Supplementary Materials

Oligonucleotides used for	Sequence (5' -3')
selection	
T7g10M.F48	TAATACGACTCACTATAGGGTTAACTTTAAGAAGGAGATATACATATG
NNK _n	GCTGCCGCTGCCGCTGCCGCA(MNN) _n CATATGTATATCTCCTTCTTAAAG
CGS3an13.R39	TTTCCGCCCCCGTCCTAGCTGCCGCTGCCGCTGCCGCA
puromycin linker	d(pCTCCCGCCCCCGTCC)-(SPC18)5-d(CC)-puromycin

Table S1. Oligonucleotides used in the selection.

Data Collection	PfMATE + D8	
Wavelength (Å)	0.91000	
Space group	H3	
Unit cell parameters	<i>a</i> = 152.8, <i>b</i> = 152.8	
(Å, °)	c = 163.0	
	$\alpha = 90.0, \beta = 90.0$	
	$\gamma = 120.0$	
Resolution (Å)	50-3.22 (3.36-3.22)	
Unique reflections	23064	
Total reflections	869988	
Completeness	100 (100)	
$I/\sigma(I)$	4.34 (1.95)	
Redundancy	12 (9.0)	
R _{sym}	0.390 (0.648)	
Refinement		
Resolution (Å)	47.8-3.22	
No. reflections	22937	
R_{work}/R_{free}	0.280/0.317	
	(0.391/0.393)	
No. atoms	5857	
protein	5799	
cyclic peptide	58	
water	7	
B-factors		
protein	73.6	
cyclic peptide	226	
water	11.5	
R.m.s deviations		
Bond length (Å)	0.003	
Bond angles ([°])	0.833	

Table S2. X-ray data collection.

The numbers in parentheses are for the highest resolution shell. $*R_{sym} = \Sigma |I_{avg} - I_i| / \Sigma I_i$. $^{\dagger}R_{cullis} = \Sigma |E|/\Sigma||F_{PH}$ $|-|F_P||$, where F_{PH} is the amplitude of the protein plus the heavy atom and F_P is the amplitude of the protein. $^{\ddagger}Phasing power = r.m.s.$ ($|F_H|/E$), where $|F_H|$ is the heavy atom structure-factor amplitude and *E* is the residual lack of closure error. $^{\ddagger}Figure of merit = \langle |\Sigma P(\alpha) \exp(i\alpha)/\Sigma P(\alpha)| \rangle$, where α is the phase and $P(\alpha)$ is the phase probability distribution. **Figure S1.** Genetic code reprogramming and the FIT system. (**A**) The reprogrammed genetic code used for the initiation of ribosomal peptide synthesis; (**B**) Charging of initiator tRNA^{fMet}_{CAU} with either *N*-(2-chloroacetyl)-L-phenylalanine or *N*-(2-chloroacetyl)-D-phenylalanine using flexizyme (eFx). Cyclization occurs spontaneously upon incorporation of a downstream cysteine; (**C**) Schematic representation of one round of *in vitro* selection from round 2 or a higher round.

Α

2nd							2nd			
1st	U	С	A	G	3rd		1st	U	С	A
U	Phe	Ser	Tyr	Cys	У		U	Phe	Ser	Tyr
	Leu		Stop	Stop Trp	A G	•		Leu	Ser	Stop
с	Leu	Pro	His	Arg	UCAG		с	Leu	Pro	His
			Gln					Leu	Pro	Gln
A	lle	Thr	Asn	Ser	ų			lle	Thr	Asn
	fMet/Met		Lys	Arg	Â G		A	CIAc- ^{L,D} F	Thr	Lys
			Asp		<u>у</u>			Val	Ala	Asp
G	Val	Ala	Glu	Gly	Ă G		G	Val	Ala	Glu

3rd

U C A G

U C A G

U C A G

UCAG

G Cys

Trp Arg

Arg Ser

Arg Gly

Gly

Figure S2. Progress of the selections. The progress of the selections whose binding step was performed at 4 $\,^{\circ}$ C of the (A) ^LF-Library and (B) ^DF-Library. The progress of the selections whose binding step was performed at 37 $\,^{\circ}$ C of the (C) ^LF-Library and (D) ^DF-Library. The rounds represented farthest to the right are the competition rounds, c-Round 6. Percentages of peptides bound were determined by dividing the amount of recovered cDNA by the amount of input macrocyclic peptide-mRNA conjugate.

Figure S3. Percentages of peptides bound from single-clone display assays.

Figure S4. MaD8 concentration-dependent increase in the rate of accumulation of intracellular EtBr. Errors bars were calculated from four separate trials.

Time, Seconds

Figure S5. Chemical structure of MaD8F.

MaD8F

