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Abstract: The volatile fraction of Ophrys sphegodes Mill. subsp. sphegodes, Ophrys 
bertolonii subsp. benacensis (Reisigl) O. Danesch, E. Danasch & Ehrend. and Neotinea 
tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Case, three orchid species with 

different pollinator attraction strategies, sampled in vivo and in situ, were evaluated  

by headspace solid phase microextraction coupled with gas-chromatography and mass 

spectrometry. The results were compared with the volatile compounds emitted by flowering 

plant samples picked from the same populations of orchid species. Hydrocarbons, aldehydes, 

alcohols and terpenes were the major constituents of “in vivo” orchid scents and some 

distinctive differences in volatile metabolite composition were observed between Ophrys 

and Neotinea species. Moreover, the odour bouquets of the picked flowering plant samples 

were different from the in vivo ones and in particular different proportions of the various 

terpenes and an increase of α-pinene were observed. In conclusion HS/SPME GCMS 

proved to be a suitable technique for analyzing and distinguishing the volatile fingerprint 

of different orchid species, sampled in vivo and in situ in a non-disruptive way, with 

potentially great advantages for ecophysiological studies of rare and endangered species. 
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1. Introduction 

Investigation into plant and flower scents represents an important field of modern research directed 

at special biological recognition theories. The scent of a flower is often a complex blend of secondary 

volatile metabolites, and together with colour and shape is considered to be the main signal attracting 

pollinators [1–4], which in turn affect the reproductive performance of plants, their relationships with 

the environment and, therefore, their conservation (especially for rare and endangered species).  

In particular, the variety of shapes, colours and scents present in orchids is seldom found in other 

plant families. These characteristics contribute to the unique strategies used by orchids to attract 

pollinators. Many orchid species provide nectar, but other species are deceptive, so they attract 

pollinators in different ways, the most common strategies being mimicry of nectariferous flowers (e.g., 

Orchis, Neotinea, Anacamptis), sexual deception (e.g., Ophrys) and provision of shelter (e.g., 

Serapias) [5].  

In deceptive species attractiveness is very important to ensure reproductive success. For instance, 

orchid species of the genera Ophrys and Neotinea are known to produce complex bouquets of volatiles 

typically consisting of more than 100 chemical compounds [6–8]. The species belonging to these 

genera are all deceptive, but Ophrys species use a sexual deception strategy, while Neotinea is a  

food-deceptive genus [5]. The Ophrys species attract and deceive their pollinators through an elaborate 

sexual mimicry that involves visual cues and volatile semiochemicals that mimic the pheromone of 

female insects. Food-deceptive orchids mimic rewarding species, some with specific models  

(e.g., Disa) others with flowers that have the typical characteristics of rewarding plants (i.e., nectar 

guides, spur, etc.) (e.g., Orchis, Neotinea, Anacamptis) [9]. Moreover, Ophrys species have evolved a 

high degree of pollinator specificity, while Neotinea species are more generalist. 

Despite the importance of volatile compounds for the ecophysiological aspects of plant life, in the 

literature there are only a few publications on the characterization of orchids’ volatile profiles [10,11]. 

Flower, as well as whole plant, scents are conventionally analyzed by different methods, usually  

based on solvent extraction, steam distillation, or supercritical fluid extraction, that use destructive 

approaches. Moreover, the methods so far applied require that flowers or plants are collected, causing 

stress and mechanical damage to the plants thus altering their volatile profiles. Following these 

considerations soft extraction methods are preferred and HS-SPME was chosen to analyze the orchid 

samples. This technique has been developed for the fractionation of volatile organic compounds in 

several matrices, but can be also applied for the direct sampling of flower scents [10,12,13].  

The method is rapid, solvent-free and inexpensive and reduces sampling stress; moreover it may be 

easily transferred into the field in order to investigate real in vivo volatile emission. 

The aim of this study was to characterize, for the first time, the volatile organic compounds emitted, 
in vivo, by Ophrys sphegodes Mill. subsp. sphegodes, Ophrys bertolonii subsp. benacensis (Reisigl)  

P. Delforge and Neotinea tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Case, three Italian 

populations of orchid species with different attraction strategies, sampling them in situ, in a  
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non-disruptive way. Moreover, in order to define the most reliable sampling approach for improving 

knowledge regarding orchids’ ecophysiological aspects, a comparison was made with the volatile 

profile obtained from flowering plant samples picked from the same orchid populations.  

2. Results and Discussion 

2.1. Analysis of “in Vivo” VOCs 

The volatile compounds emitted by O. sphegodes subsp. sphegodes, O. bertolonii subsp. benacensis 

and N. tridentata species are listed in Table 1. We identified 67, 93 and 77 compounds, respectively. 

These VOCs belonged to the major chemical classes, such as hydrocarbons, aldehydes, ketones, 

alcohols, furans, phenols, free fatty acids and terpenes. As reported in Table 1, the aromatic profiles of 

the three orchid species showed some distinctive differences. 

The difference among VOCs extracted and detected from picked samples respect to “in situ” arisen 

from two variables. Firstly by sampling “in situ” we observe a general dilution factor of monitored 

headspace respect the vials (20 mL) because the special equipment is specially designed to promote air 

circulation to the contained plant during the SPME extraction. The second reason can take place to the 

cut operations made in order to collect the flowers. Some terpenes are contained into special plant 

organ, that damaged, are released in a headspaces vial. 

The main components of O. sphegodes subsp. sphegodes bouquet were represented by terpenes, 

free fatty acids and phenols, followed by alcohols, aldehydes and hydrocarbons in minor amounts.  

In particular, as reported in Table 1 and Figure 1, the most representative compounds detected were  

d-limonene (22.13%), formic acid (11.70%), α-zingibirene (9.98%), phenol (9.65%), α−pinene (4.65%) 

and undecane (3.56%). Among terpenes, in minor amounts, the presence of β−pinene (2.19%)  

and cyclosativene (2.47%) was revealed. Terpenes, ketones, and aldehydes, were the major  

constituents of O. bertolonii subsp. benacensis aroma, followed by hydrocarbons and alcohols. In 

particular 3,5-octadien-2-one (9.85%), caryophillene (6.73%), dodecanal (4.90%), 4-methyltetradecane 

(4.69%), decanal (3.48%) and nonanal (3%) were the main compounds (Table 1 and Figure 1).  

O. sphegodes subsp. sphegodes and O. bertolonii subsp. benacensis are sexually deceptive orchids 

and numerous behavioral tests have shown that the Ophrys-pollinator relationship is highly specific: 

each Ophrys species is pollinated by males of usually only one or a few pollinator species [14–17].  

In particular the pollinators of O. sphegodes subsp. sphegodes are small bees of the genus Andrena, 

especially A. nigroaena and A. limata, while O. bertolonii subsp. benacensis O. bertolonii subsp. 

benacensis is characterized by higher pollinator specificity with the main pollinator being the 

hymenopterous Chalicodoma parietina [18].  
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Table 1. Identification of volatile organic compounds by HS-SPME-GCMS from “in vivo” orchids.  

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 

hexane 1.50 0.96 0.01 ND - ND - 7.144 0.03 

octane 2.21 0.39 0.14 0.16 0.13 0.08 0.08 0.14 0.00 

butane 2.26 ND - ND - 0.17 0.17 1.09 0.15 

1-octene 2.53 ND - ND - 0.17 0.17 0.22 0.00 

nonane 3.25 ND - ND - 0.22 0.22 1.36 0.32 

undecane 10.25 0.73 0.65 3.566 0.00 ND - 0.76 0.01 

1-tridecene 11.85 0.07 0.00 ND - 0.11 0.11 ND - 

dodecane 14.88 0.13 0.02 ND - 1.39 1.00 ND - 

tridecane 18.72 ND - 0.11 0.00 ND - 0.79 0.03 

4-methyl-tetradecane 20.55 ND - ND - 4.694 0.53 1.25 0.11 

pentadecane 21.43 0.68 1.68 ND - 1.20 0.57 0.86 0.15 

nonadecane 22.47 0.73 0.00 0.71 0.00 0.21 0.19 ND - 

heptadecane 25.98 0.25 0.01 ND - 0.73 0.57 ND - 

2-tridecane 29.86 0.59 0.00 ND - 0.43 0.26 0.50 0.00 

Total  4.53  4.54  9.4  14.11  

Aldehydes          

pentanal 4.78 ND - ND - 0.15 0.16 0.11 0.01 

esanal 9.02 1.48 1.97 0.42 0.34 0.64 0.44 0.33 0.03 

3-hexenal 12.22 0.12 0.01 ND - 0.50 0.36 0.16 0.10 

heptanal 13.98 0.10 0.01 ND - 0.65 0.81 0.15 0.01 

3-methyl-2-butenal 14.51 0.48 0.27 ND - 0.28 0.08 ND - 

2-hexenal 15.27 1.25 0.00 0.42 0.02 0.67 0.44 1.39 0.89 

octanal 18.01 ND - ND - 1.83 0.49 0.29 0.00 

2-heptanal 18.89 ND - ND - 0.34 0.31 ND - 

nonanal 21.02 0.72 1.60 1.68 0.79 3.006 0.93 7.922 1.11 

2-octenal 21.74 ND - ND - 0.16 1.90 ND - 
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Table 1. Cont. 

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 
decanal 23.63 0.72 0.64 0.86 0.02 3.485 0.07 7.423 0.78 

2-nonanal 24.13 ND - 1.08 0.72 0.58 0.41 ND - 

undecanal 25.86 0.05 0.30 ND - 0.29 0.67 0.64 0.03 

benzene acetaldehyde 26.43 ND - ND - 0.05 0.04 0.06 0.01 

dodecanal 28.00 0.40 1.23 0.46 0.30 4.903 0.79 ND - 

2-ethylbenzaldehyde 28.33 0.26 0.21 ND - 0.11 0.00 ND - 

Total  5.59  4.92  17.63  18.47  

Esters          

ethyl acetate 3.01 0.96 0.04 0.09 0.00 ND - 0.69 0.01 

2-methylbutanoic acid methyl ester 5.85 ND - ND - ND - 12.362 0.21 

3-hexen-1-ol-acetate 19.00 0.48 0.12 1.64 0.24 1.69 0.21 0.34 0.02 

geranyl acetate 30.64 0.33 0.00 ND - 0.11 0.07 0.55 0.06 

Total  1.77  1.73  1.8  13.93  

Ketones          

3-penten-2-one 5.11 ND - ND - 0.54 0.54 2.04 1.12 

2-nonen-4-one 15.93 1.17 0.10 ND - 2.32 1.88 1.84 0.67 

2-methyl-6-heptanone 16.21 0.70 0.00 ND - 0.12 0.08 ND - 

3-octanone 16.78 ND - 0.18 0.18 0.26 0.15 0.12 0.00 

acetoin 17.6 2.42 1.58 ND - 0.52 0.67 ND - 

2-octanone 17.86 0.32 0.09 0.22 0.24 0.81 0.49 0.20 0.03 

1-octen-3-one 18.39 0.37 0.00 ND - 0.64 0.47 ND - 

pentadecanone 23.83 ND - 0.33 0.00 1.26 1.78 0.06 0.00 

3.5-octadien-2-one 23.92 ND - 0.3 0.12 9.851 1.50 0.71 0.11 

pantoic lactone 24.39 ND - ND - 0.56 0.31 ND - 

2-pentadecanone 32.8 ND - ND - 0.44 0.62 0.25 0.15 
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Table 1. Cont. 

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 
Total  4.97  1.03  17.3  5.22  

Phenols          

anisole 19.46 0.11 0.05 ND - 0.39 0.36 0.16 0.01 

4-methylanisole 22.04 ND - 1.01 0.60 0.09 0.07 ND - 

phenol 31.61 ND - 9.654 0.44 0.39 0.41 ND - 

4-methylphenol 33.29 0.07 0.00 0.77 0.04 3.53 2.77 ND - 

Total  0.18  11.43  4.4  0.16  

Alcohols          

ethanol 3.81 0.11 0.00 ND - 0.11 0.16 ND - 

1-nonanol 4.03 0.21 0.00 ND - 0.26 0.28 1.16 0.19 

2-methyl-3-buten-2-ol 7.42 1.32 0.05 ND - ND 0.28 1.46 0.89 

2-ethyl-1-hexanol 8.43 0.36 0.10 ND - ND - 0.09 0.00 

isobutanol 10.36 ND - ND - 0.09 0.05 ND - 

3-pentanol 11.17 ND - 0.48 0.00 0.06 0.03 ND - 

1-penten-1-ol 12.30 ND - 0.02 0.00 ND - 0.27 0.03 

1-butanol 12.75 0.07 0.00 ND - ND - 0.09 0.00 

1-penten-3-olo 13.66 0.32 0.00 ND - 0.36 0.31 0.36 0.11 

isoamylalcohol 15.47 0.10 0.01 0.04 0.00 ND - ND - 

1-pentanol 17.00 ND - ND - 0.52 0.65 0.03 0.00 

heptanol 19.20 0.22 0.17 1.64 0.28 ND - 0.14 0.02 

3-hexen-1-ol 20.82 0.35 0.00 ND - 2.19 0.44 ND - 

2-nonanol 20.89 0.72 0.60 0.90 0.87 2.19 1.93 ND - 

1-octen-3-ol  22.55 2.94 0.89 ND - 0.57 0.26 0.59 0.56 

2-decanol 26.08 ND - 0.38 0.00 ND - ND - 

1-nonanol 27.04 ND - ND - 0.13 0.18 1.29 0.77 

2-undecanol 28.27 0.26 0.21 0.61 0.48 0.03 0.33 0.48 0.21 
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Table 1. Cont. 

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 
3-decen-1-ol 29.59 ND - 1.49 0.00 ND - ND  - 

1-heptadecanol 30.46 ND - ND - 0.42 0.23 0.31 0.08 

1-dodecanol 32.23 ND - 0.49 0.04 0.14 0.13 ND - 

isothymol 34.70 ND - 0.19 0.00 ND - ND - 

1.4-benzenediol 34.86 1.08 0.77 0.11 0.00 0.69 0.18 ND - 

Total  8.05  6.35  7.76  6.27  

Furans          

2-methylfuran 3.19 ND - 0.09 0.06 ND - ND - 

4-ethylfuran 4.21 0.21 0.00 ND - 0.04 0.06 0.24 0.03 

2-butylfuran 11.62 0.21 0.00 ND - ND - 0.13 0.01 

Total  0.42  0.09  0.04  0.37  

Terpenes          

α-pinene 6.03 ND - 4.655 0.72 1.05 0.00 0.34 0.11 

thujene 6.38 0.23 1.01 0.35 0.00 ND - 0.44 0.03 

β-pinene 9.61 0.08 0.00 2.19 0.00 0.17 0.25 4.595 1.01 

sabinene 10.55 ND - 1.31 0.00 ND - ND - 

δ.3.carene 12.00 0.22 0.00 0.81 0.51 0.09 0.07 0.28 0.01 

β-myrcene 13.33 ND - 1.22 0.30 ND - ND - 

d-limonene 14.69 0.04 0.27 22.131 1.68 0.15 0.31 ND - 

sabinene 14.74 0.04 0.02 ND - ND - 0.09 0.00 

terpene 16.33 0.92 0.00 ND - ND - 0.47 0.03 

γ-terpinene 16.45 ND - 1.09 0.97 ND - 0.31 0.90 

o-cymene 16.91 ND - 1.41 0.24 0.05 0.01 0.10 0.09 

p-cymene 17.36 0.33 0.06 0.23 0.18 0.20 0.29 0.32 0.07 

α−terpinolene 17.71 0.76 1.58 0.12 0.14 ND - 0.57 0.08 

α-cyclocitral 18.56 ND - 0.62 0.00 1.82 2.50 ND - 
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Table 1. Cont. 

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 
sequiterpene 21.65 ND - 0.42 0.16 ND - ND - 

isopatchoulane 22.66 ND - 0.98 0.12 0.19 0.00 1.03 0.66 

trans-linalool oxide 22.88 0.05 0.00 0.34 0.00 0.94 0.66 0.06 0.18 

cyclosativene 23.11 0.30 0.00 2.47 1.75 0.28 0.21 ND - 

copaene 23.40 ND - ND - 1.11 0.46 0.81 0.00 

isolongifolene 23.88 ND - 1.46 0.12 ND - ND - 

4-thujanol 24.57 ND - ND - 1.09 1.14 ND - 

linalool 24.71 ND - 0.59 0.60 0.16 0.23 ND - 

α-zingibirene 24.93 0.07 0.01 9.983 7.15 0.26 0.11 0.26 0.90 

sequiterpene 25.09 ND - 0.90 0.31 ND - 0.46 0.12 

α-bergamottene 25.49 0.22 0.00 ND - 0.55 0.00 ND - 

caryophillene 25.60 ND - ND - 6.733 1.84 0.69 0.47 

4-terpineol 25.79 1.19 0.41 2.06 0.43 1.28 1.18 0.65 0.01 

menthol 26.53 0.20 2.54 2.02 1.06 0.90 1.14 0.14 0.03 

verbenone 27.66 0.24 0.00 0.55 0.45 0.60 0.47 0.25 0.01 

eucarvone 27.77 0.20 0.01 1.44 1.27 0.19 0.19 ND - 

naphtalene 28.91 0.14 0.00 1.12 1.04 0.20 0.09 0.50 0.04 

sesquiphellandrene 29.09 ND - ND - 2.44 0.38 ND - 

estragol 30.07 0.28 0.35 ND - 0.37 0.89 0.35 0.11 

piperitone oxide 31.39 ND - 0.63 0.00 0.77 0.41 ND - 

ascaridole 31.78 ND - 0.37 0.07 ND - ND - 

α-santolene 33.74 ND - 0.47 0.00 ND - ND - 

Total  5.51  61.92  21.58  12.72  

Free fatty acids         

acetic acid 22.26 0.62 0.00 0.31 0.35 0.71 0.00 1.33 0.02 

formic acid 23.44 0.69 0.08 11.72 0.18 ND - ND - 
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Table 1. Cont. 

  
Control O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata 

  

Compounds RT a Mean (n = 3) b SD c Mean (n = 3) d SD c Mean (n = 3) d SD c Mean (n = 3) d SD c 
pivalic acid 25.21 ND - ND - 0.3 0.09 ND - 

hexanoic acid 30.34 ND - 0.32 0.21 0.42 0.00 0.15 0.00 

heptanoic acid 31.99 0.21 1.17 ND - 0.45 0.29 0.35 0.11 

octanoic acid 33.08 ND - 0.03 0.00 0.19 1.01 0.67 0.03 

nonanoic acid 34.14 0.14 0.49 0.39 0.00 1.33 0.74 0.25 0.12 

decanoic acid 35.41 ND - ND - 0.84 0.00 0.91 0.00 

benzoic acid 37.74 0.12 0.41 0.49 0.49 0.42 0.13 0.40 0.02 

Total  1.77  13.25  4.66  4.05  

Miscellaneous          

acetonitrile 5.42 8.04 0.32 0.42 0.36 11.95 0.12 17.26 0.98 

dimethyl sulfone 31.18 0.45 0.00 1.24 0.18 0.30 0.21 0.06 0.00 

Total  8.49  1.65  12.25  17.32  
a Retention time; b Normalized amount of volatile compounds (percentage) (peak of volatile compound/total peak area of all volatile compounds) of control samples (n = 3);  
c Standard deviation (±); d Normalized amount of volatile compounds (percentage) (peak of volatile compound/total peak area of all volatile compounds) of O. sphegodes 
subsp. sphegodes, O. bertolonii subsp. benacensis and N. tridentata living plants (n = 3); ND: not detected; The most representative compounds for all orchid species were 

labeled with a number. 
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Figure 1. Volatile fingerprint of O. sphegodes subsp. sphegodes (A), O. bertolonii subsp. 

benacensis (B) and N. tridentata (C) “in vivo” plant (the most representative compound 

peaks were labeled with numbers).  
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Figure 1. Cont. 

 

Ophrys flowers usually produce complex bouquets of volatiles, but presumably not all components 

are important for the attraction of male pollinators [6]. The literature reports that only some 

hydrocarbons, in particular very long-chain alkanes and alkenes and terpenes act as chemical mimicry 

of the sex pheromone of the virgin female pollinators. In agreement with our results, other authors 

confirmed terpenes and hydrocarbons together with alcohols and aldehydes as major constituents of 

orchid volatile profiles [10,11,19,20] and among these chemical classes a high emission of nonanal 

and caryophyllene by orchid flowers was previously reported [19,21,22]. In particular, the chemical 

composition of orchids pollinated by bees (e.g., Ophrys) revealed an abundance of terpenes  

(mono- and sesquiterpenes) [23].  

Not all hydrocarbons, aldehydes and alcohols make an important contribution to the aroma of the 

plants. Some of them are abundant in cuticular waxes and are said to have the primary function of 

protecting the plant from dehydration. Other compounds seem to play an important role in  

plant-herbivore interaction and acting as a solvent for the male-attracting volatiles [24].  

The aromatic profile of N. tridentata was characterized by a high concentration of aldehydes, 

hydrocarbons, esters and terpenes and in particular, as reported in Table 1 and Figure 1,  

2-methylbutanoic acid methyl ester (12.36%), nonanal (7.92%), decanal (7.42%), hexane (7.14%) and 

β-pinene (4.59%).  

The genus Neotinea includes food-deceptive species and, in contrast with the Ophrys genus, is thought 

to attract and deceive mostly naive pollinators by generally mimicking nectariferous plants [5].  

N. tridentata is quite generalist in terms of pollinators which are different species of hymenoptera, in 

particular solitary bees (e.g., Osmia bicolor), Apis mellifera and coleoptera (e.g., Cleridae) [25].  
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In this genus colour is generally regarded as a primary cue to attract insects to food-deceptive flowers 

but in this study several odour compounds were found in the floral scents of N. tridentata [5].  

As reported in Table 1 most of the VOCs were common to O. sphegodes subsp. sphegodes and  

O. bertolonii subsp. benacensis flowers but different proportions of the various compounds were 

observed between Oprhys and Neotinea species. In particular, a minor content of terpenes was 

identified in N. tridentata bouquet and this difference can be related to the different pollinator 

attraction strategies. However, there is no confirmation that floral odour is not of importance in 

pollinator attraction in food-deceptive species, indeed it was observed that in Anacamptis morio, a 

food-deceptive species, scent emission elicit a response in bee antennae [26]. 

2.2. Analysis of Picked Flowering Plant VOCs 

The volatile profile of O. sphegodes subsp. sphegodes, O. bertolonii subsp. benacensis and  

N. tridentata picked flowering plant samples consists of 56, 53 and 63 compounds, respectively (Table 2). 

As observed in “in vivo” orchids the aromatic profiles of the three picked flowering plant samples 

showed some distinctive differences in volatile fingerprint and the most representative compounds of 

all species were reported in Table 2 and Figure 2.  

Comparing the VOC profiles of “in vivo” and picked flowering plant samples of the same orchid 

species we showed some differences in secondary metabolite composition. In particular we observed 

an increased content of phenols and alcohols in O. bertolonii subsp. benacensis and N. tridentata 

picked flowering orchid samples compared to living plants. Among these chemical classes we 

observed a large amount of 4-methylphenol in both orchid species (13,25% and 11,28% respectively) 

and of isoamylalcohol (13.03%) and 3-hexen-1-ol (8,52%) respectively in O. bertolonii subsp. 

benacensis and N. tridentata fingerprint. 
An increase in hydrocarbons was also revealed in O. sphegodes subsp. sphegodes and  

O. bertolonii subsp. benacensis flowering plant samples and hexane, butane and nonane were 

considered the most representative compounds. Finally, we observed that flowering plant aromas 

showed a high content of terpenes. In particular in this case the most representative compounds  

were α-pinene (47.95%), thujene (3.05%) and cyclosativene (6.38%), followed in lesser amounts by  

β-myrcene (2.07%).  

Collecting plant tissues and flowers definitely impacts on the volatile profiles, causing dramatically 

alterations if compared with in vivo and in situ VOC samples. These alterations can be related to the 

mechanical damage provoked by the collection of plants [27] and in particular in this study  

different proportions of the various terpenes were observed and a large increase of α-pinene was 

detected especially in O. sphegodes subsp. sphegodes fingerprint. These data were confirmed also by 

literature [27]. 
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Table 2. Identification of volatile organic compounds by HS-SPME-GCMS from picked flowering orchid samples. 

O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata   

Compounds RT a Mean (n = 3) b SD d Mean (n = 3) SD Mean (n = 3) SD 
Hydrocarbons  

hexane 1.50 3.874 1.00 0.41 0.10 0.20 0.00 

2-methylbutadiene 1.64 2.30 0.89 0.23 0.00 ND - 

butane 2.26 ND - 6.936 3.11 0.10 0.05 

nonane 3.25 ND - 10.873 1.31 0.06 0.01 

1-tridecene 11.85 ND - ND - 0.24 0.00 

tridecane 18.71 0.33 0.02 ND - 0.15 0.00 

dodecane 18.79 0.17 0.01 ND - ND - 

pentadecane 21.45 0.26 0.03 ND - 7.524 1.60 

nonadecane 22.47 0.23 0.00 0.33 0.07 0.37 0.34 

heptadecane 25.98 0.13 0.02 0.17 0.00 0.06 0.00 

Total 7.56 18.95 11.09 
Aldehydes 
pentanal 4.78 ND - 1.30 0.24 1.87 1.01 

esanal 9.02 0.48 0.04 8.364 1.80 17.951 2.75 

3-hexenal 12.22 0.28 0.02 ND - 0.31 0.21 

heptanal 13.94 0.12 0.01 0.06 0.02 0.89 0.00 

2-hexenal 15.27 0.04 0.00 0.51 0.00 2.43 0.67 

octanal 18.01 0.08 0.01 0.32 0.01 ND - 

2-heptanal 18.87 ND - 0.15 0.05 0.25 0.01 

nonanal 21.00 0.40 0.03 2.31 0.69 ND - 

2-octenal 21.74 ND - ND - ND - 

decanal 23.60 ND - 0.15 0.03 ND - 
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Table 2. Cont. 

O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata   

Compounds RT a Mean (n = 3) b SD d Mean (n = 3) SD Mean (n = 3) SD 
2-nonanal 24.13 5.393 0.98 2.88 1.59 ND - 

undecanal 25.86 0.16 0.08 0.28 0.00 ND - 

benzene acetaldehyde 26.42 0.08 0.02 2.37 1.06 0.35 0.07 

dodecanal 27.98 0.37 0.11 ND - ND - 

2-ethylbenzaldehyde 28.33 ND - 0.09 0.02 ND - 

Total  7.41  18.79  24.04  
Esters        

ethyl acetate 3.04 ND - ND - 0.13 0.04 

3-hexen-1-ol-acetate 18.99 ND - ND - 0.09 0.02 

dodecanoic acid. methyl ester 29.70 ND - ND - ND - 

geranyl acetate 30.64 0.08 0.02 0.05 0.01 ND - 

Total  0.08  0.05  0.21  
Ketones        

2-heptanone 13.51 1.75 0.56 1.90 0.24 3.45 1.83 

2-nonen-4-one 15.90 ND - ND - 0.12 0.00 

2-methyl-6-heptanone 16.21 0.44 0.33 0.31 0.03 0.42 0.02 

3-octanone 16.77 ND - ND - 0.11 0.00 

acetoin 17.60 0.19 0.01 7.125 0.13 6.81 1.87 

2-octanone 17.87 ND - ND - 1.13 1.18 

pantoic lactone 24.39 0.95 0.03 0.20 0.10 0.07 0.02 

Total  3.33  9.52  12.1  
Phenols        

anisole 19.5 ND - 0.31 0.15 0.17 0.01 

4-methyl anisole 22.01 3.53 1.01 0.15 0.01 2.40 0.18 

phenol 31.58 0.15 0.02 ND - ND - 

4-methylphenol 33.27 0.23 0.01 13.251 1.30 11.282 1.23 

Total  3.91  13.7  13.84  
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Table 2. Cont. 

O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata   

Compounds RT a Mean (n = 3) b SD d Mean (n = 3) SD Mean (n = 3) SD 
Alcohols        

ethanol 3.82 ND - 3.11 0.61 3.28 0.56 

2-methyl-3-buten-2-ol 7.38 1.20 0.09 ND - ND - 

isobutanol 10.39 ND - 0.64 0.31 0.12 0.00 

1-butanol 12.71 ND - 0.05 0.00 0.09 0.03 

1-penten-3-ol 13.00 ND - ND - 6.37 0.11 

isoamylalcohol 15.47 0.10 0.00 13.032 1.22 0.88 0.89 

1-pentanol 16.98 ND - 2.92 0.38 3.58 1.24 

eptanol 19.20 0.52 0.12 0.27 0.02 0.47 0.18 

3-hexen-1-ol 20.81 ND - 0.14 0.02 8.523 1.56 

2-nonanol 20.87 2.60 0.67 0.46 0.10 ND - 

1-octen-3-ol 22.55 ND - 1.39 0.46 0.32 0.19 

1-octanol 24.93 0.08 0.05 ND - ND - 

1-nonanol 27.07 ND - 1.18 0.09 ND - 

3-decen-1-ol 29.61 ND - ND - 0.11 0.06 

benzyl alcohol 30.91 ND - 0.32 0.01 ND - 

Total  4.5  23.5  23.74  
Furans        

2-methylfuran 3.15 0.62 0.07 ND - ND - 

4-ethylfuran 4.21 ND - ND - 5.22 1.43 

Total  0.62  ND  5.22  
Terpenes        

α-pinene 6.03 47.951 2.30 6.478 0.04 6.235 0.73 
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Table 2. Cont. 

O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata   

Compounds RT a Mean (n = 3) b SD d Mean (n = 3) SD Mean (n = 3) SD 
thujene 6.41 3.05 0.97 0.18 0.00 0.20 0.00 

β-pinene 9.63 1.42 0.64 ND - 0.37 0.05 

sabinene 10.55 0.65 0.07 ND - 0.20 0.18 

β-myrcene 13.33 2.07 0.09 ND - 0.58 0.57 

terpene 14.39 2.83 0.25 ND - 1.02 0.09 

d-limonene 14.69 0.99 0.13 ND - 2.91 1.27 

γ -terpinene 16.40 0.46 0.00 ND - 0.23 0.00 

copaene 23.38 ND - 1.93 1.56 ND - 

isolongifolene 23.89 ND - 0.46 0.08 0.22 0.03 

4-thujanol 24.58 0.51 0.08 0.27 0.00 0.12 0.03 

linalool 24.71 ND - ND - 0.30 0.01 

quinhydrone 24.98 0.20 0.00 6.557 0.04 0.17 0.08 

caryophillene 25.61 0.07 0.02 0.18 0.07 0.08 0.27 

4-terpineol 25.79 0.29 0.01 0.87 0.00 0.12 0.02 

β-farnesene 27.21 ND - ND - ND - 

verbenone 27.64 0.24 0.03 ND - 0.13 0.02 

naphtalene 28.90 ND - ND - 0.22 0.04 

sesquiphellandrene 29.11 ND - ND - 0.08 0.02 

estragol 30.05 0.14 0.00 ND - ND - 

Total  67.57  17.19  13.33  
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Table 2. Cont. 

O. sphegodes subsp. sphegodes O. bertolonii subsp. benacensis N. tridentata   

Compounds RT a Mean (n = 3) b SD d Mean (n = 3) SD Mean (n = 3) SD 
Free fatty acids       

acetic acid 22.27 0.24 0.07 0.07 0.03 ND - 

formic acid 23.46 ND - 0.13 0.00 ND - 

propionic acid 24.27 ND - ND - ND - 

pivalic acid 25.21 0.04 0.00 ND - 0.22 0.27 

hexanoic acid 30.34 0.36 0.11 0.09 0.02 0.11 0.01 

heptanoic acid 32.02 ND - 0.14 0.05 1.34 0.18 

octanoic acid 33.06 0.06 0.02 0.16 0.02 ND - 

nonanoic acid 34.13 0.19 0.05 0.31 0.01 0.14 0.06 

Total  0.88  0.91  1.81  
Miscellaneous       

acetonitrile 5.42 2.37 1.03 0.63 0.20 0.36 0.03 

nicotinonitrile 28.46 0.35 0.01 0.75 0.35 0.3 0.15 

dimethyl sulfone 31.24 0.37 0.02 ND - ND - 

Total  3.08  1.37  0.65  
a Retention time; b Normalized amount of volatile compounds (percentage) (peak of volatile compound/total peak area of all volatile compounds) of O. sphegodes subsp. 

sphegodes, O. bertolonii subsp. benacensis and N. tridentata flowering orchid samples (n = 3); c Standard deviation (±); ND: not detected; The most representative 

compounds for all orchids species were labeled with a number. 
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Figure 2. Volatile fingerprint of O. sphegodes subsp. sphegodes (A), O. bertolonii subsp. 

benacensis (B) and N. tridentata (C) picked flowering plants (the most representative 

compound peaks were labeled with numbers).  
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Figure 2. Cont. 

 

3. Experimental  

3.1. Orchid Species Studied 

Ophrys sphegodes Mill. subsp. sphegodes, commonly known as the Early Spider Orchid, is a very 

rare species that grows on alkaline and dry soils of Mediterranean coasts and mountain areas up to 

1,200 m a.s.l. The plant is 25–50 cm tall and its inflorescence is formed by 4–6 flowers, which are 

characterized by yellow-green sepals and a velvety brown labellum with a distinctive H marking,  

so that the flowers very much resemble an arthropod and especially a spider.  

Ophrys bertolonii subsp. benacensis (Reisigl) P. Delforge is a rare sub-endemic species that grows 

on basic and poor grasslands between 80 to 750 m a.s.l., in northern Italy. This orchid is 20–30 cm tall 

and, like O. sphegodes subsp. Sphegodes, its inflorescence is formed by 4–6 flowers. The flowers have 

white or lilac sepals, green veined, pinkish purple petals and the labellum is brown marked with bluish 

or reddish spots.  

Neotinia tridentata (Scop.) R.M. Bateman, Pridgeon & M.W. Case is an Euro-Mediterranean species 

that grows in full sun on calcareous soils from sea level up to 1800 m a.s.l. The plant is 15–40 cm tall with 

a short, compact, ovoid inflorescence constituted by small, acuminate flowers. Sepals and petals are 

entirely lilac or pinkish purple veined, the labellum is trilobed, white to pale violet, marked with purple 

spots [28].  
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3.2. Orchid Population Sites Studied 

O. sphegodes subsp. sphegodes, O. benacensis and N. tridentata populations were identified [28] 

and sampled at flowering stage at the beginning of May 2013 in the area surrounding Prato Olivino, 

near Pescate, Lecco, Italy, (45°49’27.20” N; 9°23’53.54” E) located at an altitude of 280 m a.s.l. 

(Figure 3). According to the worldwide bioclimatic classification [29] the area belongs to the 

temperate oceanic bioclimate and to the low humid upper mesotemperate phytoclimatic belt.  

The habitat of orchids considered in this study is a semi-dry calcareous grassland (occasionally 

mown), belonging to the Festuco-Brometea Br.-Bl. & Tüxen ex Br.-Bl. 1949 class, Brometalia erecti 
Br.-Bl. 1936 order. 

Figure 3. Pescate, Lecco, North of Italy and detailed view of the site of orchid sampling, 

Prato Olivino (Map from Google earth). 

 

Prato Olivino is a natural area near the Monte Barro natural park, which can been considered, in 

accordance with the Directive 92/42/CEE, as an important orchid site, due to the presence of rare and 

endemic species [30]. 

3.3. Headspace Solid Phase Microextraction (HS-SPME) of Volatile Compound Sampling from Living 
Orchid Plants (in Vivo) 

At the beginning of May 2013, O. sphegodes subsp. sphegodes, O. benacensis and N. tridentata 
plants were sampled in triplicate, in vivo and in situ in order to evaluate the volatile organic compound 

(VOC) emitted by living plants. Each plant was enclosed in an customised aerated glass cage 

manufactured by COLAVER s.r.l. (Vimodrone, MI, Italy), into which a manual SPME holder  

was inserted to extract the headspace. Volatile compounds were collected using a 50/30 µm 

divinylbenzene/Carboxen™/polydimethylsiloxane (DVB/CAR/PDMS) StableFlex™ fiber (Supelco, 

Bellefonte, PA, USA). The fibre was exposed to the plant headspace for 4 h.  
  



Molecules 2014, 19 7933 
 

 

3.4. Headspace Solid Phase Microextraction (HS-SPME) of Volatile Compound Sampling from 
Flowering Orchid Plants 

The HS-SPME extraction conditions were optimized in our previous study on the characterization 

of Achillea collina VOCs (selection of SPME fiber, sample amount, and extraction time, repeatability 

and precision of method) [31]. In this study flowering plant samples of all orchid species were picked 

and inserted into a 20 mL glass vial fitted with a cap equipped with a silicone/polytetrafluoroethylene 

septum (Supelco) in order to make the results comparable. Samples were prepared in triplicate.  

At the end of the sample equilibration period (1 h) a conditioned (1.5 h at 280 °C) 50/30 µm 

DVB/CAR/PDMS StableFlex™ fiber (Supelco) was exposed to the headspace of the sample for 

extraction (3 h) using a CombiPAL system injector autosampler (CTC Analytics, Zwingen, 

Switzerland). An extraction temperature of 30 °C was selected in order to prevent possible matrix 

alterations (oxidation of some compounds, particularly aldehydes) [32–35]. 

3.5. Gas Chromatography Mass Spectrometry Analysis of VOCs 

HS-SPME analysis was performed using a Trace GC Ultra (Thermo-Fisher Scientific; Waltham, 

MA, USA) Gas Chromatograph coupled with a quadrupole Mass Spectrometer Trace DSQ  

(Thermo-Fisher Scientific; Waltham, MA, USA) and equipped with an Rtx-Wax column (30 m; 0.25 mm 

i.d.; 0.25 μm film thickness, Restek, PA, USA). The oven temperature program was: from 35 °C, hold 

8 min, to 60 °C at 4 °C/min, then from 60 °C to 160 °C at 6 °C/min and finally from 160 °C to 200 °C 

at 20 °C /min. Carry over and peaks originating from the fiber were regularly assessed by running 

blank samples. After each analysis fibers were immediately thermally desorbed in the GC injector  

for 5 min at 250 °C to prevent contamination. The injections were performed in splitless mode (5 min). 

The carrier gas was helium at a constant flow of 1 mL·min−1. The transfer line to the mass 

spectrometer was maintained at 230 °C, and the ion source temperature was set at 250 °C. The mass 

spectra were obtained by using a mass selective detector with the electronic impact at 70 eV, a 

multiplier voltage of 1456 V, and by collecting the data at a rate of 1 scan·s−1 over the m/z range of 30–350. 

Compounds were identified by comparing the retention times of the chromatographic peaks with those 

of authentic compounds analyzed under the same conditions when available. The identification of MS 

fragmentation patterns was performed either by comparison with those of pure compounds or using the 

National Institute of Standards and Technology (NIST) MS spectral database. Volatile compound 

measurements from each headspace of orchid extracts were carried out by peak area normalization 

(expressed in percentage). All analyses were done in triplicate. 

4. Conclusions 

This study represented the first investigation regarding the VOC profile of different Italian 

populations of orchids using different pollinator attraction strategies, sampled in vivo and in situ. The 

results showed distinctive differences in volatile metabolite composition between orchids of the 

Ophrys and Neotinea genus. Moreover, a strong impact of the sampling methods on the volatile 

profiles, particularly regarding the different proportion of terpenes between picked flowering orchids 

and plants sampled in vivo and in situ, was observed. SPME could represent a good technique to 
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analyze volatile compounds emitted by in vivo plants, sampled in situ, in a non-disruptive way, with 

potentially great advantages for phytochemical and ecophysiological studies, particularly regarding 

rare and/or protected plants, such as orchids. 
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