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Abstract: The edible mushroom Agaricus blazei Murill is known to induce protective 

immunomodulatory action against a variety of infectious diseases. In the present study we 

report potential anti-quorum sensing properties of A. blazei hot water extract. Quorum 

sensing (QS) plays an important role in virulence, biofilm formation and survival of many 

pathogenic bacteria, including the Gram negative Pseudomonas aeruginosa, and is 

considered as a novel and promising target for anti-infectious agents. In this study, the 

effect of the sub-MICs of Agaricus blazei water extract on QS regulated virulence factors and 

biofilm formation was evaluated against P. aeruginosa PAO1. Sub-MIC concentrations of the 

extract which did not kill P. aeruginosa nor inhibited its growth, demonstrated a statistically 

significant reduction of virulence factors of P. aeruginosa, such as pyocyanin production, 

twitching and swimming motility. The biofilm forming capability of P. aeruginosa was 

also reduced in a concentration-dependent manner at sub-MIC values. Water extract of  

A. blazei is a promising source of antiquorum sensing and antibacterial compounds. 

Keywords: Agaricus blazei; mushroom; antiqourum sensing activity; antimicrobial activity; 
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1. Introduction 

In recent years a growing interest has developed in the mechanisms of action of medicinal 

mushrooms. For over a thousand years mushrooms have been used in folk medicine in Asia to prevent 

and cure a multitude of diseases of quite different nature. The most well known examples are 

Ganoderma lucidum, Phellinus linteus, Cordyceps sinensis, Trametes versicolor and Inonotus 

obliquus. Agaricus blazei Murill (ABM) is a relative newcomer that was first found in 1960 in Piedade 

(Brazil) by Takatoshi Furumoto as “Cogumelo do sol” and later identified by Heinemann [1]. Its 

formal name is now A. brasiliensis [2], although it is usually called A. blazei Murill.  

Mostly based on in vitro studies the medicinal effects of ABM have been attributed to β-glucans, 

phenols and terpenes [3,4]. The β-glucans are immunomodulators, and phenols and terpenes are redox 

regulators; both enhance or attenuate the immune system of higher animals by inducing or inhibiting 

the production of pro- and anti-inflammatory cytokines [4,5]. In vitro ABM induces and balances 

immunity once pro-inflammatory processes are taking place [6]. 

In higher animals ABM quickly stimulates innate immunity, i.e., causes rapid pro-inflammatory 

effects when under threat by infectious agents or cancer [3–6]. The antimicrobial effects of ABM such 

as against Mycobacterium tuberculosis, M. bovis and Streptococcus pneumoniae have been attributed 

to the immune system [5,7]. The preventive role of innate immunity was contradicted by the study of 

Fantuzzi et al. [8] who showed that ABM extract did not promote immunostimulation and protection 

during experimental Salmonella enterica infection in mice.  

Many pathogens use the formation of biofilms as a defense against their host’s immune system and 

against antibiotic treatment. Biofilms are vast bacterial populations in a host that are protected by a 

layer of polymeric substances [9]. Biofilms use quorum sensing for their protection, a bacterial 

coordination system that allows density-dependent cell–cell communication, in which small diffusible 

signalling molecules globally regulate expression of various genes including antibiotic resistance 

swarming motility, exopolysaccharide production, virulence, and cell aggregation [10,11]. 

It is important to emphasize that of all the infectious diseases, at least 65% are associated with the 

bacterial communities which proliferate by forming biofilms [9–11]. Inner-ear infections in children, 

gingivitis, urinary tract infections, dental plaque and chronic wounds are all relatively insensitive to 

common antibiotic treatment because of biofilm formation and quorum sensing [10,11]. 

Pseudomonas aeruginosa, as an example, is an opportunistic human pathogen that infects 

immunocompromised individuals and people with cystic fibrosis [12]. It is an asporogenous, Gram 

negative, aerobic bacillus which is commonly found in the intestinal tract of higher animals, in sewage 

and in soil. It is a major cause of nosocomial infections and spreads easily through contaminated 

equipment and lack of hygiene. P. aeruginosa can grow within a host without harming it, until a 

threshold concentration is reached. Then they become aggressive, developing to the point at which 

their numbers are sufficient to overcome the host’s immune system. P. aeruginosa constitute a major 

risk for immunologically compromised patients and is involved in the etiology of bronchopneumonia, 

septic shock and wound infections [9]. P. aeruginosa have low sensitivity to antibiotic treatment, and 

have become multidrug resistant, which causes an increasing public health threat [13–15]. No new 

broad spectrum antibiotics have been developed recently for most Gram negative bacteria.  
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The worldwide emergence of higher level tolerance of target organisms against available broad 

spectrum antibiotics is a pressing global public health problem [16]. Considering the rapid spread of 

multidrug resistance, the development of new antimicrobial or antivirulence agents that act upon newly 

adapted microbial targets has become a very pressing priority [17]. Research efforts have focused on 

natural products which might be nontoxic inhibitors of quorum sensing [18,19], thus controlling 

infections without encouraging the appearance of resistant bacterial strains [20]. 

Recently we have described the direct antibiotic effects of ABM extracts against various bacteria 

(unpublished data) [21]. MIC’s and MBC’s of these extracts turned out equal to or better for inactivation 

of P. aeruginosa than those of ampicillin and streptomycin. The present study describes a search for 

anti-quorum sensing properties of the same extracts. 

2. Results and Discussion 

A. blazei mushrooms serve not only as a valued gourmet food, but are also used as medicinals and 

as food supplements to induce immune activity against a variety of infectious diseases, hepatitis and 

malignancies [7]. To our knowledge no direct antibiotic effects, i.e., killing or inhibiting growth of 

microorganisms, have been reported for A. blazei until now. 

Although considerable efforts have been done to define plant-derived natural products as sources of 

anti-quorum sensing compounds [22], no systematic search has been done among the kingdom of 

fungi. The only reports so far of possible anti-QS activity are from two plant root-associated fungi, i.e., 

Phialocephala fortinii and Meliniomyces variabilis [23] that are able to interfere with the  

N-acylated homoserine lactone regulatory system of several Gram-negative bacteria, and of  

Phellinus igniarius [24] and Ganoderma lucidum [25] that can suppress violacein production of 

Chromobacter violaceum. 

The present study connects the anti-QS properties of the popular medicinal mushroom Agaricus 

blazei Murill with the suppression of possible effects of a leading human pathogen, i.e., Pseudomonas 

aeruginosa, which has become multi drug resistant. Unlike antibiotics anti-QS agents do not kill or 

inhibit bacterial growth, they just weaken their activity. Anti-QS effects are therefore visibly different 

from antibiotic effects in bacterial cultures on agar in that they do not create clear zones that are free of 

bacterial growth, but rather hazy zones. 

The minimal inhibitory concentration (MIC) of A. blazei extract for P. aeruginosa was determined 

by the microdilution method to be 0.2 mg/mL in our previous study [21, unpublished data]. The effect 

on biofilm formation of P. aeruginosa was tested at lower values than the MIC, i.e., with  

0.1 (0.5 MIC), 0.05 (0.25 MIC) and 0.025 mg/mL (0.125 MIC). A concentration of 0.1 mg/mL of A. 

blazei extract allowed 16.06% biofilm formation, ampicillin 69.16% and streptomycin 49.40% in 

comparison with the nontreated control (98.90%). A. blazei extract at 0.05 mg/mL allowed biofilm 

formation of 42.58%, ampicillin 56.46% and streptomycin 70.97% in comparison with the control 

(100%). The lowest concentration of A. blazei extract (0.025 mg/mL) showed biofilm formation of 

98.37%, ampicillin 92.16% and streptomycin 88.36% in comparison to the control value of 99.30%. 

Table 1 shows that A. blazei water extract reduced biofilm formation much more effectively than 

streptomycin or ampicillin. 
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Table 1. Effects of Agaricus blazei water extract on biofilm formation of  

Pseudomonas aeruginosa (PAO1). Mean ± SD diameters of the growth clear inhibition 

zones around the discs in millimeters. 

Concentration 0.1 mg/mL * 0.05 mg/mL 0.025 mg/mL 

A. blazei extract 16.06 ± 0.47 42.58 ± 0.35 98.37 ± 0.97 
Ampicillin 69.16 ± 0.65 56.46 ± 0.46 92.16 ± 0.37 

Streptomycin 49.40 ± 0.46 70.97 ± 0.36  88.36 ± 0.42 
P. aeruginosa control 98.90 ± 0.97 100.00 ± 0.00 99.30 ± 0.46 

* A. blazei extract at 0.1 mg/mL equals 0.5 MIC. 

It can be seen that in the tested concentration only streptomycin showed inhibition zones at  

0.125 mg/disc (9.0 mm), 0.25 mg/disc (16.6 mm) and 0.5 mg/disc (18.6 mm), while A. blazei extract 

and ampicillin possessed antiquorum sensing activity. Extract exhibited AQ effect at concentrations 

0.03–0.5 mg/disc in range of 7.0–17.7 mm, and ampicillin possessed AQ activity (0.25–0.5 mg/disc) in 

the range of 7.6–9.0 mm as transparent zones around discs. The aqueous extract of A. blazei showed 

AQ effect in all tested concentrations (Table 2.). According to our knowledge there are no published 

data about antiquorum sensing activity of extracts of A. blazei. 

Table 2. Minimal inhibitory (MIC) and antiquorum (AQ) zones in mm induced by 

Agaricus blazei extract in the disc-diffusion method (mean ± SD).  

Concentration  
mg/disc 

 0.03 0.06 0.125 0.25 0.50 

A. blazei extr. 
MIC - - - - - 
AQ 7.0 ± 1.0 7.3 ± 0.5 8.0 ± 1.0 9.3 ± 1.0 17.7 ± 1.0

Ampicillin 
MIC - - - - - 
AQ -- -- -- 7.6 ± 0.6 9.0 ± 1.0 

Streptomycin 
MIC 

- - 
9.0 ± 1.0 

15.0 ± 2.1
16.6 ± 1.5  
22.6 ± 2.3 

18.6 ± 1.2 
26.7 ± 1.2AQ 

P. aeruginosa Control MIC AQ ni ni ni ni ni 

-: no inhibitory activity; --: no AQ, ni: no activity (control). 

The quorum-sensing inhibition zone (Table 2) occurred behind the margin of the inhibition zone. 

Our previous study with the same extract had demonstrated strong antibacterial activity, especially 

against Gram-negative bacteria ([21], unpublished). A. blazei has a long history of use in traditional 

medicine. Their antibacterial activity, the anti-quorum sensing activity and possible other mechanisms 

may be responsible for their therapeutic efficacies. 

The activity against pyocyanin production in a flask assay was used to quantify quorum sensing 

inhibitory activity of the extracts. Pyocyanin is a green pigment which signals the upregulation of 

quorum sensing controlled genes during stationary growth of P. aeruginosa [26]. The A. blazei extract 

demonstrated concentration-dependent pyocyanin inhibitory activity. At all tested concentrations of 

the extract the green pigment content was decreased. The extract showed a stronger reduction of 

pigment than ampicillin and streptomycin (Figure 1). Promising anti-quorum sensing compounds have 

been demonstrated to disrupt bacterial biofilms and make the bacteria more susceptible to antibiotics, 
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and these compounds also provide the ability to reduce bacterial virulence factors as well as promote 

clearance of bacteria in infectious animal models. Many mechanisms of action have been proposed to 

interfere with the quorum sensing system such as: (1) inhibition of biosynthesis of autoinducer 

molecules; (2) inactivation or degradation of the autoinducer; (3) interference with the signal receptor; 

and (4) inhibition of the genetic regulation system [27]. 

Figure 1. Reduction of pyocyanin pigment production of Pseudomonas aeruginosa by 

Agaricus blazei extract tested at subMIC, i.e., 0.5 MIC (0.1 mg/mL), 0.25 MIC (0.05 mg/mL) 

and 0.125 MIC (0.025 mg/mL). 

 

In addition to QS, the initiation of biofilm formation by P. aeruginosa depends on two  

cell-associated structures; the flagellum and type IV pili [28,29]. The flagellum is responsible for 

swimming motility while the type IV pili are responsible for twitching motility [30]. Both types of 

motility are important in the initial stages of biofilm formation by P. aeruginosa [28,29]. Therefore, 

we tried to determine if our extract will influence one or both motilities. On swimming plates, the 

motile strain PAO1 was used as the 100% standard (control) for motility while the Petri dishes with 

the same strain plus A. blazei extracts were compared with the control. 

The A. blazei hot water extract reduced the twitching motility of P. aeruginosa. The normal 

colonies of P. aeruginosa, i.e., in the absence of the extract, were flat with a rough appearance 

displaying irregular colony edges (Figure 2A) and a hazy zone surrounding the colony. The cells were in 

a very thin layer. After 2 days of incubation at ambient temperature, colony expansion occurred very 

rapidly due to twitching motility, the control P. aeruginosa isolates produced swimming zones to 

100% (Table 3) and was 14.0 mm. Bacteria that were grown with the A. blazei aqueous extract 

solution were incapable of producing such a twitching zone and had almost round, smooth, regular 

colony edges, the flagella were reduced both in size and in numbers, and the colony diameter 

swimming zone was not reduced (21.7 mm) (Figure 2B). Streptomycin reduced the flagellae completely 

(Figure 2C), while ampicillin did not affect the formation of flagella at all (Figure 2D, Table 3). 
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Figure 2. Flagella motility of Pseudomonas aeruginosa treated with Agaricus blazei extract. 

 
Light microscopy of colony edges of P. aeruginosa in twitching motility, grown in the presence or absence of  

A blazei extracts. P. aeruginosa produced a flat, widely spread, irregularly shaped colony in the absence of  

A. blazei extracts. P. aeruginosa produced a flat, widely spread, irregularly shaped colony in the absence of 

extracts (A); The colonies from the bacteria grown with A. blazei aqeous extract in concentration of 0.15 mg/mL 

(B) were rounded, had a smooth domed shape and lacked a hazy zone surrounding the colony. P. aeruginosa 

colony with streptomycin at a concentration of 0.15 mg/mL without flagella (C) and with ampicillin at  

0.15 mg/mL with almost regularly formed flagella (D); Magnification: (A–D) × 100. 

Table 3. Effect of Agaricus blazei extract on twitching activity, colony diameter and color 

of Pseudomonas aeruginosa (mean ± SD). 

Extracts Colony diameter  Colony color Colony edge 

A. blazei H2O 21.67 ± 0.51 white reduced flagella 
Streptomycin 5.00 ± 0.06 white flat 

Ampicillin 12.00 ± 1.00 white regular 
Control P.aeruginosa  

109 CFU 
14.00 ± 1.00 green regular 

From the observed results it can be noticed that water extract of A. blazei exhibited antibacterial and 

also antiquorum activity. The extract showed effects on all tested mechanisms included in AQ; it had 

an influence on antibiofilm formation, exhibited antiquorum zones in the disc diffusion assay, also 

influenced flagella motility, reduced colony diameter and changed the color of the colony. Further it 

reduced pigment (pyocyanin) production by P. aeruginosa. Taken together this indicated that this 

extract could be used to prevent or/and to control P. aeruginosa growth. 

It is interesting to notice that the microbial load of mushrooms, regardless of their origin (wild or 

cultivated), is dominated by the Gram-negative bacteria, pseudomonads and enterobacteriaceae [31]. 

Pseudomonas sp., which cause drippy gill, mummification and brown discoloration (bacterial blotch) 

are able to completely destroy the cultivated button mushroom Agaricus bisporus. For A. blazei no 

reports have been published on possible infection by Pseudomonas sp. If anti-QS is causal in 

prevention of infection of A. blazei itself by Pseudomonas sp., it would be worth trying to use the 

extract to prevent this disease in A. bisporus, which obviously lacks protection [32]. 
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It is further interesting to note that most medicinal mushroom supplements on the market are crude 

hot water extracts. Their presumed protection against infection may not be caused by stimulation of 

innate immunity but rather by induction of anti-QS. 

3. Experimental 

3.1. Extract Preparation 

Freshly cultivated A. blazei mushrooms (strain M7700, Mycelia bvb, Nevele, Belgium) were dried 

at 45 °C and then powdered in a Buhler type hammer mill equipped with a 1 mm sieve insert. For hot 

water extraction 50 grams of dry mushroom powder were homogenized in 1 L of water and extracted 

by autoclaving for 25 min at 121 °C. The resulting mass was centrifuged at 7.438× g for 30 min in a 

SLA-1500 rotor in a Dupont-Sorvall RC5C centrifuge (Newtown, CT, USA). The resulting 

supernatant was concentrated to 1/10 of its volume by evaporation and then lyophilized. The dry 

powder was stored dry and away from light for later use. The dry extract powder was solved in water 

(250 mg/mL) for further use. 

3.2. Bacterial Strains, Growth Media and Culture Conditions 

P. aeruginosa PA01 (ATCC 27853) used in this study is from the collection of the Mycoteca, 

Institute for Biological Research “Sinisa Stankovic”, Belgrade, Serbia. Bacteria were routinely grown 

in Luria-Bertani (LB) medium (1% w/v NaCl, 1% w/v tryptone, 0.5% w/v yeast extract) with shaking 

(220 rpm) and cultured at 37 °C. 

3.3. Biofilm Formation 

The effect of different concentrations of extract (ranging from 0.5 to 0.125 of MIC, MIC was  

0.2 mg/mL) on biofilm forming ability was tested on polystyrene flat-bottomed microtitre 96 well 

plates as described by [33,34] with some modifications. Briefly, 100 µL of overnight culture of  

P. aeruginosa (inoculum size was 1 × 108 CFU/mL) was added to each well of the plates in the 

presence of 100 µL subinhibitory concentrations (subMIC) of extract and oil (0.5, 0.25 and 0.125 MIC) or 

100 mL medium (control). After incubation for 24 h at 37 °C, each well was washed twice with sterile 

PBS (pH 7.4), dried, stained for 10 min with 0.1% crystal violet in order to determine the biofilm 

mass. After drying, 200 µL of 95% ethanol (v/v) was added to solubilize the dye that had stained the 

biofilm cells. The excess stain was washed off with dH2O. After 10 min, the content of the wells was 

homogenized and the absorbance at λ = 625 nm was read on a Sunrise™—Tecan ELISA reader 

(Mannedorf, Switzerland). The experiment was done in triplicate and repeated two times and values were 

presented as a mean values ± SE. 

3.4. Inhibition of Biofilm Formation of P. aeruginosa 

P. aeruginosa was cultured overnight at 37 °C in LB medium and adjusted to a concentration of  

1.0 × 108 CFU/mL for final inoculum. Filter paper discs (Whatman; 4 mm in diamater) were 

impregnated with a solution of A. blazei extract (0.125, 0.25, 0.5 mg/disc), streptomycin and ampicillin 
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(0.125, 0.25, 0.5 mg/disc). Discs were dried at room temperature (3 h, protected from light), and 

aseptically placed onto the plates prior inoculated with P. aeruginosa (1 × 108 CFU/mL). Petri dishes 

were placed for incubation in a thermostat at 37 °C for 24 h. After incubation, it was recorded whether 

inhibition or antiquorum zones were obtained. Minimal inhibitory concentrations were determined as a 

diameter of the growth clear inhibition zones around the discs (no growth at all), while antiqourum,  

i.e., antibiofilm zones were determined as hazy zones around the discs (growth with different 

characteristics) behind the margin of the inhibition zone [35]. The experiment was done in triplicate 

and repeated two times and values were presented as mean values ± SE. 

3.5. Inhibition of Twitching and Flagella Motility of P. aeruginosa 

After growth in the presence or absence of A. blazei extract (subMIC 0.15 mg/mL), streptomycin 

and ampicillin (subMIC 0.15 mg/mL), the cells of P. aeruginosa PA01 were washed twice with sterile 

PBS and resuspended in PBS at 1 × 108 cfu/mL (OD of 0.1 at 660 nm). Briefly, cells were stabbed into 

a nutrient agar plate with a sterile toothpick and incubated overnight at 37 °C. Plates were then 

removed from the incubator and incubated at room temperature for two more days. Colony edges and 

the zone of motility were measured with a light microscope [28,29]. Fifty microlitres of A. blazei 

extract was mixed into 10 mL of molten MH (Mueller-Hinton) agar medium and poured immediately 

over the surface of a solidified LB agar plate as an overlay. The plate was point inoculated with an 

overnight culture of PAO1 once the overlaid agar had solidified and incubated at 37 °C for 3 days. The 

extent of swimming was determined by measuring the area of the colony [35]. The experiment was 

done in triplicate and repeated two times. The colony diameters were measured three times in different 

direction and values were presented as mean values ± SE. 

3.6. Inhibition of Synthesis of P. aeruginosa PA01 Pyocyanin  

Overnight culture of P. aeruginosa PA01 was diluted to OD600 nm 0.2. Then, A. blazei extract  

(250 μL, 0.125 MIC (0.025 mg/mL), 0.25 MIC (0.05 mg/mL) and 0.5 MIC (0.10 mg/mL) was added 

to P. aeruginosa (4.75 mL) and incubated at 37 °C for 24 h. The treated culture was extracted with 

chloroform (3 mL), followed by mixing the chloroform layer with 0.2 M HCl (1 mL). Absorbance of 

the extracted organic layer was measured at 520 nm using a Shimadzu UV1601 spectrophotometer 

(Kyoto, Japan) [36]. The experiment was done in triplicate and repeated two times. The values for OD 

were presented as mean values ± SE. 

4. Conclusions 

In summary, our study indicated that A. blazei hot water extract possesses anti-quorum sensing 

activity against P. aeruginosa. Inhibition of bacterial quorum sensing offers a new strategy for the 

treatment of bacterial infections. The anti-quorum sensing property of Agaricus blazei may play an 

important role in antibacterial activity and offers an additional strategy for fighting bacterial infections. 
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