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Abstract: Trigocherrierin A (1) and trigocherriolide E (2), two new daphnane diterpenoid 

orthoesters (DDOs), and six chlorinated analogues, trigocherrins A, B, F and 

trigocherriolides A–C, were isolated from the leaves of Trigonostemon cherrieri. Their 

structures were identified by mass spectrometry, extensive one- and two-dimensional 

NMR spectroscopy and through comparison with data reported in the literature. These 

compounds are potent and selective inhibitors of chikungunya virus (CHIKV) replication. 

Among the DDOs isolated, compound 1 exhibited the strongest anti-CHIKV activity  

(EC50 = 0.6 ± 0.1 µM, SI = 71.7). 

Keywords: Trigonostemon cherrieri; Euphorbiaceae; chikungunya virus (CHIKV); 

daphnane diterpenoid orthoester (DDO) 

 

1. Introduction 

Chikungunya is an acute illness that is characterized by fever, rash and arthralgia. The chikungunya 

virus (CHIKV) that causes this disease is an alphavirus that belongs to the Togaviridae family [1], 

transmitted by different mosquito species, including the Asian tiger mosquito (Aedes albopictus, 

Culicidae), one of the most invasive in the World. In the past decade, CHIKV has re-emerged in 
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Africa, Asia and in the Indian Ocean islands, and during these outbreaks was associated with a high 

impact and severe morbidity. Due to climate changes and the ability of A. albopictus to now survive in 

more temperate areas, this disease has also become a worldwide threat [2]. Recently, the first 

outbreaks have been reported in the Americas [3,4]. Currently, no specific antiviral therapy or a 

vaccine is available for the treatment or prevention of this disease. 

In an effort to identify novel inhibitors of CHIKV replication, we selected the rare endemic New 

Caledonian species Trigonostemon cherrieri for a thorough chemical investigation. Phytochemical 

investigations of Trigonostemon species began in the 90s and have dramatically increased during the 

last five years. Phenanthrenes [5,6] alkaloids [7,8], various daphnane and tigliane-type diterpenoids [9–11] 

were isolated from various species of this genus, many of the latter being known to possess antiviral 

properties [12–15]. From the bark and wood of T. cherrieri, we recently reported the isolation and 

structural characterization of trigocherrins A-F and trigocherriolides A–D, unusual chlorinated 

daphnane diterpenoid orthoesters (DDO) [16,17]. These results prompted us to make the complete 

chemical investigation of the leaves of this species. As a result, in this paper we report the isolation, 

characterization and anti-CHIKV activities of two new analogues, trigocherrierin A (1) and 

trigocherriolide E (2), along with trigocherrins A, B and F, and trigocherriolides A, B and C, from the 

leaves of T. cherrieri. Trigocherrierin A (1) is the only analogue of this chemical series free of chlorine 

atoms in its structure. 

2. Results and Discussion 

The air-dried powder of the leaves of T. cherrieri was extracted with EtOAc to give a crude extract, 

which was partitioned between hexane and aqueous MeOH. The aq. MeOH fraction was then 

subjected to LH-20 liquid chromatography. The active fractions (F5, F6 and F7) were then repeatedly 

purified by LH-20, preparative and semi-preparative C18 HPLC to yield trigocherrins A, B, F, 

trigocherriolides A, B, C, and E (2), and trigocherrierin A (1) in trace quantities (Figure 1). 

Figure 1. Structures of trigocherrierin A (1) and trigocheriolide E (2). 

 

Trigocherrierin A (1) possesses the molecular formula C38H52O10, based on its protonated molecular 

ion peak at m/z 669.3652 [M+H]+, obtained by HR-ESIMS (calcd. 669.3639), thus requiring  

13 degrees of unsaturation. In accordance with the molecular formula, the 13C-NMR data in 

combination with analysis of the HSQC spectrum revealed 38 carbons signals due to five methyls, nine 
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methylenes (one olefinic), 15 methines (five oxygenated and six olefinic), and nine quaternary carbons 

(one ester carbonyl, five oxygenated and three olefinic). The 1D and 2D NMR spectra revealed signals 

attributable to a daphnane diterpenoid orthoester and showed the presence of an isopropenyl group  

[δC 142.5, 113.2 and 19.8 (C-15, C-16 and C-17, respectively) and δH 4.98 and 5.17 (H2-16), 1.73 (H3-17)], 

a benzene ring (δH 7.3-7.8/δC 126.4-135.7), and an aliphatic side chain at δH 0.85 (H3-10'')/14.3 (C-10''), 

1.12-1.26 (H2-4'' to H2-9'')/22.9-32.1 (C-4'' to C-9''), 1.64 (H-3'')/33.6 (C-3''), 2.44 (H-2'')/40.0 (C-2''). The 

COSY correlation between H-1 and H-10, associated with HMBC correlations from H-1 to C-4, C-9, 

C-10, and from H3-19 to C-1, C-2 and C-3, allowed to build ring A. The construction of rings B and C, 

and the junctions A/B and B/C were deduced from COSY and HMBC correlations as depicted in 

Figure 2. The presence of a trisubstitued epoxide at positions 6 and 7 on ring B, was suggested from 

the molecular formula, the chemical shifts of C-6 and C-7 at δC 61.5 and 63.9, respectively, and 

HMBC correlations from H-7 to C-6, C-8, C-9 and C-14. The observation of a large 1JC-H coupling 

constant value of 170 Hz for H-7/C-7 confirmed the presence of this epoxide. From HMBC 

correlations H3-18/C-9/C-11/C-12, and H2-16/H3-17/C-13/C-15, it can be deduced the locations of the 

secondary methyl and isopropenyl groups at C-11 and C-13, respectively, as depicted in Figure 2. The 

position of the secondary CH3-11'' group at C-2'', and the attachment of the aliphatic side-chain at  

C-12, via an ester linkage, were supported by HMBC correlations from CH3-11'' to C-1''/C-2'' and C-3'', 

and from H-12 to C-1'', respectively. The quaternary carbon at δC 118.3 is characteristic of a  

9,13,14-orthobenzoate moiety [18]. The presence of the latter was confirmed by HMBC correlations 

from H-14 to C-1'/C-9 and C-7. 

Figure 2. Key HMBC and COSY (left), and ROESY (right) correlations of compound 1. 

 

The relative configuration of compound 1, with the exception of the stereocenter C-2'', could be 

determined, thanks to analysis of ROESY correlations and after an energy minimization study  

(Figures 2 and 3). Cross peaks observed between protons H-11/H-12, H-12/H-8, H-8/H-7, H-8/H-11, 

H-8/H-14, H-14/H-17, H-17/H-12 indicated that they all had the same orientation that we arbitrary 

fixed as β. A typical vicinal coupling constant value of 7.6 Hz between H-11 and H-12 confirmed that 

the aliphatic side chain at C-12 is α-oriented, otherwise the value would be 0 [12,19]. Other ROESY 

correlations were observed between H-3 and H-5, H-5 and H-10, and H-10 and H-3' (or H-7'), 

indicating that they all are on the -face of the molecule as depicted in Figure 2. The latter, although 

weak, is essential because it allowed us to determine the relative configuration of all stereogenic 

centers of the tricyclic core as shown in Figure 2. However, to ascertain the β-orientation of C-3, C-4 

and C-5 hydroxyl groups and α-orientation of H-10 in compound 1, the structure was subjected to 
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energy minimization with respect to all atoms by using Avogadro 1.1.1 software (MMFF94(s) force 

field, algorithm Steepest Descent). The protons interatomic distances were measured and the most 

relevant distances are shown in Figure 3. The results of this study indicated clearly that all ROESY 

correlations were in agreement with the proton interatomic distances measured on the energy-minimized 

structure (Figure 3). In particular, it can be observed a spatial proximity between protons H-3, H-5, H-

10 and H-7' on one hand, and H-8, H-11, H-12, H-14 and H-17 on the other hand, corroborating the 

structural study. Several DDOs isolated from T. thyrsoideum, such as trigonosins A and B [18] and 

trigonothyrine F and G [12], possess similar carbon skeleton substituted by a 9,13,14-orthobenzoate 

moiety and various hydroxy and acetoxy groups. For these compounds, it is interesting to note that 

hydroxy or acetoxy groups at C-3, C-4 and C-5 are β-oriented and proton H-10 α-oriented, as it was 

the case for all compounds of the trigocherrin and trigocherriolide chemical series [16,17]. Unlike the 

other members of the trigocherrins and trigocherriolides chemical series, trigocherrierin A is the only 

one lacking of a chlorine atom and having a 9,13,14-orthobenzoate moiety. 

Figure 3. 3D representation of a possible conformer of 1 as derived from energy 

minimization showing distances (Å) between ROE-interacting protons (distances are 

shown in dotted lines in green and magenta for protons below and above the plan, 

respectively). The R* configuration was assigned arbitrarily for C-2''. 

 

Compound 2 possesses the molecular formula C38H49O12Cl, based on its quasi-molecular ion peak 

at m/z 733.3018 [M+H]+ obtained by HR-ESIMS (calcd. 733.2991), thus requiring 14 degrees of 

unsaturation. The 3:1 ratio of [M+H]+ and [M+2+H]+ obtained by ESIMS indicated that 2 possesses 

one chlorine atom. Its IR spectrum showed characteristics absorption bands at 3,460 cm−1 for hydroxyl 

groups and 1,710 cm−1 for an ester carbonyl group. The chemical shifts and multiplicities of the 1H and 
13C-NMR signals of compound 2 were closely related to those of trigocherriolides B and C [16], 

suggesting that compound 2 has a macrocyclic DDO backbone bearing one monosubstituted aromatic 

ring and a vinyl chloride moiety. The latter was confirmed by the high value of the 1JC-H coupling 

constant (195 Hz) observed for H-19/C-19 on the HMBC spectrum [20]. The HSQC spectrum revealed 
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and seven olefinic) and ten quaternary carbons (one ester carbonyl, six oxygenated and three olefinic). 

In the HMBC spectrum, cross peaks from H-19 to C-1, C-2 and C-3 confirmed the position of the 

vinyl chloride on the five-membered ring A. The position of the orthobenzoate moiety at C-9, C-12, 

and C-14 is suggested by the typical chemical shift of the quaternary carbon C-1' at δC 108.8 [21]. This 

location was confirmed by HMBC correlations from H-3', H-7', H-12 and H-14 to C-1'. An eleven 

carbons aliphatic side chain attached at the carbonyl ester C1'' on one side and at the quaternary carbon 

C-15 on the other side can be constructed with the help of 1H-1H COSY and HMBC experiments 

(Figure 4), and by deduction from the molecular formula. Indeed, in the HMBC spectrum, cross peaks 

from H-3 (δH 5.20), H2-3'' (δH 1.35 and 1.64) and Me-11'' (δH 1.15) to carbonyl C-1'' (δC 178.1) 

indicated the esterification of the daphnane skeleton at position 3 by an aliphatic substituent, whereas 

the second anchor point of the aliphatic side chain to the daphnane core at C-13 via the oxy-quaternary 

carbon C-15 is supported by correlations from H-16 (δH 1.63) to C-13, C-15 C-17, C-8'', C-9'' and  

C-10'', and from H-12 and H-14 to C-13. The location of the second oxymethylene groups at C-6 was 

established thanks to HMBC correlation from H-20 (δH 3.96) to C-6. 

Figure 4. Key COSY and HMBC (left), and ROESY (right) correlations of compound 2. 

 

The relative stereochemistry of compound 2 was determined by a careful analysis of its ROESY 

spectrum and through comparison with 1H and 13C-NMR data of that of trigocherriolides A-D [16]. 

Cross peaks between H-12/H-11, H-11/H-8, H-8/H-7 and H2-20/H-7/H-14 indicated that these protons 

have the same orientation, arbitrarily fixed as β, whereas the H-3/H-5 cross peak suggested a β-orientation 

of the ester aliphatic side chain at C-3 and the hydroxyl group at C-5 as depicted in Figure 4. 

Finally, the cross peak between the vinylic proton H-19 and H-3 indicated the stereochemistry of 

the double bond as E. The relative stereochemistry of the macrolactone was not determined due to its 

high flexibility and the long distance between stereogenic centers C-2'' and C-9'' with other ones. All 

these data allowed us to propose the structure depicted in Figure 1 for trigocherriolide E (2). 

The antiviral potency of compounds 1 and 2 was evaluated in a virus-cell-based assay against 

CHIKV. Compounds 1 and 2 reproducibly inhibited CHIKV-induced cell death with EC50 of 0.6 ± 0.1 

and 0.7 ± 0.1 µM (n = 3), respectively, and only caused a significant anti-metabolic effect at a 

concentration of 43 ± 16, and 6.6 ± 0.6 µM (CC50), allowing to calculate a selectivity index (SI or 

window for antiviral selectivity calculated as CC50 Vero/EC50 CHIKV) of 71.7 and 9.4, respectively. 

When compared with the biological data that were previously reported for trigocherrins A, B and F, 
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and trigocherriolides A-C [16,17], trigocherrierin A (1) exhibited the strongest anti-CHIKV activity as 

is apparent from its lower EC50 and higher SI values. From these results, it can be deduced that the 

chlorine atom is not essential for the anti-CHIKV activity, and that a different location of the 

orthobenzoate moiety at C-9, C-13, and C-14 (instead of C-9, C-12, and C-14 for other compounds of 

the series), does not affect the antiviral activity or selectivity. The anti-CHIKV activity of 

trigocherriolide E (2) is similar to that of trigocherriolides A–C, but with a slightly lower  

anti-metabolic effect (or more pronounced adverse effect on the host cells). 

3. Experimental  

3.1. General Information 

Optical rotations were determined at 25 °C with a JASCO P1010 polarimeter. UV spectra were 

recorded using a Perkin-Elmer Lamba 5 spectrophotometer. IR spectra were performed on a Nicolet 

FT-IR 205 spectrophotometer. NMR spectra were recorded in CDCl3 on a Bruker Avance 600 MHz 

instrument with TMS as internal standard, using a 1.7 mm microprobe. HR-ESIMS data were acquired 

on a Thermoquest TLM LCQ Deca ion-trap spectrometer. Silica gel (6–35 µm) and analytical plates 

(Si gel 60F 254) were purchased from SDS (Val de Reuil, France). Sephadex LH-20 was purchased 

from Sigma-Aldrich (Lyon, France). Kromasil analytical, semipreparative, and preparative C18 columns 

(250 × 4.5, 250 × 10, and 250 × 21.2 mm; i.d. 5 µm, Thermo) were used for HPLC separations using a 

Dionex autopurification system equipped with a binary pump (P580), a UV-Vis array detector  

(200–600 nm, Dionex UVD340U), and a PL-ELS 1000 ELSD detector (Polymer Laboratory now part 

of Varian, Les Ulis, France). All other solvents were purchased from SDS (France). 

3.2. Plant Material 

Leaves of T. cherrieri were collected in May 2009 in Poya Region on the west coast of New 

Caledonia. A voucher specimen (POU-0324) was deposited at the Herbarium of the Botanical and 

Tropical Ecology Department of the IRD Center, Nouméa, New Caledonia. 

3.3. Extraction and Isolation 

The leaves (1.2 kg) were successively extracted with EtOAc (4 × 1.5 L) and MeOH (4 × 1.5 L) at 

room temperature. The EtOAc extract (46 g) was subjected to a liquid/liquid partition between  

n-hexanes/MeOHaq (MeOH:H2O 90:10) leading to a non-polar fraction (40 g) and a polar fraction (6 g). 

The polar extract (6 g) was subjected to LH-20 column chromatography using an isocratic of MeOH 

100%, leading to 10 fractions F1 to F10. Fraction F4 (925 mg) was subjected to LH-20 column 

chromatography using an isocratic of MeOH 100%, leading to 10 sub-fractions F4-1 to F4-10.  

Sub-fraction F4-6 (221.8 mg) was purified onto a preparative C18 column using a gradient H2O-ACN 

(40:60 to 100:0 in 25 min) at 21 mL/min to afford trigocherrierin A (1, 0.6 mg). The purification of the 

sub-fraction F4-7 (98 mg) by semi-preparative HPLC with a C18 column using H2O-ACN (30:70 to 

100:0 in 50 min) at 3 mL/min allowed the isolation of trigocherrin F (0.9 mg), trigocherriolides B (1.4 mg) 

and C (0.4 mg). Sub-fraction F4-8 (7.8 mg) was purified to a semi-preparative C18 column using a 

gradient (H2O-ACN, 30:70 to 100:0 in 50 min at 3 mL/min) to afford trigocherrin F (0.1 mg), 
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trigocherriolides A (0.2 mg), B (0.1 mg), C (0.4 mg) and E (2, 0.1 mg). Fraction F6 (365 mg) was 

subjected to LH-20 column chromatography using an isocratic of MeOH 100%, leading to 9 sub-fractions 

F6-1 to F6-9. The purification of the sub-fraction F6-5 (60 mg) by semi-preparative HPLC using a 

gradient H2O-ACN (25:75 to 10:90 in 40 min) at 3 mL/min allowed the isolation of trigocherrierin A 

(1, 0.6 mg) and trigocherrin A (0.3 mg). Sub-fraction F6-6 (56 mg) was purified to a semi-preparative 

C18 column using a gradient H2O-ACN (20:80 to 0:100 in 50 min) at 3 mL/min to afford trigocherrin F 

(0.1 mg), trigocherriolides B (0.8 mg) and C (0.7 mg). The purification of the sub-fraction F6-7  

(22 mg) by semi-preparative HPLC with a C18 column using H2O-ACN (30:70 to 100:0 in 50 min) at  

3 mL/min allowed the isolation of trigocherrin B (0.6 mg) and trigocherriolides B (0.7 mg), C (1.2 mg) 

and E (2, 1.0 mg). 

3.4. Spectral Data 

Trigocherrierin A (1). White amorphous powder; [α]25
D +20 [c 0.02, MeOH]; UV [MeOH] λmax (log ε) 

208 (3.92) nm; 1H-NMR (CDCl3, 600 MHz) and 13C-NMR (CDCl3, 150 MHz), see Table 1; 

HRESIMS m/z 669.3652 [M+H]+ (calcd for C38H53O10, 669.3639). 

Table 1. NMR spectroscopic data (150 and 600 MHz, CDCl3) for 1 and 2. 

Position
1 2 

δC δH, mult. (J in Hz) δC δH, mult. (J in Hz) 

1 127.0 5.64, s 126.2 6.45, s 
2 137.0 - 139.9 - 
3 83.2 4.36, brs 78.8 5.20, s 
4 78.7 - 84.0 - 
5 75.5 4.06, s 72.2 4.01, s 
6 61.5 - 61.0 - 
7 63.9 3.40, s 63.2 3.29, brs 
8 35.6 3.21, s 35.0 4.46, brs 
9 82.0 - 75.0 - 

10 52.2 3.56, s 148.9 - 
11 39.2 2.92, q (7.0) 34.9 2.64, m 
12 71.5 5.25, d (8.0) 79.5 4.23, brs 
13 87.0 - 75.8 - 
14 82.6 4.59, brs 79.7 4.55, brs 
15 142.5 - 75.8 - 
16 113.2 4.98, s/5.17, s 35.9 1.54, m 

1.63, brd (13.6) 
17 19.8 1.73, brs 65.7 3.73, d (10.8) 

3.83, d (10.8) 
18 11.5 1.09, d (7.0) 14.0 1.21, d (7.4) 
19 13.8 1.69, s 115.3 6.08, s 
20 65.7 3.68, m/3.92, d (11.5) 65.8 3.61, m/3.96, m 
1' 118.3 - 108.8 - 
2' 135.7 - 138.6 - 

3', 7' 126.4 7.73, m 125.4 7.70, m 
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Table 1. Cont. 

Position
1 2 

δC δH, mult. (J in Hz) δC δH, mult. (J in Hz) 

4', 6' 128.2 7.35, m 128.4 7.38, m 
5' 129.7 7.35, m 129.8 7.37, m 
1'' 176.6 - 178.1 - 
2'' 40.0 2.44, q (7.0) 41.7 2.46, m 
3'' 33.6 1.64, m 35.0 1.35, m/1.64, m 
4'' 27.6 1.12–1.23, m 31.2 1.09, m/1.32, m 
5'' 29.9 1.12–1.23, m 26.9 1.24, m 
6'' 29.7 1.12–1.23, m 29.1 1.15, m/1.35, m 
7'' 29.7 1.12–1.23, m 27.5 1.20, m/1.41, m 
8'' 32.1 1.12–1.23, m 38.4 1.21, m/1.34, m 
9'' 22.9 1.26, m 25.9 1.59, m 

10'' 14.3 0.85, t (7.0) 24.3 0.99, d (6.0) 
11'' 17.5 1.12, d (7.0) 18.7 1.15, d (7.0) 

Trigocherriolide E (2). White amorphous powder; [α]25
D −47 [c 0.1, MeOH]; UV [MeOH] λmax (log ε) 

255 (4.25) nm; IR υmax 3460, 1710 cm−1; 1H-NMR (CDCl3, 600 MHz) and 13C-NMR (CDCl3, 150 MHz), 

see Table 1; HRESIMS m/z 733.3018 [M+H]+ (calcd for C38H50O12Cl, 733.2991). 

3.5. Chikungunya Virus-Cell Based Antiviral Assay 

Serial dilutions of the plant extract, fractions, or pure substances, as well as of the reference 

compound chloroquine, were prepared in assay medium [MEM Rega3 (cat. No. 19993013; 

Invitrogen), 2% FCS (Integro, Zaandam, The Netherlands), 5 mL of 200 mM L-glutamine, and  

5 mL of 7.5% sodium bicarbonate] that was added to empty wells of a 96-well microtiter plate (Falcon, 

BD, Haasrode, Belgium). Subsequently, 50 µL of a 4× virus dilution in assay medium was added, 

followed by 50 µL of a cell suspension. This suspension, with a cell density of 25,000 cells/50 µL, was 

prepared from a Vero cell line subcultured in cell growth medium (MEM Rega3 supplemented with  

10% FCS, 5 mL of L-glutamine, and 5 mL of sodium bicarbonate) at a ratio of 1:4 and grown for  

7 days in 150 cm² tissue culture flasks (Techno Plastic Products Menen, Belgium). The assay plates were 

returned to the incubator for 6–7 days (37 °C, 5% CO2, 95%–99% relative humidity), a time at which 

maximal virus-induced cell death or cytopathic effect (CPE) is observed in untreated, infected controls. 

Subsequently, the assay medium was aspired, replaced with 75 µL of a 5% MTS (Promega, Leiden, 

The Netherlands) solution in phenol red-free medium, and incubated for 1.5 h. Absorbance was 

measured at a wavelength of 498 nm (Safire2, Tecan, Mechelen, Belgium); optical densities (OD 

values) reached 0.6–0.8 for the untreated, uninfected controls. Raw data were converted to percentage 

of controls, and the EC50 (50% effective concentration, or concentration that is calculated to inhibit 

virus-induced cell death by 50%) and CC50 (50% anti-metabolic concentration, or concentration that is 

calculated to inhibit the overall cell metabolism by 50%) were derived from the dose-response curves. 

Selectivity Index (SI) was determined as the ratio of CC50 to EC50. All assay conditions producing an 

antiviral effect that exceeded 50% were checked microscopically for minor signs of CPE or adverse 

effects on the host cell (i.e., altered cell morphology, etc…). A compound is only considered to elicit a 
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selective antiviral effect on virus replication when, following microscopic quality control, at least at 

one concentration of compound, no CPE nor any adverse effect is observed (image resembling 

untreated, uninfected cells). Multiple, independent experiments were performed. Chloroquine was used 

as positive control (CC50 = 89 ± 28 µM; EC50 = 10 ± 5 µM (SI = 8.9). 

4. Conclusions 

The chemical investigation of Trigonostemon cherrieri leaves EtOAc extract has led to the isolation 

in trace quantities of two new DDOs, named trigocherrierin A (1) and trigocherriolide E (2), and six 

chlorinated analogues, previously isolated from the bark and wood. Within this chemical series, 

trigocherrierin A (1) exhibited the most potent anti-CHIKV activity. Finally, from these data, it can be 

deduced that the chlorine atom is not essential for the biological activity. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/19/3/3617/s1. 
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