolated not only from various plants used in traditional herbal medicine, but 
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also from edible vegetables and fruits. In parallel, the biological activities of maslinic acid have been 
assessed in different experimental models, from tumor cell lines to animal models of several diseases, 
supported by the lack of adverse effects in vivo after the oral administration of the triterpene [1]. In 
summary, maslinic acid is arising as a novel natural and safe molecule with different biological targets, 
which might derive to considering it as a nutraceutical in the future. 

Figure 1. Chemical structure of maslinic acid. 

 

Historically, maslinic acid was named “crategolic acid”, since it was first isolated from Crataegus 
oxyacantha L. [2] Tschesche et al. [3] described it as a triterpenoid carboxylic acid with molecular 
formula C30H48O4, mainly found in the leaves of the abovementioned species, where it accounted for 
25%−30% of the amount of triterpenoids in this tissue [4]. In the early 1960s, a series of studies by 
other authors reported the identification of a new triterpenic acid from Olea europaea L., although 
with some controversy. Caglioti et al. [5] isolated from olive husks a triterpenic acid with molecular 
formula and structure identical to those of crategolic acid, and named it maslinic acid. However, a few 
years later the study was questioned, since the results could not be reproduced, and maslinic acid was 
considered a product derived from the aging of the fruit [6]. In parallel to the work by Caglioti et al. [5], 
Vioque and Morris [7] found two triterpenic acids in the acetonic extract of the olive pomace, one of which 
was identified as oleanolic acid and the other was defined as a dihydroxytriterpenic acid, which could be 
maslinic acid. More than three decades later, Bianchi et al. [8] shed light about the composition of the 
olive fruit, quantifying maslinic acid together with oleanolic acid as the major lipidic compounds in the 
cuticle of the drupe. 

1.1. Biosynthesis and Role as a Phytoalexin 

Triterpenoids, such as maslinic acid, are a group of secondary metabolites derived from the 
cyclation of squalene, oxidosqualene or bis-oxidosqualene [9]. These precursors (C30) are substrate of 
several types of triterpene synthases, which catalyze their cyclation through intermediate cations to a 
wide variety of triterpenes. Depending on the number of rings, the latter are classified as mono-, bi-, 
tri-, tetra- or pentacyclic triterpene alcohols [9]. Lupeol, α- and β-amyrin are examples of pentacyclic 
triterpene alcohols, which not only constitute secondary metabolites themselves, but also might 
undergo oxidation reactions to yield other derivatives, such as betulinic, ursolic and maslinic acids. 
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Not long after the identification in Crataegus oxyacantha L., Tschesche et al. [10] recognized 
maslinic acid as a derivative of the β-amyrin series, but it was Stiti et al. [11] who more recently 
postulated the biosynthetic pathway that leads to the formation of maslinic acid in the fruits of  
Olea europaea L., one of the main natural sources of this triterpene. The authors suggest that in the 
developing olive both the sterols (primary metabolites) and the non-steroidal triterpenoids (secondary 
metabolites) share oxidosqualene as a common precursor. The enzyme β-amyrin synthase catalyzes its 
cyclation into β-amyrin, and further oxidation steps give rise to the triterpenic dialcohol erythrodiol 
followed by the hydroxy pentacyclic triterpenic acids oleanolic and maslinic [11]. 

Regarding the function, plant secondary metabolites are not essential for the growth, development 
and reproduction of individuals, but might contribute to their survival or give them evolutionary 
advantages. Phytoalexins are a particular case of secondary metabolites, involved in the protection of 
the plant against pathogens, and maslinic acid can be considered as such, since different studies have 
proved its protective activity under adverse conditions. Kombargi et al. [12] observed that dipping 
Olea europaea L. fruits in solutions of maslinic acid prevented the oviposition of eggs from females of 
the olive fruit fly (Bactrocera oleae), which is the major insect pest of olives in the Mediterranean 
countries. Furthermore, the isolated triterpene is toxic after ingestion by rice weevil adults (Sitophilus 
oryzae) [13], a widespread and destructive pest of stored cereals. 

1.2. Natural Sources 

Maslinic acid was first detected in Crataegus oxyacantha L., but the growing interest in this 
triterpene because of its wide range of health-enhancing activities has led to its identification in other 
natural sources, being present in more than 30 plants worldwide. On one hand, the triterpene has been 
found in plants used in traditional Asian medicine for the treatment of diverse affections. To mention only a 
few examples, the leaves of loquat (Eriobotrya japonica) [14], which have been used as antitussive and 
anti-inflammatory for chronic bronchitis, and also as diuretic, digestive and antipyretic [15]; the flowers of 
Campsis grandiflora, employed for female disorders like uterine hemorrhage [16]; the whole plant of 
Geum japonicum [17], used as diuretic [18]; and Agastache rugosa [19], for the treatment of anorexia, 
vomiting and other intestinal disorders [20]. On the other hand, maslinic acid has recently been 
quantified in edible vegetables, such as table olives [21], spinach and eggplant [22], aromatic herbs 
like mustard and basil [22,23], legumes such as chickpeas and lentils [24], and to a lesser extent in 
some fruits like mandarin and pomegranate [25] (Table 1). Therefore, plant-based diets might provide 
a constant supply of maslinic acid, which could be considered, among many other factors, partly 
responsible of the health-enhancing properties of these dietary habits.  

Table 1. Maslinic acid content in edible sources.  

 Maslinic Acid (mg/kg Dry Weight) References 
Table olives   

Kalamata (plain black) 1318 [21] 
Hojiblanca (plain green) 905 [21] 

Gordal (plain green) 414 [21] 
Manzanilla (plain green) 384 [21] 
Cacereña (plain black) 295 [21] 
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Table 1. Cont. 

 Maslinic Acid (mg/kg Dry Weight) References 
Fresh vegetables   

Spinach 1260 [22] 
Eggplant 840 [22] 

Aromatic herbs   
Brown mustard 330 [23] 
Leaf mustard 1740 [22] 

Basil 350, 320 [22,23] 
Cooked legumes   

Small lentils 26.3 [24] 
Large lentils 39.5 [24] 
Chickpeas 61.9 [24] 

Fresh fruits   
Mandarin 1.18 [25] 

Pomegranate 10.8 [25] 

2. Biological Effects 

2.1. Maslinic Acid and Cancer 

The antitumor activity of maslinic acid has become remarkable in recent years, as evidenced by the 
higher number of studies that address this issue, compared to those about other biological effects. The 
vast majority of published references correspond to in vitro experiments that show the  
anti-proliferative and/or pro-apoptotic effect of maslinic acid, together with plausible mechanisms of 
action that involve different signaling pathways. Colon cancer cell lines have been extensively used 
with this aim, but there is no shortage of studies that prove the above-mentioned effects in a wide 
range of cell lines from other origins. Moreover, this antitumor effect has also been assessed in several 
animal models, with positive results that reinforce its potential as anticarcinogenic agent. 

2.1.1. Maslinic Acid Exerts an Anti-Proliferative Activity through Arresting Cell Cycle and Activates 
Both the Intrinsic and the Extrinsic Apoptotic Pathways in Vitro 

The study conducted by Juan et al. [26] demonstrated for the first time the potent anti-proliferative 
activity of maslinic in the human colorectal adenocarcinoma cell line HT-29. The triterpene did not 
show non-specific cytotoxicity up to 250 µM, but exerted a dose-dependent anti-proliferative activity 
with IC50 of 101.2 µM at 72 h of exposure [27]. Similar results were found by Reyes et al. [28] in both 
the colon cancer cell line HT-29 and Caco-2, in which incubation with the triterpene for 72 h resulted 
in inhibition of cell growth with IC50 of 61 µM and 85 µM, respectively. Further experiments by the 
same authors revealed that maslinic acid exerted its anti-proliferative activity by arresting cell cycle, 
since the cell population in the G0/G1 phases was significantly increased, while that in the S phase was 
reduced [28]. Remarkably, in both studies the effect of the compound on cell proliferation coincided 
with apoptotic cell death.  
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Apoptosis, also called programmed cell death, refers to a cascade of biochemical events that lead to 
the disintegration of the cell into fragments, which are further removed by phagocytic cells without 
eliciting an inflammatory response. This process might occur through death receptors, the so-called 
extrinsic pathway, or by means of an intrinsic pathway, in which mitochondria play a role. Both routes 
converge at the level of caspase-3, which is one of the effector caspases [29]. Interestingly, maslinic 
acid has been found to affect both pathways at different levels. 

In the study of Juan et al. [27], the activation of caspase-3 was more than 60-fold at 24 h of 
exposure to 250 µM of the triterpene, compared to vehicle-treated cells. In order to know whether the 
activation of caspase-3 resulted from the extrinsic or the intrinsic pathway, the production of 
superoxide anions was evaluated, since it is one of the possible inductors of the latter [30]. Indeed, 
higher levels of O2

− were found in cells incubated with maslinic acid (150 µM) for 4 h, compared to 
controls. The apoptotic process was further confirmed by the occurrence of plasma membrane 
disintegration and nuclear fragmentation [27]. Similarly, Reyes et al. [28] also reported that the 
apoptotic process observed in both HT-29 and Caco-2 cell lines occurred through activation of 
caspase-3, as evidenced by the observation of morphological changes, such as cell shrinkage or 
chromatin condensation. 

Attention was then drawn to the molecular events underlying the induction of the mitochondrial 
apoptotic pathway. This organelle is a reservoir of several pro-apoptotic proteins that upon the proper 
stimulus are released to the cytosol, where the interaction with other elements finally triggers caspase-3 
activation. An important set of regulators of this pathway is the Bcl-2 family, which includes both anti- 
and pro-apoptotic members [29]. 

Experiments performed by Reyes-Zurita et al. [31] with HT-29 cells showed that maslinic acid 
concomitantly activated the expression of Bax (pro-apoptotic protein) and inhibited the expression of 
Bcl-2 (anti-apoptotic protein), resulting in mitochondrial disruption and cytochrome-c release to the 
cytosol. It is known that once in the cytosol cytochrome-c binds to Apaf-1, which triggers the 
sequential activation of caspase-9 and caspase-3 [32]. Although in this study the formation of the 
complex was not directly assayed, a strong time- and dose-dependent cleavage of both caspases  
was observed [31]. 

More recently, the same authors postulated that the effect of maslinic acid on Bcl-2 family proteins 
could be mediated by the kinase JNK, since its expression was found increased in HT-29 cells after a 
12 h treatment with the triterpene [33]. Actually, some of the effects of JNK had been previously 
described. Tsuruta et al. [34] found that JNK promotes Bax translocation to mitochondria through 
phosphorylation (inactivation) of a cytoplasmic anchor of Bax. Another consequence of JNK 
activation is the cleavage of Bid (pro-apoptotic protein), which results in translocation to mitochondria 
and Smac/DIABLO release to the cytosol [35]. This protein induces apoptosis through neutralizing 
inhibitors of apoptosis (IAPs) [36]. Apart from JNK activation, maslinic acid also enhanced the 
expression of p53, which is a well-known tumor-suppressor transcription factor that regulates the 
expression of genes involved in apoptosis, such as those coding for the above-mentioned Bcl-2 and 
Bax proteins [37]. 

In contrast with the intrinsic pathway, the extrinsic route is initiated by the binding of a ligand with 
a receptor of the tumor necrosis factor receptor (TNFR) superfamily. This results in the assembly of 
several elements, which constitute the so-called complex I [38]. Next, two possible ways trigger the 
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regulation of apoptosis with opposite outcomes. On one hand, complex I can activate the kinase IKK, 
responsible of the phosphorylation of IKBα and its subsequent degradation. IKBα normally recruits 
NF-κB in the cytosol, but after its degradation the transcription factor is released and translocates to 
the nucleus [39], where it up-regulates anti-apoptotic genes [40]. On the other hand, some elements of 
the complex I can be exchanged, including the recruitment of procaspase-8, and this leads to the 
formation of a secondary complex (complex II) [38]. Activation of procaspase-8 results in the cleavage 
of downstream effector caspases, such as caspase-3, thus propagating the apoptotic signal [41]. 

The role of maslinic acid in the death-receptor pathway was first demonstrated by Li et al. [42] 
using the pancreatic cancer cells Panc-28. The compound exerted a synergistic effect together with 
TNF-α on both inhibition of cell proliferation (maslinic acid at 10 µM) and induction of cell death  
(25 µM), being the latter more than 55% higher, compared to control. The determination of activated 
caspase-3 in the cells confirmed the occurrence of apoptosis. Further experiments showed that maslinic 
acid affected the NF-κB pathway by inhibiting IKBα phosphorylation, thus preventing both NF-κB 
translocation to nucleus and its DNA binding activity. 

The inhibitory effect of maslinic acid on NF-κB DNA-binding activity was also proved in the Raji B 
lymphoma cell line [43]. In this study, the impaired function of NF-κB was used to explain the  
dose-dependent reduction of COX-2 expression. COX-2 is well-known for its role in the inflammatory 
process and has been found overexpressed in a wide range of premalignant and malignant tissues [44].  

The NF-κB transcriptional activity can be modulated through phosphorylation by various members 
of the mitogen-activated protein kinase family (MAPK), including JNK and p38 [45]. Wu et al. [46] 
described for the first time that maslinic acid also interacts with the p38 cascade so that ultimately 
triggers a pro-apoptotic effect. The experiments were performed in two cell lines of human salivary 
gland adenoid cystic carcinoma, ACC-2 and ACC-M, corresponding to low and high metastasis, 
respectively. The anti-proliferative activity after 24 h of incubation (IC50 of 43.6 and 45.8 µM, 
respectively) was attributed to an apoptotic process, as evidenced by the observation of both apoptotic 
bodies and microstructural changes, such as chromosomal DNA condensation and loss of microvilli. 
Cells exposed to the triterpene showed activated caspase-3, and this occurred as a consequence of p38 
MAPK phosphorylation, which in turn was the result of an increase in the concentration of 
intracellular Ca2+. The mechanism by which maslinic acid provokes intracellular Ca2+ overload 
remains to be investigated. On the contrary, the implication of p38 MAPK in maslinic acid-induced 
apoptosis is consistent with the results obtained in two cell lines of human urinary bladder carcinoma 
(T24 and 253J) [47]. Incubation with the triterpene dose- and time-dependently increased p38 
phosphorylation, and this was correlated with reduced cell survival (IC50 of 33.0 and 71.8 µM in each 
cell line, respectively).  

The latest assessment of the anti-proliferative activity of maslinic acid in vitro has been performed 
in the soft tissue sarcoma cell lines SW982 (human synovial sarcoma) and SK-UT-1 
(leiomyosarcoma). IC50 values were of 45.3 and 59.1 µM, after incubating the cells with the triterpene 
for 24 h [48]. However, the most remarkable contribution of this study is the fact that maslinic acid is 
proposed as an adjuvant of the established anticancer drug doxorubicin, which constitutes a novel 
therapeutic approach for the treatment of cancer diseases. Concretely, cells treated simultaneously with 
both compounds showed higher sensitivity to doxorubicin as a consequence of an increased 
intracellular accumulation of the drug. Since doxorubicin is a well-known substrate of the efflux 
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proteins P-gp and MRP1, a plausible mechanism behind the intracellular accumulation of the drug 
when co-incubated with maslinic acid could be that the triterpene inhibited these transporters. A 
kinetic study revealed that the parameters Vmax and Km (obtained by the Michaelis-Menten equation) 
of P-gp were not affected by maslinic acid, while those of MRP1 were dose-dependently lowered, thus 
indicating that maslinic behaved as a non-competitive inhibitor of MRP1 [48]. Table 2 summarizes the 
IC50 values of the anti-proliferative activity of maslinic acid found in different cell lines. 

Table 2. In vitro anti-proliferative effect of maslinic acid. 

Origin Cell Line IC50 (µM) References 
Human colorectal adenocarcinoma HT-29 101.2 [27] 

 HT-29 61 [28] 
 Caco-2 85 [28] 
 Caco-2 15.4 [49] 

Human hepatocellular carcinoma HepG2 69.1 [49] 
Human breast adenocarcinoma MCF-7 136.0 [49] 

Human salivary gland adenoid cystic carcinoma ACC-2 (low metastasis) 43.7 [46] 
 ACC-M (high metastasis) 45.8 [46] 

Human transitional cell urinary bladder carcinoma T24 33.0 [47] 
 253J 71.8 [47] 
 TCCSUP 28.0 [47] 

Human transitional cell urinary bladder papilloma RT4 42.7 [47] 
Human synovial sarcoma SW 982 45.3 [48] 

Human uterus leiomyosarcoma SK-UT-1 59.1 [48] 

2.1.2. Maslinic Acid Targets Other Cancer-Related Signaling Pathways  

Besides the abnormal cell proliferation occurring in tumor growth, angiogenesis emerges in 
response to the hypoxic environment within the tumor and constitutes another therapeutic target for 
cancer diseases. The hypoxia inducible factor-1α (HIF-1α) is one of the pivotal regulators of 
angiogenesis in response to oxygen deficiency and has been found overexpressed in many human 
cancers [50]. This factor induces the expression of pro-angiogenic molecules, such as the vascular 
endothelial growth factor (VEGF) and its receptors [51], among others. The new blood vessels might 
be used by some cells detached from the primary tumor to reach systemic circulation, thus they would 
be distributed throughout the organism and are likely to ultimately colonize distant tissues. This 
process requires the action of proteins that degrade the extracellular matrix, such as matrix 
metalloproteinases (MMP) and urokinase-type plasminogen activator (uPA), which are secreted as 
inactive forms by either tumor or stroma cells [52,53]. Concretely, the expression of MMP-2, MMP-9 
and uPA may be induced by the above-mentioned HIF-1α [51]. 

Park et al. [54] conducted an exhaustive study about the effect of maslinic acid on the metastatic 
capacity of the human prostate cancer cell DU145. Treatment with the triterpene resulted in a decrease 
of both basal and EGF-induced migration of cells in a dose-dependent manner (10−25 µM). This effect 
was correlated with both MMP and uPA systems; firstly, the triterpene reduced both the secretion of 
pro-MMP-2 and pro-MMP-9, and also MMP-9 mRNA levels. Secondly, a diminished secretion of pro- 
and active-uPA was observed, together with decreased uPA activity and mRNA levels, and reduced 
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uPA receptor (uPAR) protein levels. Since MMP and uPA systems are regulated by HIF-1α, it was 
further assessed whether the effects of maslinic acid observed on the proteases took place through the 
alteration of HIF-1α levels. It was demonstrated that under hypoxic conditions the triterpene not only 
counteracted the increased expression of HIF-1α but also inhibited its translocation to the nucleus and 
decreased its half-life from 11.81 min to 4.96 min [54]. 

Similar results were obtained in three human liver cancer cell lines (Hep3B, Huh7 and HA227) [22]. In 
this study, however, the effects of maslinic acid were attributed to the antioxidant effect of the 
triterpene, since reduced levels of reactive oxygen species (ROS) and nitric oxide (NO) were observed 
in cells treated with maslinic acid. It had been previously reported that these molecules are natural 
enhancers of the expression of both HIF-1α and VEGF in cancer cells [55]. 

2.1.3. The Antitumor Activity of Maslinic Acid also Occurs in Vivo 

Only a few studies up to now have assessed the antitumor activity of maslinic acid in animal models 
of cancer disorders, compared to the extensive number of references about its in vitro effects and their 
mechanisms. However, the positive outcomes achieved in all them are encouraging and stimulate 
further research in this field. 

The first in vivo approach to the antitumor activity of maslinic acid was performed with athymic 
nu/nu mice in which xenograft pancreatic cells were implanted [42]. The subcutaneous administration 
of 10 and 50 mg/kg of the triterpene significantly decreased in a dose-dependent manner both the 
volume and the weight of the tumors, which in turn showed an increased number of apoptotic cells 
(from 8% in the control group to 21% and 38% in 10 mg/kg and 50 mg/kg groups, respectively) and a 
reduced expression of two NF-κB-regulated anti-apoptotic genes, Survivin and Bcl-xl. 

More recently, Sánchez-Tena et al. [56] assessed the effect of a maslinic acid-enriched diet  
(100 mg/kg) in ApcMin/+ mice, a common animal model of spontaneous intestinal polyposis. Results 
showed that, after a 6-week treatment period, maslinic acid inhibited the formation of polyps in the 
small intestine by 45%. Microarray analyses of gene expression profiles suggested that the compound 
inhibited cell-survival signaling and inflammation pathways. 

Finally, bladder cancer has also been targeted by maslinic acid, after implanting T24 and 253J cells 
in nude mice. Both the size and the weight of the tumors were dose-dependently and significantly 
reduced in the animals treated with intraperitoneal injections of 20 mg/kg of the triterpene every other 
day over 35 days [47]. 

In summary, there is strong evidence that maslinic acid targets a variety of signaling pathways that 
finally trigger an anticarcinogenic effect, both in vitro and in vivo. Consequently, maslinic acid is 
emerging as a potential agent for the treatment of cancer disorders, either alone or in combination with 
other drugs. 

2.2. Maslinic Acid and Diabetes 

The role of maslinic acid in glucose metabolism has also been extensively studied. Wen et al. [57] 
provided the first evidence of the inhibitory effect of the triterpene on glycogen phosphorylases (GP), 
which catalyze the first step of glycogen breakdown. In a first in vitro assay using GPa (activated form 
of the enzyme) isolated from rat liver, maslinic acid inhibited the enzyme with an IC50 of 99 µM, being 
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6-fold more potent than caffeine, an established GP inhibitor. Based on this finding, the hypoglycemic 
activity of the triterpene was evaluated in vivo, using a mouse model of diabetes induced by adrenalin, 
which is known to indirectly stimulate glycogenolysis and thus increase glucose blood concentration. 
After the oral administration of maslinic acid (100 mg/kg) for 7 days, fasted plasma glucose appeared 
to be up to 46% lower, compared to animals that had received only the vehicle. Further work of the 
same authors went into detail about the mechanism of inhibition of maslinic acid on GP. The crystal 
structure of the complex GPb (inactivated form of the enzyme)-maslinic acid was determined, which 
revealed that the triterpene binds at the allosteric activator site, where the physiological activator  
AMP binds [58].  

The in vivo antidiabetic effect of maslinic acid has been also proved in KK-Ay mice [59], an animal 
model for obesity and Type II non-insulin-dependent diabetes. Single oral administrations of the 
triterpene at doses of 10 and 30 mg/kg significantly diminished plasma glucose at 2 and 4 h after 
administration, and at the highest dose the effect was sustained up to 7 h. Similar results were obtained 
when maslinic acid was given daily for 2 weeks at the same doses, being the reduction in both cases of 
approximately 30%, with respect to control animals. Furthermore, after the repeated oral administration 
of 10 and 30 mg/kg of the triterpene, a dose-dependent reduction of plasma insulin levels was observed, 
as well as a decrease of blood glucose concentrations in the insulin tolerance test, i.e., after the 
subcutaneous injection of insulin. The latter effect might be attributed to the normalization of plasma 
adiponectin levels, which was observed in groups treated with both 10 and 30 mg/kg doses [59].  

Another animal model commonly used in the study of diabetes is the streptozotocin (STZ)-induced 
hyperglycemic rats. Khathi et al. [60] assessed the effect of maslinic acid (80 mg/kg, p.o.) on 
postprandial blood glucose in this model, and observed that the co-administration of the triterpene with 
either sucrose or starch significantly reduced the levels of glucose in plasma up until 120 min, in a 
similar way to that of acarbose, the positive control. Further research was carried out in order to 
dilucidate the mechanism by which maslinic acid exerted the hypoglycemic effect. On one hand, 
treatment with the triterpene reversed the higher expression of SGLT1 and GLUT2 found in diabetic 
animals compared to controls. These transporters are implicated in the intestinal absorption of glucose, 
thus their downregulation, which was similar to that produced by the standard drugs insulin and 
metformin, contributed to diminishing plasma glucose. Similarly, the expression of α-glucosidase and 
α-amylase, which are carbohydrates hydrolyzing enzymes, was attenuated in the small intestine of 
STZ-induced diabetic rats [60]. 

The lowering effect of maslinic acid on blood glucose of STZ-induced diabetic rats was consistent 
with that observed in a previous study [61], in which the triterpene was administered orally at a dose of 
50 mg/kg for 28 days and the reduction of plasma glucose reached 66% at the end of the period. These 
results were obtained as part of a study about the beneficial effect of maslinic acid on cerebral 
ischemic injury, which will be discussed later. 

Although the antidiabetic effect of maslinic acid has been extensively proved, little is known about 
the underlying mechanism of action. Liu et al. [62] confirmed the inhibitory activity of the triterpene 
on GPa (IC50 of 6.9 µM) using cell cultures of the hepatic cell line HepG2. More remarkably, the 
authors also hypothesized that maslinic acid targets the insulin signaling pathway [63], and found that 
incubation with the compound resulted in increased insulin receptor β (IRβ) phosphorylation [62]. 
Downstream events of IRβ activation include Akt phosphorylation, which in turn phosphorylates and 
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inactivates glycogen synthase kinase 3β (GSK3β). GSK3β is a central enzyme in the regulation of 
glucose metabolism, since one of its targets is glycogen synthase. The lack of GSK3β activity allows 
glycogen synthase to be functional, thus resulting in glycogen build-up. Both Akt phosphorylation and 
GSK3β were increased in HepG2 cells in response to maslinic acid treatment, and the higher amount 
of glycogen content correlated with these findings. Interestingly, when maslinic acid was given orally 
to mice fed a high-fat diet, blood glucose concentration was markedly diminished at both doses  
(50 and 100 mg/kg). Moreover, the highest dose improved hyperinsulinemia and adiposity, and also 
increased hepatic glycogen [62].  

All together, the results suggest that maslinic acid is a natural antidiabetic compound, which could 
be helpful to maintain the levels of blood glucose within the physiological range and thus contribute to 
the pharmacological treatment of the disease. 

2.3. Maslinic Acid as Antioxidant and Anti-Inflammatory 

The antioxidant effect of maslinic acid was first evaluated by Montilla et al. [64] in a model of 
oxidative status induced by CCl4, which induces lipid peroxidation. Pre-treatment of the rats once daily 
for 3 days with the triterpene at doses of 50 and 100 mg/kg reduced by approximately 18% plasma 
levels of endogenous lipid peroxides, at both doses, and by 6.5% and 19%, respectively, the 
susceptibility of plasma to lipid peroxidation [64]. Similarly, the triterpene isolated from the flowers of 
Punica granatum prevented the CuSO4-induced oxidation of rabbit plasma LDL, monitored by the 
formation of dienes, by 33.8% [65]. More recently, Allouche et al. [66] conducted an exhaustive study 
about the antioxidant properties of several pentacyclic triterpenic diols and acids on LDL particles 
isolated from human plasma. Maslinic acid not only retarded the initiation and decreased the rate of 
CuSO4-induced LDL oxidation, but also showed peroxyl radical scavenging activity and a slight metal 
(copper) chelating effect. 

Further research has been done in macrophages, which play a role in the defensive system of the 
organism in response to activation by a pathogen [67]. Cells were isolated from murine peritoneum 
and activated with lipopolysaccharide (LPS), a compound that gives rise to a potent inflammatory 
response mediated by the production of cytokines, such as TNF-α, and also by reactive nitrogen and 
oxygen species, among others. In this study, the effect of the triterpene was tested on the synthesis of 
NO, superoxide and hydrogen peroxide. Although maslinic acid did not exert any direct inhibitory 
effects on the formation of the first two species, the compound did reduce the generation of hydrogen 
peroxide (IC50 of 46.3 µM), in a way that was similar to that of catalase. In addition, the release of the 
pro-inflammatory cytokines IL-6 and TNF-α was significantly reduced after treatment with maslinic 
acid at concentrations of 50 and 100 µM [67]. 

The anti-inflammatory activity of maslinic acid has been also proved in primary cortical astrocytes [68], 
which could be translated to a neuroprotective effect if further confirmed in vivo. Cells were cultured 
with the triterpene (0.1, 1, 10 µM) for 24 h before being exposed to LPS. The focus here was the TNF-α 
signaling pathway, which is in part mediated by NF-κB. As previously described, this transcription 
factor is found in the cytosol, retained by IκBα. Under stimulation, IκBα is phosphorylated and then 
the p65 subunit of the transcription factor is released, which allows its migration to the nucleus [39]. 
Maslinic acid not only suppressed the expression of TNF-α, but also hampered p65 translocation to the 
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nucleus, which was correlated with a lower phosphorylation of IκBα. Additionally, the triterpene did 
inhibit the LPS-induced formation of NO, as well as mRNA and protein levels of iNOS and COX-2 [68]. 

Although several studies support the antioxidant activity of maslinic acid in terms of preventing 
LDL oxidation, the underlying mechanism remains to be clarified. In contrast, fewer assessments have 
been performed on the anti-inflammatory potential of the triterpene, but it seems to be driven by 
alterations in the TNF-α signaling pathway resulting in altered gene expression of enzymes involved in 
the inflammatory process. 

2.4. Maslinic Acid and Cardioprotection 

To date, the antitumor, antidiabetic and antioxidant effects of maslinic acid have focused the 
greatest attention, but other promising activities have been attributed to the triterpene, which contribute 
to raise the interest for this potential nutraceutical. 

The protective effect of maslinic acid against cardiovascular diseases has been studied using 
different approaches, which include the assessment of the triterpene in controlling risk factors such as 
hypertension or hyperlipidemia.  

On one hand, experiments with aortic rings isolated from spontaneously hypertensive rats showed 
that maslinic acid exerted a concentration-dependent relaxation (IC50 of 14.1 µM), after precontraction 
with phenylephrine [69]. The effect was endothelium-dependent, since the removal of the endothelium 
attenuated the relaxation. In order to elucidate the underlying mechanism, intact (with endothelium) 
aortic rings were pre-incubated with NG-nitro-L-arginine methyl ester (L-NAME), a NO synthase 
inhibitor. This resulted in a diminished relaxation in intact aortic rings, indicating that NO was 
involved in maslinic acid-induced vasodilation.  

On the other hand, in rats fed a high-cholesterol diet for 30 days, the oral administration of maslinic 
acid (100 mg/kg) for the last two weeks resulted in a hypolipidemic effect, as evidenced by a reduction 
of more than 70% in serum triglycerides, total cholesterol and LDL-cholesterol [70]. The triterpene 
also restored the levels of the hepatic marker enzymes lactate dehydrogenase (LDH), alkaline 
phosphatase (ALP), aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Similarly, 
both the glycogen content and the morphological alterations observed in hepatocytes were reversed in 
maslinic acid-treated animals, compared to controls. 

The cardioprotective effect of maslinic acid has also been tested in isoproterenol-induced 
myocardial infarction in Wistar rats [71]. Animals that had been pre-treated with maslinic acid  
(15 mg/kg) for 7 days showed an improved serum lipid profile with significantly decreased levels of 
total cholesterol, triglycerides, LDL-cholesterol, VLDL-cholesterol and increased HDL-cholesterol. 
The activity of the cardiac marker enzymes creatine kinase (CK), ALT, AST and γ-glutamyl 
transferase (GGT) significantly decreased. Furthermore, the oxidative status of the animals was 
evaluated by measuring malondialdehyde (MDA), an indicator of lipid peroxidation, and paraoxonase 
(PON), an atheroprotective enzyme found in HDL particles [72]. MDA levels were significantly 
reduced, while the activity of PON increased remarkably in rats that had received maslinic acid, 
compared to non-treated animals [71]. 
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In summary, maslinic acid, as a bioactive compound present in a wide variety of natural edible 
sources, may contribute to the beneficial effects ascribed to the Mediterranean diet on the prevention 
of cardiovascular diseases [73]. 

2.5. Maslinic Acid and Neuroprotection 

A series of exhaustive studies have demonstrated that maslinic acid may confer neuroprotection in 
some pathological situations. In a first experiment with primary cultures of rat cortical neurons, cells 
were incubated with different concentrations of the triterpene (0.1, 1, 10 µM) and subjected to 1 h of 
oxygen-glucose deprivation followed by reoxygenation (24 h). Maslinic acid dose-dependently 
attenuated neuronal damage, which was evaluated through observation of morphological changes, 
release of lactate dehydrogenase (LDH) and neuronal viability [74], and this effect resulted from 
reduced activity of both caspase-9 and caspase-3. Upstream of caspases, high levels of NO might 
trigger apoptotic cell death [75]. This gaseous molecule is synthetized in great amounts by the 
inducible nitric oxide synthase (iNOS) in response to hypoxia [76], thus inhibition of this enzyme 
could be the mechanism underlying the protective effect of maslinic acid in oxygen-deprived cortical 
neurons. Qian et al. [74] observed that when challenged neurons were exposed to the triterpene  
(10 µM), the amount of NO in the culture medium was rescued to levels close to those found in 
normoxic conditions, which was correlated with reduced iNOS protein and mRNA levels. 

In another study from the same authors, the neuroprotective effect of maslinic acid was assessed in 
front of glutamate-induced toxicity. Glutamate is the main excitatory neurotransmitter in the central 
nervous system, but excessive stimulation is associated with neuronal damage [77]. The removal of 
glutamate from the synaptic cleft takes place through the high-affinity transporters GLAST and GLT-1 
located in astrocytes [78], thus ensuring the end of stimulation. In primary cultures of cortical neurons 
exposed to glutamate, maslinic acid did not exert any direct beneficial effects, since LDH release was 
comparable to that of vehicle-treated cells at all tested concentrations of maslinic acid (0.1, 1, 10 µM). 
However, a protective effect was indeed observed when neurons were cultured with conditioned 
medium obtained from astrocytes that had been incubated with maslinic acid (24 h) [79]. Further 
experiments evidenced that the triterpene dose-dependently increased the clearance of extracellular 
glutamate in cultures of astrocytes, and this was attributed to enhanced expression of both GLAST and 
GLT-1 after exposure to maslinic acid (10 µM). In a last assessment with co-cultures of astrocytes and 
neurons, maslinic acid significantly reversed the effects of glutamate in terms of LDH release, 
extracellular glutamate levels and neuron survival and morphology [79]. 

At this point it is convenient to recall the anti-inflammatory activity of maslinic acid in primary 
astrocytes, which has been described in a previous section [68]. All together, the results obtained from 
in vitro studies with primary cultures of neurons and astrocytes strongly support the hypothesis that 
maslinic acid exerts beneficial effects in the central nervous system, thus in vivo studies are the next 
step towards considering maslinic acid a neuroprotective agent. 

Guan et al. [61] tested whether maslinic acid prevented brain damage after a transient ischemic 
episode in animals. Since hyperglycemia is a risk factor for stroke [80], streptozotocin-induced 
diabetic rats were given the triterpene orally at doses of 5 and 50 mg/kg for 14 days. Then, a transient 
middle cerebral artery occlusion was performed and the consequences of the infarction were evaluated. 
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At both low and high doses, the triterpene decreased the infarct size in a range between 63.7% and 
75.4%, depending on the dose and the time of reperfusion after the intervention (24 or 72 h). 
Moreover, maslinic acid treatment compensated the neurological deficits induced by the infarction, as 
showed by higher neurological scores recorded from animals that had received the triterpene [61]. 

To conclude, the recent interest for maslinic acid as a neuroprotective agent is supported not only 
by exhaustive in vitro studies on its mechanism of action but also by an in vivo assessment in infarcted 
diabetic rats. If proved in other species and pathological situations, the triterpene may be considered an 
adjuvant to lower the risk of occurrence of certain cerebral incidents. 

2.6. Maslinic Acid as Antiparasitic 

Historically, one of the first remarkable reports that focused the attention on the biological activities 
of maslinic acid was published by Xu et al. [17] and described the anti-HIV properties of several 
triterpenic acids isolated from the methanolic extract of Geum japonicum. Although the study did not 
provide mechanistic details of the inhibitory effect on HIV-1 protease, it is clearly stated that maslinic 
acid was the most potent compound [17]. More recently, the antibacterial activity of this triterpene was 
tested against different bacteria after its isolation from the methanolic extract of the leaves of 
Symplocos lancifolia. The lowest minimal inhibitory concentrations (MIC) of maslinic acid were found 
for Enterococcus faecalis (33.8 µM) and Staphylococcus aureus (135.4 µM) [81]. Although neither the 
antiviral nor the antibacterial activities of maslinic acid have been further studied exhaustively, the 
protective effect of the triterpene against parasitic infections has arisen much interest in recent years. 

De Pablos et al. [82] observed that maslinic acid blocked the entrance of Toxoplasma gondii into 
Vero cells in a dose-dependent manner, with IC50 of 8 µM at 48 h of treatment. The underlying 
mechanism seemed to be the inhibitory activity of the triterpene against proteases secreted by the 
parasite, which are essential for the proteolytic processing of other proteins that participate in the 
invasion of host cells. Concretely, the gliding motility was suppressed by up to 100% by maslinic acid 
(50 µM). Moreover, the triterpene induced morphological alterations in the endomembrane systems of 
the parasite, such as a greater amount of apparently empty spaces that authors attribute to a possible 
collapse of the Golgi apparatus. Disruptions in external and nuclear membranes were also observed 
and attributed to a general blockage of protein turnover, which would hinder the functionality of those 
proteins necessary for the structural maintenance of the membranes. The same group evidenced the 
anti-parasitic effect of maslinic acid in Gallus domesticus chicks infected with Eimeria tenella [83]. 
The animals were fed a maslinic-acid supplemented diet (90 ppm) for 21 days, and this treatment 
resulted in a reduced release of oocysts in the faeces by 80.1%, being more effective than the positive 
control with sodium salinomycin (60 ppm). Histological evaluation of the caeca revealed that the 
characteristic lesions of this coccidiosis were less evident in the animals that had received maslinic 
acid. Furthermore, the body weight gain was significantly higher in treated animals compared not only 
to the positive control but also to the uninfected group, indicating that besides the anticoccidial 
activity, the triterpene enhanced weight gain [83]. 

Maslinic acid has also been found effective against different species of the genus Plasmodium, 
responsible of causing malaria. In vitro experiments using erythrocytes infected with Plasmodium 
falciparum demonstrated that maslinic acid (0.1−200 µM) inhibited the growth of the parasite in a 
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dose-dependent manner [84]. At a concentration of 30 µM (close to the IC50), the triterpene reduced 
parasitaemia to 4% (compared to 8% in untreated red blood cells) and slowed down the cell cycle, 
since only the infective (schizonts) and immature (new rings) forms, but not the mature forms 
(trophozoites), were observed in the erythrocytes. However, the removal of maslinic acid from the 
medium permitted the infection to resume, meaning that the triterpene acts as a parasitostatic agent [84]. 
This effect was further confirmed in vivo with ICR mice infected with the lethal strain of Plasmodium 
yoelii [85]. The intraperitoneal injection of 40 mg/kg for 4 days increased the survival rate of the 
animals to 80%, compared to 20% found in animals without any experimental intervention, and this 
was associated with an arrest of the maturation of the parasite in the erythrocytes. In addition, the 
animals that survived the primary infection were rechallenged with an identical second infection  
40 days later. Parasitaemia was monitored for the following 30 days but no parasites were detected, 
indicating that mice were completely protected against the parasite [85]. Further research on the 
mechanism of action underlying the antimalarial activity of maslinic acid showed that the compound 
hampers the maturation of the parasite inside the erythrocytes by inhibiting different proteins [86]. 

To sum up, several lines of evidence point to maslinic acid as antiparasitic and/or parasitostatic 
agent. Further research is needed in order to confirm its efficacy in target species, which would allow 
the use of maslinic acid either alone or in combination with other therapeutic strategies for the 
treatment of parasitoses. 

2.7. Maslinic Acid and Growth 

The growth-stimulating activity of maslinic acid has been studied in rainbow trouts (Oncorhynchus 
mykiss) [87,88], in order to determine whether it can be used as a feed additive in pond aquaculture to 
increase production rates. In both reports, the animals were fed a maslinic acid-enriched diet  
(1, 5, 25 and 250 mg/kg diet) twice daily for 225 days. At the end of the period, trouts that had 
received the highest dose of the triterpene reached a body weight that was almost 30% higher 
compared to the group fed the standard diet. While the first study focused on the consequences of 
maslinic acid consumption on the liver, the second assessed the effects on white muscle. Both of them 
found similar results in all the variables analyzed. The weight of the liver and the white muscle from 
animals that ingested the highest amount of the triterpene was 52.1% and 39.8% higher, respectively, 
compared to the corresponding control groups. Protein, DNA and RNA levels were evaluated in order 
to get some insight into the nature of the increased weight. Total DNA, which is indicative of 
hyperplasia, was remarkably higher in liver and white muscle, as well as RNA content. These findings 
were correlated with a stimulation of the protein-synthesis efficiency in both cases. Observation of the 
hepatic structure under the light and electron microscopes revealed a larger degree of cell packaging in 
the parenchyma of livers from animals that were fed the diet containing 250 mg/kg of maslinic acid, 
together with a major proportion of rough endoplasmic reticulum, greater number of mitochondria and 
considerable quantities of peripheral glycogen granules [87]. 

The latest contribution in this field aimed at identifying the differences in liver protein profile 
between fish fed a maslinic acid-supplemented diet and fish fed a standard diet [89]. The experimental 
design was similar to that followed in the above-mentioned studies, except for the animal species, 
which was the gilthead sea bream (Sparus aurata). The diet contained 100 mg/kg of the triterpene and 
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was supplied over 210 days. The proteomic analysis of the liver revealed that the expression of 19 
proteins was altered, being either up- or down-regulated. These included proteins involved in a wide 
range of metabolic pathways, such as glucose, sterol and amino acid metabolism, protein synthesis and 
folding, oxidative stress, detoxification and xenobiotic metabolism, immune system and cell 
proliferation [89]. Beyond the effects of the triterpene on the liver protein profile, this study provides 
evidence of the validity of the method to characterize the differential expression of liver proteins after 
a nutritional intervention.  

In conclusion, maslinic acid appears to be a promising compound to stimulate growth by means of 
affecting protein synthesis. It remains to be investigated whether this effect also occurs in other 
species, being those subjected to intensive animal farming of particular interest. If proved, maslinic 
acid may be considered a natural growth promoter and thus constitute another alternative to the use of 
hormones or antibiotics to increase production rates. 

2.8. Other Biological Activities 

To date, the previously described health-enhancing properties of maslinic acid have focused the 
major attention, as evidenced by the fact that each of them has been addressed by several studies. 
However, maslinic acid has also been attributed a variety of other biological effects, which include the 
inhibition of elastase [90] and tyrosinase [91] in vitro, the suppression of osteoclastogenesis in cell 
cultures and the prevention of ovariectomy-induced bone loss in mice [92], antinociceptive and 
antiallodynic effects in different pain models in mice [93], and the ability to alter the structural 
properties of biological membranes [94]. 

3. Conclusion and Future Prospects 

Maslinic acid is a natural pentacyclic triterpene present in a variety of plant species, many of them 
being common ingredients of plant-based dietary patterns, such as the Mediterranean diet. In recent 
years, a number of studies assessing its biological effects have raised interest in this compound. These 
include not only health-enhancing properties, such as cardioprotective or neuroprotective, but also a 
therapeutic potential that may help in the treatment of several disorders, such as cancer, diabetes or 
parasitoses. However, the amount of maslinic acid in natural edible sources is low, and data about its 
pharmacokinetics, which we are currently assessing in our laboratory, show that the triterpene has a 
poor oral bioavailability. From this it would appear that dietary maslinic acid is not sufficient to reach 
effective concentrations in target organs, thus the compound should be supplied in pure form, i.e. as a 
nutraceutical. Nevertheless, maslinic acid is in the spotlight of research on this field. Further studies 
will surely provide new mechanisms of action to explain the effects already described or even widen 
the spectrum of biological activities of this pentacyclic triterpene. 
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