Supplementary Material

Figure S1.¹H-NMR spectrum for Sclerotionigrin A (1) at 500 MHz in DMSO- d_6 .

Figure S2. DQF-COSY spectrum for Sclerotionigrin A (1) in DMSO-*d*₆.

Figure S3. $_{ed}$ HSQC spectrum for Sclerotionigrin A (1) in DMSO- d_6

Figure S4. HMBC spectrum for Sclerotionigrin A (1) in DMSO- d_6 .

Figure S5. NOESY spectrum for Sclerotionigrin A (1) in DMSO- d_6

Figure S7. DQF-COSY spectrum for sclerotionigrin B (2) in DMSO-*d*₆.

Figure S8. edHSQC spectrum for Sclerotionigrin B (2) in DMSO-d₆.

Figure S9. HMBC spectrum for Sclerotionigrin B (2) in DMSO- d_6 .

Figure S10. NOESY spectrum for Sclerotionigrin B (2) in DMSO- d_6 .

No.	δ _H (integral, mult., J [Hz])†	¹³ C-chemical shift [ppm]†	HMBC correlations	NOESY connectivities
1	-	173.6	-	-
2	7.94 (1H, s)	-	3, 4, 9	3
3	3.25 (1H, m)	53.0	-	2, 10, 10', 11, 12, 26, 30
4	2.80 (1H, dd, 5.8, 2.6)	47.2	1, 3, 5, 6, 9, 10, 23	5, 10, 10', 11, 26, 30
5	2.20 (1H, m)	33.7	1	4, 8, 11
6	-	139.1	-	-
7	5.27 (1H, m)	125.8	-	8, 12, 13
8	2.63 (1H, m)	47.0	1	7, 5, 13, 14, 22
9	-	65.7	-	-
10	2.40 (1H, dd, 13.2, 7.3)	43.1	1, 3, 4, 25, 26, 30	3, 4, 10', 26, 30
10'	2.60 (1H, dd, 13.2, 4.9)	43.1	1, 3, 4, 25, 26, 30	3, 4, 10, 26, 30
11	0.77 (3H, d, 7.2)	12.6	4, 5, 6	3, 4, 5
12	1.66 (3H, s)	19.3	5,7	3, 7, 13
13	6.18 (1H, ddd, 15.2, 9.8, 1.7)	129.3	15	7, 8, 12, 14, 22
14	5.11 (1H, ddd, 14.6, 10.3, 3.2)	131.6	8	8, 13, 15'
15	1.67 (1H, m)	39.7	16	15'
15'	1.99 (1H, m)	39.7	16	14, 15, 16, 17 24
16	1.38 (1H, m)	31.9	-	15'
17	1.23 (2H, m)	28.5	-	15', 18
18	1.13 (2H, m)	23.1	-	17
19	1.41 (1H, m)	25.2	-	19'
19'	1.56 (1H, m)	25.2	-	19
20	2.02 (1H, m)	31.1	-	20', 21, 22
20'	2.28 (1H, m)	31.1	-	20
21	6.54 (1H, ddd, 15.4, 10.2, 5.3)	145.7	20, 23	20
22	6.86 (1H, d, 15.5)	127.3	20, 23	8, 13, 20
23	-	196.9	-	-
24	0.85 (3H, d, 6.7)	20.8	15, 16	15'
25	-	136.7	-	-
26‡	7.10 (1H, d, 7.5)	129.5	10, 28, 30	3, 4, 10, 10'
27‡	7.25 (1H, dd, 7.4, 1.0)	127.9	25, 29	
28	7.16 (1H, d, 7.5)	126.0	26, 30	
29‡	7.25 (1H, dd, 7.4, 1.0)	127.9	25, 27	
30‡	7.10 (1H, d, 7.5)	129.5	10, 26, 28	3, 4, 10, 10'

Table S1. NMR data for proxiphomin (3).

¹H-NMR data were obtained at 500 MHz in DMSO- d_6 and ¹³C data were obtained at 125 MHz in DMSO- d_6 . [‡]It was not possible to distinguish between 26 and 30 as well as 27 and 29.

Figure S12. ¹H-NMR spectrum for proxiphomin (3) at 500 MHz in DMSO- d_6 .

Figure S13. DQF-COSY spectrum for proxiphomin (3) in DMSO- d_6 .

Figure S14. $_{ed}$ HSQC spectrum for proxiphomin (3) in DMSO- d_6 .

Figure S15. HMBC spectrum for proxiphomin (3) in DMSO- d_6

Figure S16. NOESY spectrum for proxiphomin (3) in DMSO- d_6 .

Number	Age	Binet	IGHV	FISH
1	55	А	unmutated	13q-
2	64	А	mutated	13q-
3	48	А	mutated	13q-, Tris 18
4	53	А	mutated	13q-

Table S2. Patient data, including age, clinical stage, IGHV mutational status and fluorescence in situ hybridization (FISH) results.

Mean values \pm SEM of four CLL samples and three healthy donor samples are depicted.

Figure S17. Effects of 1–3 on CLL cell viability. CLL cells were treated for 24 h with increasing concentrations of 1–3 and cell viability was analyzed by CellTiter-Glo® assay. Relative cell viability is compared to DMSO control (0.1%).

Figure S18. Effects of 1–3 on healthy B-cells cell viability. Healthy B-cells were treated for 24 h with increasing concentrations of 1–3 and cell viability was analyzed by CellTiter-Glo® assay. Relative cell viability is compared to DMSO control (0.1%).

