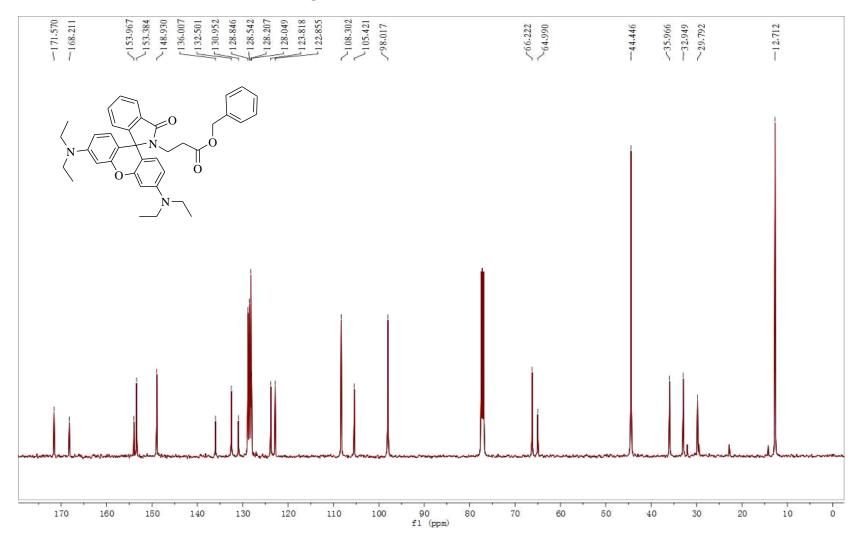
Supplementary Materials


¹ H-NMR of RBAP in acetone- d_6 :D ₂ O (5:1, v/v)	S2
¹³ C-NMR of RBAP in CDCl ₃	S 3
HRMS of RBAP	S4
Crystallographic data of RBAP	S5
Association constant calculations	S5
Determination of detection limit	S 6
Absorbance of RBAP at 561 nm as a function of Sn^{2+} concentration	S 7
Fluorescence intensities of RBAP at 583 nm upon the addition of Sn^{2+}	S 7
HOMO-LUMO energy calculations for RBAP and the RBAP -Sn ²⁺ complex	S 8

Molecules 2014, 19

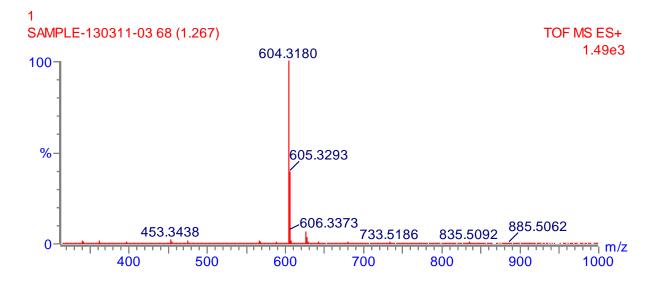

Figure S1. ¹H-NMR of **RBAP** in acetone- d_6 :D₂O (5:1, v/v).

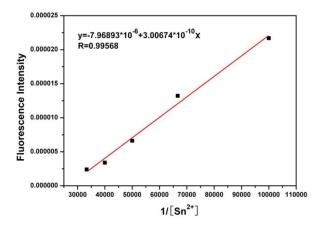
Figure S2. ¹³C-NMR of **RBAP** in CDCl₃.

Figure S3. HRMS of RBAP.

Crystallographic data of RBAP

^a w =1/[$\sigma^2(F_0)^2$ + (0.0893P)² + 1.6528P], where P = (F_0^2 + 2 F_c^2)/3

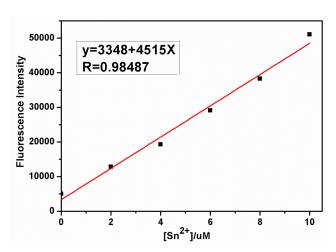
complay	DBAD
complex	RBAP
Formula	C ₃₈ H ₄₁ N ₃ O ₄
Formula	603.74
weight	Manaalinia
Crystal	Monoclinic
system	D 2(1)/C
space group	P2(1)/C
a (Å)	12.5467(15)
b (Å)	22.338(3)
c (Å)	12.0855(14)
α (°)	90.00
β (°)	103.278(2)
γ(°)	90.00
Volume(Å ³)	3296.6(7)
Ζ	4
T, (K)	296(2)
$\mu (mm^{-1})$	0.079
$D_{calcd} \left(g / m^3 \right)$	1.216
F(000)	1288
Reflections	6128
collected	
Unique	4350
reflections	1.026
Goof	1.036
$R_1[I \ge 2\sigma(I)]$	0.0645
$wR_2[I \ge 2\sigma(I)]$	0.1745 ^a
CCDC	CCDC 969599


Calculation of Association Constant

The apparent association constant was calculated by the following formula: $F - F_0 = \Delta F = [Sn^{2+}](F_{max} - F_0)/(1/Ka + [Sn^{2+}])$, where F is the obtained fluorescence intensity of **RBAP** with different equivalent of Sn²⁺ at the emission wavelength, F_{max} is the saturated fluorescence intensity of **RBAP** with different equivalent of Sn²⁺ at the emission wavelength, and F_0 is the fluorescence intensity of **RBAP** at the emission wavelength. Plot $1/\Delta F$ against $1/[Sn^{2+}]$ to a linear relation formula (y = A + Bx, Figure S4). Ka was calculated from A/B = 7.96893 * $10^{-6}/3.00674 * 10^{-10} = 2.65 * 10^4 M^{-1}$. (Table S1, Figure S4).

[Sn ²⁺](M)	1/[Sn ²⁺]	F	F – F0	1/(F - F0)
0		5000(F ₀)		
1.00×10^{-5}	1.00×10^{5}	5.11×10^{4}	4.61×10^{4}	2.17×10^{-5}
1.50×10^{-5}	66,666.67	8.06×10^4	7.56×10^4	1.32254×10^{-5}
$2.00 \times 10^{-5}5$	50,000	1.56×10^{5}	1.51×10^{5}	6.62291×10^{-6}
$2.50 imes 10^{-5}$	40,000	2.99×10^{5}	2.94×10^{5}	3.4007×10^{-6}
3.00×10^{-5}	33,333.33	4.21×10^{5}	4.16×10^{5}	2.40186×10^{-6}

Table S1. Detailed Calculations for Ka.


Figure S4. Plot $1/\triangle F$ against $1/[Sn^{2+}]$ to a linear relation formula (y = A + Bx).

Determination of Detection Limit

The detection limit of RBAP for Sn^{2+} was determined from the following equation: DL = K * (SD/S), where K = 3; SD is the standard deviation of the blank solution detected for 5 times; S is the slope of the calibration curve. SD value calculated from standard deviation of the blank solution (RBAP (10 µM) in a methanol/H2O (2:3, v:v)) is 66.14 (Table S3). From Figure S5 we get slope = 4515. Thus, using the formula we get the Detection Limit = $3 \times (66.14/4515) = 0.044$ µM.

	Table S2. Calculation for $SD = \sqrt{\frac{1}{N-1}\sum_{i=1}^{N-1} (X_i - X)^2}$.				
F.I. of the Blank S	Solution	$X_i - \overline{X}$ (I = 1, 2, 3, 4, 5)	$(\mathbf{X}_{i} - \overline{\mathbf{X}})^{2}$		SD
X ₁	5124	76.4	Y ₁	5836.96	
\mathbf{X}_{2}	4963	-84.6	\mathbf{Y}_2	7157.16	
X ₃	5057	9.4	\mathbf{Y}_{3}	88.36	
\mathbf{X}_4	5000	-47.6	\mathbf{Y}_4	2265.76	
X ₅	5094	46.4	\mathbf{Y}_5	2152.96	
average value $\overline{\mathbf{X}}$	5047.6		$SD^2 = (Y_1 + Y_2 + Y_3 + Y_4 + Y_5)/4$	4375.25	66.14

 $\frac{1}{\Sigma_{\rm N}^{\rm N}}$ (X Colculation for **CD x**∖2 Table C2

Figure S6. Absorbance of **RBAP** at 561 nm as a function of Sn^{2+} concentration.

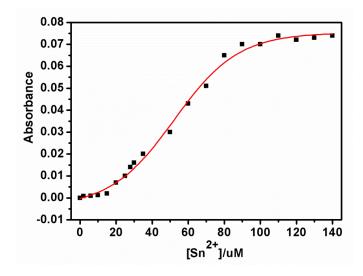


Figure S7. Fluorescence intensities of **RBAP** at 583 nm upon the addition of Sn^{2+} .

Species	E(HOMO)	E(LUMO)	∆E (Hartree)	∆E (kcal/mol)
RBAP	-0.19	-0.03	0.16	102.38
RBAP-S n ²⁺	-0.38	-0.30	0.09	55.74

Table S3. HOMO-LUMO energy calculated for **RBAP** and the **RBAP**-Sn²⁺ complex.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).