Supplementary Materials

Figure S1. The time-dependent inhibition of the MMNAT by the piperidinols (A) compounds 1, 3, 4, 6 at 11.9 μ M concentration (B) 5, 7 at 5.9 μ M concentration and (C) 8, 9 (11.9 μ M).

Semi-logarithmic plots showing the time-dependent inactivation of MMNAT by (A) compounds 1, 3, 4, 6 at 11.9 μ M concentration (B) 5, 7 at 5.9 μ M concentration and (C) 8, 9 (11.9 μ M), 10 (23.8 μ M) and 11 (5.9 μ M). The enzyme activity was measured using the protocol described in [1]. The results are presented as the mean \pm S.D. of triplicate measurements. The error bars are within the symbols. The residual activity is shown as a percentage of a control. The data were fitted against the incubation time using the Semilog line (X is linear, Y is Log) module of GraphPad Prism 5.0. The slope of each line is equivalent to $(-k_{obs}/2.303)$ at each inhibitor concentration.

Figure S2. Correlation between $t_{1/2}$ with the molar critical volume and cLogP of the piperidinols. $t_{1/2}$, the critical volume and cLogP values were obtained as described in Table 1. (**A**) No correlation was found between $t_{1/2}$ and critical volume with $r^2 = 0.04$ and p = 0.53. (**B**) No correlation was found between $t_{1/2}$ and cLogP, with $r^2 = 0.07$ and p = 0.43. The correlation coefficient (squared, r^2) and p value were calculated by the Correlation module of GraphPad Prism 5.0.

Figure S3. Electron density in active site of MMNAT.

The excess 2Fo–Fc electron (0.9 σ) observed in the MMNAT-1 complex (PDB entry 4c5p; [2]) obtained by soaking a crystal of MMNAT in 1 mM compound 1 dissolved in the mother liquor [2]. A model of compound 1 (in pink) docked in this electron density using COOT [3] is also shown. The electron density corresponds to the oxidation of the cysteine residue Cys70 into sulfenic acid (CSO70, occupancy 75%). The key amino acid residues are labelled. The figure was prepared using PyMOL [4].

Figure S4. The 3D-shape of compound **1** in comparison with the shapes of compounds **15** and **16**. The mesh view of the 3D-shape in form of Van der Waals surface of the query **1** conformer used in the *in silico* screen, the active hits **15** and **16**. The figure was prepared by using the DS Visualizer 3.1.

Figure S5. The Alamar blue assay of *M. bovis* BCG with **15** and INH as a control. The inhibition of *M. bovis* growth in liquid media was assessed from the colour change of the Alamar blue at 24 h of incubation as shown. A red colour indicates growth/resistance, and blue indicates no growth/sensitivity. The results are compared to those obtain with isoniazid (INH). MICs were determined visually. Note different scale.

Figure S6. ¹H-NMR (400 MHz CDCl₃ Bruker AV400 spectrometer) of compound 1.

Figure S8. ¹H-NMR(400 MHz CDCl₃ Bruker AV400 spectrometer) of compound 3.

Table S1. The chemical scaffolds of the tested 3D-shape hits with their in silico scores and their experimental activities against TBNAT and MMNAT a.

Code	Structure	ElectroShape score	<i>In silico</i> hit rank	TBNAT		MMNAT	
				% Inhibition	IC ₅₀ (μM)	% Inhibition	IC ₅₀ (μΜ)
1	N OH	0.995	1	101 ± 2	7.7 ± 0.9	105 ± 1	1.3 ± 0.0
12	O OH	0.949	8	16 ± 5	ND	35 ± 3	ND
13	HO N=N	0.935	46	−17 ± 1	ND	23 ± 2	ND
14	HO N N S	0.931	68	-21 ± 3	ND	31 ± 5	ND
15	OH OO	0.964	5	86 ± 2	20 ± 3	103 ± 3	1.0 ± 0.1

Table S1. Cont.

	Structure	ElectroShape score	<i>In silico</i> hit rank	TBNAT		MMNAT	
Code				% Inhibition	IC ₅₀ (μM)	% Inhibition	IC ₅₀ (μM)
16	O N O F	0.930	70	-14 ± 3	ND	99 ± 1	6.4 ± 0.6
17	N N N	0.937	76	-35 ± 1	ND	12 ± 2	ND
18	N H N O	0.923	91	14 ± 6	ND	16 ± 2	ND
19	HON	0.931	66	11 ± 6	ND	10 ± 1	ND

Table S1. Cont.

Code	Structure	ElectroShape score	<i>In silico</i> hit rank	TBNAT		MMNAT	
				% Inhibition	IC ₅₀ (μM)	% Inhibition	IC ₅₀ (μM)
20	O N N	0.923	90	9 ± 7	ND	21 ± 4	ND
21	O O O	0.928	76	−15 ± 4	ND	3 ± 3	ND
22	HN	0.921	100	5 ± 1	ND	57 ± 1	ND
23	O O O O O O O O O O O O O O O O O O O	0.940	24	−13 ± 1	ND	46 ± 2	ND

^a Compound 1 was used as a query molecule. The rank of the hits, according to the ElectroShape scores, are shown alongside the corresponding scores. The NAT activity was measured by the NAT-inhibition assay using 150 μM HLZ and 120 μM Ac-CoA as substrates as described Methods. The percentage of enzyme inhibition was measured in the presence of 50 μM inhibitor and compared to the un-inhibited control. The IC₅₀ values were determined by measuring the enzyme activity in the presence of variable concentrations of each inhibitor (0–250 μM) and compared to the un-inhibited control. The results are presented as the mean \pm S.D. of triplicate measurements. ND is not determined. Inhibition curves obtained by non-linear fitting of the % inhibition and the inhibitor concentration (μM) using the Log(inhibitor) vs. response module of GraphPad Prism 5.0.

References

- 1. Abuhammad, A.; Fullam, E.; Lowe, E.D.; Staunton, D.; Kawamura, A.; Westwood, I.M.; Bhakta, S.; Garner, A.C.; Wilson, D.L.; Seden, P.T.; *et al.* Piperidinols that show anti-tubercular activity as inhibitors of arylamine N-acetyltransferase: An essential enzyme for mycobacterial survival inside macrophages. *PLoS One* **2012**, *7*, e52790.
- 2. Abuhammad, A. Arylamine *N*-Acetyltransferases from Mycobacteria: Investigations of a Potential Target for Anti-Tubercular Therapy. Ph.D. Thesis, University of Oxford, Oxford, UK, April 2013.
- 3. Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. *Acta Crystallogr.*, *Sect. D: Biol. Crystallogr.* **2010**, *66*, 486–501.
- 4. Schrodinger, LLC. *The PyMOL Molecular Graphics System*, version 1.3r1; Schrodinger, LLC: Camberley, UK, 2010.