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Abstract: Coding of biological information is not confined to nucleic acids and proteins. 

Endowed with the highest level of structural versatility among biomolecules, the glycan 

chains of cellular glycoconjugates are well-suited to generate molecular messages/signals 

in a minimum of space. The sequence and shape of oligosaccharides as well as spatial 

aspects of multivalent presentation are assumed to underlie the natural specificity/selectivity 

that cellular glycans have for endogenous lectins. In order to eventually unravel structure-

activity profiles cyclic scaffolds have been used as platforms to produce glycoclusters and 

afford valuable tools. Using adhesion/growth-regulatory galectins and the pan-galectin 

ligand lactose as a model, emerging insights into the potential of cyclodextrins, cyclic 

peptides, calixarenes and glycophanes for this purpose are presented herein. The systematic 

testing of lectin panels with spatially defined ligand presentations can be considered as a 

biomimetic means to help clarify the mechanisms, which lead to the exquisite accuracy at 

which endogenous lectins select their physiological counterreceptors from the complexity 

of the cellular glycome. 
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1. The Concept of the Sugar Code 

The ubiquitous presence of post-translational modifications, especially phosphorylation, teaches the 

lesson that it is more than its sequence that determines a protein’s activity profile. A covalent 

conjugation is able to convey new properties to the protein scaffold [1,2]. As a consequence, the range 

of protein functionality is likely broadened when processed. Sharing a frequent occurrence with 

phosphorylation, glycosylation, mostly on cell surface and extracellular proteins (from a 

monosaccharide to long and even highly branched chains), is known to be an integral part of this 

system of protein substitutions [3–10]. Clinically, the emerging insights into etiology of aberrations 

caused by congenital diseases of glycosylation and gain-of-glycosylation mutations are story-telling 

incidences to illustrate that glycans are not merely inert or readily interchangeable appendices for the 

protein [11–13]. Genetic engineering of animal models, too, underscores the essential nature of 

glycosylation. Serious defects up to embryonic lethality or neonatal death are caused after ablation of 

N-glycan synthesis (for recent review, please see [14]). In fact, these noted associations are already 

warranting the monitoring of glycan structure in detail, and this work, applying a combination of 

technically sophisticated methods, has revealed a level of structural complexity not reached by any 

other type of protein modification [15,16].  

The intricacies of the underlying enzymatic machinery, with estimates that at least 1% of the 

genomic coding capacity is reserved for these enzymes [17], together with enormous versatility of 

regulation to dynamically shift the glycome profile by remodeling, are the means to let glycosylation 

become a highly refined process [5,6,18,19]. To give instructive examples, the introduction of certain 

sugars into glycan chains depends not just on one or a few enzymes. Instead, the fucosylation of 

mammalian glycans, a characteristic of branch ends and the N-glycan core, can be accomplished by 

thirteen transferases [20,21]. Twenty members belong to the family of sialyltransferases, which are 

also dedicated to generate elaborate glycan termini [22,23]. Next, the physiological fine-tuning 

depending on the availability of substrates comes into play to give the glycome its shape; the 

physiological impact of several types of glycoenzymes, for instance, was crucial to explain the role of 

glycan reprogramming on the pathway of how a tumor suppressor drives malignant cells into anoikis [24]. 

Nucleotide sugar transporters, too, deserve to be mentioned, harming their activity being another cause 

of diseases [25]. As a consequence, the glycophenotype, resulting from the interplay of all these 

components, can be considered as being as characteristic as a fingerprint for a cell, and carbohydrates 

can be viewed as a chemical platform to encode biological information. 

Toward this end, that is to serve as the third alphabet of life alongside nucleotides and amino acids, 

sugars have exceptional chemical properties. They actually enable the sugar ‘letters’ to reach an 

unsurpassed level of coding capacity. Although these features are basic in nature, they deserve to be 

mentioned in this context to raise awareness for how well sugars are adapted to building code words. 

Structural variability is possible not just by changing the sequence, as in proteins or nucleic acids. 

Beyond that, the following parameters can be independently altered when turning units (letters) into 

oligomers (words): the anomeric status, the linkage position between sugar units, the ring size, 

branching in oligosaccharides and introduction of site-specific substituents such as acetylation, 

phosphorylation or sulfation [26,27]. When the synthesis of the glycans is finally completed, their 

presentation by cell surface glycoproteins (and also by the class of glycolipids [28]) brings these 
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determinants into a strategic position for recognition events. In other words, owing to the generation of 

bioepitopes with a maximum of information in a minimum of space at readily accessible sites 

functional implications immediately arise.  

In principle, the presence of the glycans can affect protein properties (acting in cis) or the sugar 

epitope constitutes an entirely new site for recognition by respective receptors (acting in trans). 

Intriguingly, a single sugar unit can act like a switch for the glycan’s three-dimensional structure, 

hereby building a bridge from the descriptive nature of glycophenotyping to what the respective sugar 

addition (e.g., core substitutions in N-glycans) then triggers [29–32]. One effect is to cover surface 

regions of the protein so that the glycan’s shape modulates the potential for contacts to other proteins, 

in oligomerization and other types of inter-protein contacts. Also, stability and trafficking can depend 

on sugar signals, a wide field to be explored diligently [5,6,9,12,33]. Having herewith introduced the 

concept of the sugar code, i.e. biological information storage by glycans and transfer into effects via 

different routes, we can proceed to looking at the mentioned translators of the sugar code, i.e., sugar 

receptors (lectins). 

2. Glycans as Bioactive Ligands for Lectins 

The specificity of carbohydrate recognition originates from the structural complementarity between 

the sugar and a protein. Hydrogen-bond networks (without or with involvement of water molecules) 

and C-H/π-interactions between a patch of suitably positioned C-H bonds (e.g., in D-galactose) and a 

Trp residue cooperate along the way to give a snug fit [34–36]. In special cases, the presence of an 

anionic sugar part (e.g., in sialylated glycans) accounts for ionic bonds. Sensing the distinct mode of 

presentation of axial/equatorial hydroxyl groups of common “letters” of the sugar alphabet can also 

involve Ca2+-ion(s) and coordination bonds [37]. These recognition modes combined, not 

onlyoligosaccharides but monosaccharides such as galactose vs mannose can readily be distinguished 

by lectins, as technically simple assays such as inhibition of lectin-mediated haemagglutination attest. 

To get a feeling for the extent of the physiological range of interactions via glycan recognition it is 

instructive to delineate the number of different protein folds with the capacity to bind sugars. A small 

number would indicate this type of recognition to be more a peculiarity than a frequently encountered 

mechanism. That would mean that the immense potential of the sugar code outlined above would not 

really be realized. 

As the compilation in Table 1 documents, up to 14 different folds have proven capacity for glycan 

binding. In each case, examples for respective animal/human lectins are given together with 

information on glycan ligands. The proteins in the different families cover a wide range of activities, 

on the level of glycan routing and transport, cell adhesion and growth regulation as well as host 

defense, to give a few examples (for further information, please see [35,36]). Of note, the binding is 

remarkably specific to the cellular glycoconjugate, which is the target to ensure the correct flow of 

information. Despite a large number of theoretically possible contact sites, for example -galactosides, 

the lectins are indeed capable to home in on particular glycoproteins/glycolipids or glycosaminoglycan 

sequences, posing the challenge to identify the underlying molecular reasons. Fittingly, physiologic 

regulation works on both sides of the recognition system for optimal responsiveness, i.e., the 

presentation of the lectin and of its glycan counterreceptor(s), seen in distinct contexts of cell adhesion 
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or growth regulation [38–41]. In addition to making a lectin-reactive epitope available by dynamic 

remodeling or neosynthesis, topological factors appear to play a major role to guide the selection 

process. On the side of the glycans, six levels of affinity regulation have been identified, which 

underlie detectable preferences [36]. Spatial vicinity of ligands, as facilitated within microdomains so 

that perturbation of their integrity harms lectin reactivity [42], is an efficient means to build preferred 

contact regions, in terms of affinity and the nature of the counterreceptor. Depending on the cell type a 

particular glycoprotein (such as the 51-integrin) or a ganglioside (GM1) can be the main binding 

partner for the same endogenous lectin, the association then setting in motion a post-binding signaling 

cascade, e.g., toward anergy, anoikis or growth arrest [39,40,43]. Of course, the in situ constellations 

operative in turning structure (at each of the six levels mentioned above) into distinct effects set 

attractive role models for the synthetic design of glycoclusters. 

Table 1. Overview of folds with capacity to bind sugars and of lectin classes. 

Type of fold Example for lectin Example for ligand 

-sandwich (jelly-roll) 

(a) galectins 
(b) calnexin, calreticulin 

(c) ERGIC-53, VIP36, VIPL 
(d) CRD a of Fbs1 in SCF E3 ubiquitin ligase 

and peptide-N-glycanase 

-galactosides 
Glc1Man9GlcNAc2 

ManxGlcNAc2 
Man3GlcNAc2; mannopentaose 

 

 (e) pentraxins 
glycosaminoglycans, MODG, 3-
sulfated Gal, GalNAc and GlcA, 

Man-6-phosphate 

 
(f) G-domains of the LNS family (laminin, 

agrin) 
heparin 

C-type 
asialoglycoprotein receptor,  

collectins, selectins 
Fuc, Gal, GalNAc, Man, heparin 

tetrasaccharide 

I-type (Ig fold) N-CAM, TIM-3, siglecs 
Man6GlcNAc2, HNK-1 epitope, 

2,3/6-sialylated glycans 

P-type 
mannose-6-phosphate receptors (MR) and 

proteins with MR homology domain (erlectin, 
OS-9) 

Man-6-phosphate, Man5,8GlcNAc2 

-trefoil 

(a) fibroblast growth factors 
(b) cysteine-rich domain of C-type 

macrophage mannose receptor 
(c) lectin domain in GalNAc-Tsb involved in 

mucin-type O-glycosylation 
(d) hemolytic lectin CEL-III of sea cucumber 

and lectin EW29 of earthworm 

heparan sulfate 
GalNAc-4-sulfate in LacdiNAc 

 
 

GalNAc 
 
 

Gal 

-propeller 
(a) 4-bladed: tachylectin-3 
(b) 5-bladed: tachylectin-2 
(c) 6-bladed: tachylectin-1 

S-type lipopolysaccharide 
GlcNAc/GalNAc 

KDO 

-propeller 
(a) 4-bladed: tachylectin-3 
(b) 5-bladed: tachylectin-2 
(c) 6-bladed: tachylectin-1 

S-type lipopolysaccharide 
GlcNAc/GalNAc 

KDO 
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Table 1. Cont. 

Type of fold Example for lectin Example for ligand 

   
-prism I secretory proteins zg16p/b not defined 
-prism II pufferfish (fugu) lectin Man 

-barrel with jelly-roll topology 
tachylectin-4, eel (Anguilla anguilla) 

agglutinin, X-epilectin 
Fuc 

fibrinogen-like domain 

(a) ficolins 
(b) intelectins (mammalian, Xenopus) 

(c) tachylectin-5 
(d) slug (Limax flavus) lectin 

GlcNAc 
Galf, pentoses 

N-acetylated sugars 
sialic acid 

link module 
CD44, TSG-6, LYVE-1, aggregating 

proteoglycans 
hyaluronic acid 

hevein-like domain 
tachycytin and spider (Selenocosmia 
huwena) neurotoxin; cobra venom 

cardiotoxin 

GalNAc; heparin-derived 
disaccharide 

(/)8 barrel 
(glycoside hydrolase family 18) 

YKL-40 (human cartilage 
glycoprotein-39; chitinase-like lectin) 

(GlcNAc)n 

short consensus repeat 
(complement control protein 

module) 
factor H (complement regulator) glycosaminoglycans, sialic acid 

a carbohydrate recognition domain, bN-acetylgalactosaminyltransferases; adapted from [44],  
with permission. 

The most telling example concerns the first mammalian lectin purified from rabbit liver, a hepatic 

receptor acting in clearance of glycoproteins from serum [45]. Testing its glycan reactivity, a 

geometrical increase of affinity was measured to arise from a numerical increase of valency in 

oligosaccharides when targeting this C-type lectin (please see also Table 1) [46]. Besides natural or 

synthetic N-glycans, cluster glycosides have been instrumental to trace the intriguing correlation of 

matching complementarity between ligand and receptor presentation [46–50]. These results led to the 

definition of the glycoside cluster effect, i.e., the affinity enhancement by multivalency over and 

beyond what is expected from the concentration increase [46,51]. In order to discern rules for the 

correlation between the topological aspects of ligand presentation and the lectin structure it is 

reasonable to focus on a certain family of lectins as test model system. For the scope of this review, we 

do so by dealing exclusively with adhesion/growth-regulatory galectins. Being deliberately placed in 

the top part of Table 1, these lectins share a -sandwich fold and a sequence signature with a central 

Trp residue essential for the C-H/π-interaction with galactose noted above [36], a feature readily 

monitored using NMR and fluorescence spectroscopy [52–54]. 

3. Galectins: a Network of Bioeffectors 

The common structural traits noted above concern the carbohydrate recognition domain (CRD) of 

galectins. Since the levels of affinity and specificity for cellular glycans, as well as functionality 

depend on more than monovalent binding, the active lectin is in general more than a single CRD. 

Examples of growth regulation by human galectin-1, given above [39–41,43], show that this lectin can 
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be expected to initiate signaling by cross-linking of counterreceptors, and, indeed, its structure is 

homodimeric [55]. Within the family of galectins, the relative spatial arrangement of CRDs divides 

these proteins into three groups: the homodimeric (proto-type) and the tandem-repeat-type family 

members, the latter with a linker peptide connecting two different CRDs, along with the chimera-type 

galectin-3 which harbors an N-terminal peptide with sites for Ser phosphorylation and collagen-like 

repeats enabling oligmerization in the presence of multivalent ligands [56–58] (Figure 1). Thus, the 

capacity of individual proteins to cross-link counterreceptors, as measured in precipitation analysis 

with a multivalent glycoprotein [59], and the stoichiometry of the complexes is expected to be 

different so that even functional competition can be predicted. Apparently, this is the case in blocking 

galectin-1’s growth-inhibitory activity on neuroblastoma and pancreatic cancer cells by the chimera-type 

galectin-3 [60,61]. Although different in spatial CRD display, the two lectins share specificity to the 

same glycoconjugate in these cells. Galectin-3 hereby precludes galectin-1 binding but fails to trigger the 

post-binding signaling leading to growth arrest in the tested cell systems. Because galectins physiologically 

form a complex network, with different proteins expressed for example in tumors [58,62–65], it is a 

pertinent issue to establish individual structure-activity profiles. Keeping the sugar structure constant 

by using the pan-galectin ligand lactose (or N-acetyllactosamine, LacNAc), glycoclusters are suited for 

this project line. 

Figure 1. Schematic illustration of the three types of spatial CRD presentation in galectins, 

using the five chicken galectins as example. The ten Gly/Pro-rich repeats in CG-3 and  

the lengths of the linker peptide in CG-8 given in number of amino acids are indicated  

(from [66], with permission).  

 

Given the different degrees of intra-group diversification in phylogenesis, these experimental series 

can be run with the complex set of mammalian lectins, to connect the data to biomedical 

considerations, or, benefiting from organisms having a comparatively low number of galectin genes, 

with all proteins of such a restricted set of proteins. As shown in Figure 1, five galectins establish the 

entire panel of chicken galectins (CG), with representatives of each group included, i.e., three 

homodimeric, one chimera-type and one tandem-repeat-type protein expressed with two linker lengths 
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due to alternative splicing [58,67–72]. Regardless of the origin of the galectins the parameter measured 

in assays with the synthetic compounds is the inhibitory capacity of glycoclusters on the extent of 

galectin binding to a glycan-presenting matrix. Noting that galectins can be secreted and exert activity 

as lectins in auto- or paracrine manners on the level of the cell surface (e.g., in tumor growth regulation 

or in communication between effector and regulatory T cells [73]), the galectin is strictly kept in 

solution mimicking the physiological situation, while the binding partner is either a glycoprotein  

(e.g., asialofetuin) adsorbed to the surface of a well of a microtiter plate or a cell surface. The presence 

of an inhibitor will then reduce the read-out. Cell scanning is performed in cytofluorometric analysis 

and monitored in terms of percentage of positive cells and mean fluorescence intensity (Figure 2). 

With galectins as test proteins, four types of cyclic glycoclusters shown in Figure 3 have already been 

evaluated, with the review of the results herein starting with cyclodextrins. 

Figure 2. Schematic illustration of the principle of the experimental read-out in 

cytofluorometric analysis of glycocluster activity. When a labeled lectin binds to cell 

surfaces, the signal (in percentage of positive cells and mean fluorescence intensity) describes 

the cells’ reactivity (black line). The presence of an inhibitor reduces staining (dotted line), 

shifting the binding profile into the direction of the background value (grey area). 

 

4. Cyclodextrins, Cyclic Decapeptides and Calixarenes 

Cyclodextrins are macrocycles of between six to eight -D-glucose units produced by degradation 

of starch, which attract attention due to their high biocompatibility and solubility [74–76]. 

Persubstitution of the heptakis 6-deoxy-6-iodo--cyclodextrin core was performed with glycosides via 

their terminal sodium thiolate (for details, please see [77]). The chemical conjugation did not impair 

the reactivity of the sugar headgroup for lectins. Among the tested galectins, the relatively most 

sensitive protein was galectin-3 [78], monomeric in solution but capable to pentamerize in the presence 

of multivalent ligands [79]. 
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Figure 3. Schematic illustration of the structures of four cyclic scaffolds tested for galectin 

reactivity, i.e., -cyclodextrin, cyclic decapeptide, cone-type calixarene and glycophane. 

 

The homodimeric galectins-1 and -7 were less responsive [78]. Such a grading had been noted before 

with a triiodobenzene-based trivalent cluster, to which 2-propynyllactosides had been conjugated [80]. 

The relative level of inhibition for each protein also depended on the nature of the matrix, here this 

refers to the type of glycoprotein used and its degree of N-glycan branching [78], a result later 

confirmed when testing other types of glycoclusters [81]. Equally noteworthy, the efficiency of the 

lactosylated cyclodextrin in interfering with lectin binding was enhanced when tested on galectin-1-

presenting cells [78]. Whether the lectin is free in solution or associated to a cell affects the read-out, 
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precluding generalizations. This behaviour with single macrocycles was also observed with a 

pseudopolyrotaxane-based glycocluster, which had a beads-on-a-string arrangement with lactosylated 

cyclodextrin being “pearls” on a polyviologen “string” [82,83]. 

Similarly building on a natural scaffold, cyclic peptides have been decorated with sugar derivatives 

to generate neoglycopeptide clusters [84,85]. The decapeptides were tailored to have four attachment 

points for the derivatives via the side chain of the lysine moieties. A clear grading in susceptiblility 

was seen when moving from galectin-1 to galectins-3 and -4, both in the solid-phase and in the cell 

assays [86]. Obviously, the presence of the linker in the tandem-repeat-type galectin-4 alters the 

reactivity to glycoclusters in a bivalent protein, when compared to homodimeric galectin-1. A major 

affinity difference to the glycoprotein used as matrix had been excluded by calorimetric titrations with 

human galectins [87]. Since reducing the linker length has consequences for the selection of cell 

surface ligands [88], the elucidation of the way the linker affects positioning of the two CRDs for 

cross-linking becomes a topic for further study. Clearly, its presence means more than an increase in 

inter-CRD distance. 

This high level of sensitivity for galectin-4 was also seen with calixarenes [89]. In addition, the 

cone-like tetravalent presentation proved rather discriminatory between galectins-1 and -3. This 

calixarene display was later confirmed to be mostly inactive for galectin-1 when using an assay based 

on measuring surface plasmon resonance [90]. The differential reactivity between the two galectins 

could further be increased by an aromatic 3’-substitution at the galactose unit, yet unfavorably 

affecting solubility [91]. If it becomes an issue to preclude galectin-3 binding from cells, while 

maintaining surface binding of galectin-1, such a calixarene (please see Figure 3) with a substituted 

lactose becomes a possibility, although it is still cross-reactive with tandem-repeat-type members of 

the galectin family [91]. As a laboratory tool, an assumed functional divergence between galectins-1 

and -3 can then be verified without having to resort to manipulations on the genetic level. As seen in 

Figure 3, a further matrix belongs to the set of macrocycles tested with galectins, i.e., 

glyco(cyclo)phanes and their acyclic forms. Since this compound class has only recently begun to be 

explored for lectin reactivity, we add information on reactivity to a plant lectin when mannose  

is conjugated. 

5. Glyco(cyclo)phanes 

Similarly to cyclodextrins, this scaffold has received interest owing to its ability to accommodate 

guests such as sugars and hereby form inclusion complexes [92,93]. Also found naturally [94], the 

versatility in the degree of rigidity in the cyclophane scaffold has enabled the proposal of laboratory 

applications [95–97], including the testing of chiral variants of the scaffold for lectin ligand design. 

Presenting structural details beyond the model in Figure 3, two series of glycophane-based clusters are 

depicted in Figure 4. They have either a phenylenediamine or a xylylenediamine within the 

macrocycle, their acyclic analogues also shown, with mannose (1–4) and lactose (5–8) grafted to the 

scaffold as the lectin ligand. The mannose-bearing compounds are included here to illustrate the 

bioactivity of conjugates beyond galectins. The compounds 1 and 3 are diastereoisomeric glycophanes 

with -mannose headgroups, ascertaining the versatility of solid-phase and cell assays as well as 

testing for differences in relative bioactivities. The saccharides in 1 are linked by a butanediol chain 
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that has -glycosidic linkages to the glucuronic acid, whereas the linkages to the butanediol chain are 

-configured in 3. Compounds 2 and 4 are the corresponding acyclic analogues of 1 and 3. The 

substances 5–8 carry -lactose units for the interaction with galectins, to extend their comparative 

analysis with cyclic scaffolds. The lactose moieties in 7 are attached via a triazole-containing linker to 

position 4 of the glucuronic acid embedded in the glycophane. In 5, the lactose residues are conjugated 

directly to the position 3 of the glucuronic acid residue. An overview of the synthetic routes to these 

products is given in Scheme 1 for compounds 3–6 (compounds 1 and 2 were prepared in an analogous 

manner from -glucuronide 9) and Scheme 2 for compounds 7 and 8.  

Figure 4. Structures of macrocyclic glycophane scaffolds (blue) with mannose (1,3) or 

with lactose (5,7) and their acyclic analogues (2,4,6,8). 

 

The synthesis commenced from the -glucuronide 10 [98]; its deacetylation followed by formation 

of an acetylated 6,3-lactone intermediate that was subsequently reacted with allyl alcohol, afforded the 

glycosyl acceptor 11. The -mannose residue was attached to the glucuronic acid derivative by 

glycosidation with trichloroacetimidate 12, and subsequent Pd(0)-catalyzed removal of the allyl ester 

gave 13. Next, the Ugi reaction [99,100] was employed to produce 14; this was achieved in good yield 

(> 80%) in one pot by reacting 13 with phenylenediamine, formaldehyde and methyl isocyanoacetate. 

Removal of the acetate-protecting groups from 14 gave acyclic compound 4. Alternatively, ring 

closure metathesis (RCM) followed by alkene reduction and acetate removal led to ring closure, thus 

to glycophane 3. The diastereoisomers 1 and 2 were prepared from -glucuronide 9 by the same route 

of processing described for 3 and 4.  
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Scheme 1. Synthesis of compounds 3–6. 
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The acceptor 11 proved useful also in the synthesis of 5 and 6 [101]. Glycosidation with 

benzoylated lactose derivative 15 and subsequent allyl ester hydrolysis made 16 available. The 

coupling reaction of 16 with 1,4-xylylenediamine produced 17. Reduction and removal of the benzoyl 

groups generated 6, while RCM, alkene reduction and benzoyl group removal established the 

glycophane 5. As outlined in Scheme 2, the synthesis of compounds 7 and 8 was achieved from alkyne 

derivative 19, which was prepared according to literature procedures from the benzylidene 18 [66]. 

Alkyne 19 was converted to 20 in three steps, and then the copper-catalyzed azide alkyne 

cycloaddition (CuAAC) reaction [102] with azide 21 gave 22. Coupling using 1,4-xylylenediamine led 

to 23, which on deacetylation resulted in 8. When 23 was subjected to RCM [103,104] and the acetates 

were subsequently removed, this processing established the glycophane derivative 7. Overall, these 

glycophane based compounds are bivalent, without/with cyclization and it was postulated that they 

have different degrees of spatial flexibility for presenting the attached sugars. As a test case for this class 

of compounds, we here present information on modeling to sample a range of conformations and thus 

spatial headgroup constellations.  

Conformational searching techniques based on the previously reported approach using Macromodel 

8.0 to both compounds 1 and 2 [105,106] suggested that the lowest energy structures are conformers, 

where the two carbohydrate residues are stacked (Figure 5). It seemed unlikely due to the closeness of 

the headgroups that lectins would find access to such stacked sugars. Hence, the occurrence of 

extended conformers of both the glycophanes and their acyclic analogues in the trajectories were 

investigated by molecular dynamics simulations with Macromodel 8.0 (Schrodinger Inc., LLC, New 

York, NY, USA), to complement the earlier study [106]. 
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Scheme 2. Synthesis of compounds 7 and 8. 

 

Figure 5. Stacked (left) and extended (right) conformers that can potentially be accessed 

by the mannose-presenting macrocyclic (top) and acyclic (bottom) glycoclusters 1 and 2. 
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In general, stochastic dynamics was applied to a selected conformer at a temperature of 300 K with 

an equilibration time of 1 µs and a time step of 1.5 fs using the OPLS-AA force field in the gas phase. 

Before commencing the simulations for 1–4, the peptide side chains were also extended away from the 

carbohydrate to exclude forming hydrogen bonding with the carbohydrate residues. During each of the 

subsequent simulations 100–200 structures were sampled and an internal coordinate system established 

for determining three spatial parameters (Figure 6, top part). In detail, these were the distances 

between mannose anomeric carbon atoms (Å), a core dihedral, which is defined by atoms C-4 to C-1 to 

C-1 to C-4 of the mannose residues, and a glycosidic bond dihedral, which is defined by C1 to O1 to 

O1′ to C1′ of the mannose residues; the latter two parameters were obtained in order to reach a 

representation of the relative orientation of the mannose residues. Following these definitions of the 

coordinate system, the scatter plots which were generated are shown in Figure 6. 

These plots illustrate spatial arrangements accessed by the divalent mannosides 1–4. The panels in 

Figure 6 report that structures, in which the intermannose distance is <8 Å, are often stacked 

conformers, whereas those with a distance >10 Å can be considered to represent extended 

conformations. While some overlapping features are observed when comparing the scatter data for the 

different molecules, each has its own profile. 

Figure 6. Scatter plots of data for selected conformers of compounds 1–4 as generated 

from molecular dynamics simulations using Macromodel 8.0. The definitions of distance 

between mannose units, glycoside bond dihedral and core dihedral are shown at the top.  
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Figure 6. Cont. 

 

For example, macrocycle 1 and its acyclic counterpart 2 can access conformations, where the 

distance between mannose residues is ~15 Å and the glycoside bond dihedral angle varies from −50° 

to +50°. However, the core dihedral can change from 50°–150° for compound 1 and from 120° to 

−160° for compound 2. Thus, macrocyclization appears to induce a different core orientation between 

the two mannose residues, even though the distance between these residues and the glycoside bond 

dihedral may be similar in both the macrocyclic and the acyclic structures. When comparing both 

macrocycles 1 and 3, it is clear that the distance between mannose residues differs. The distances were 

found to vary from 6–14 Å for 3 but more restrained for 1 between 14–16 Å during the simulations; 

the increased rigidity of 1 compared to 3 can be viewed in respective movies of the dynamics 

simulations (for access, please go to http://youtu.be/yzZxCGNQ6j0 for compound 1 and 

http://youtu.be/RZObaf6MD24 for compound 3). 

In terms of bioactivity, the glycoclusters based on mannose were shown to be active as ligands for 

two leguminous lectins, with cyclization accounting for a trend toward enhanced activity [106]. As 

testing cells with shifts in the glycome revealed, the specific nature of the glycan display has a marked 

bearing on relative levels of inhibition [106]. Such an impact of structural aspects of glycosylation had 

been noted before when examining properties of different glycoproteins with complex-type N-

glycosylation in the solid-phase assay on galectins [78,81]. These observations preclude extrapolations 

and require the establishment of a broad experimental basis. They also attest reactivity of the presented 

mannose moieties to the plant lectins, encouraging work on the lactosides and galectins. 

Running the same protocols for the lactose-presenting compounds 5–8 containing  

1,4-xylylenediamine as opposed to the phenylenediamine unit in compounds 1–4 also led to stacked 

conformers. To interact with galectins extended conformations (Figures 7 and 8) may be more 

relevant. In this case of lactose, the core dihedral was defined by atoms Gal C-4 to Glc C-1 to Glc C-1′ 

to Gal C-4′ of the lactose residues, the galactose dihedral is the dihedral angle defined by Gal O-4 to 

Gal C-4 to Gal C-4′ to Gal O-4′ and the distance is that measured between the two anomeric carbon 

atoms of glucose (Figure 9). The scatter plots illustrate spatial arrangements accessible to the divalent 

lactosides 5–8, excluding stacked conformers. At inter-lactose distances of >10 Å extended 
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conformations will be reached. As noted above, each compound has its own conformational profile. 

Both macrocyclic compounds showed more rigidity in terms of distance between the lactose residues 

when compared with the acyclic analogues; the distance between lactose residues in compound 5 

varied from 14–16 Å, increasing to 19–23 Å for 7, what reflects the impact of linker characteristics. 

The extended conformers for the acyclic analogues can apparently reach inter-lactose distances 

ranging from 10 Å to 25 Å.  

Figure 7. Examples of stacked (left) and extended (right) conformers of the lactose-

presenting macrocyclic glycocluster 5. 

 

Figure 8. Models of lactose-bearing compounds 6 (top), 7 (middle) and 8 (bottom) in 

extended conformations. 
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Figure 9. Spatial parameters for extended conformers of compounds 5–8. The definition 

for the galactose dihedral, core structure and distance between lactose units is shown on top.  
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In terms of bioactivity, the glycophane 5 was markedly more active against the CRD of human 

galectin-3, a product of proteolytic truncation, than the full-length protein [101]. The spatial 

characteristics of the cyclic form 5 facilitated selectivity between galectin-3 and its truncated version at 

a discriminatory level of an about 5fold difference [101]. The disparity between the cyclic and acyclic 

compounds 5 and 6 for this protein is more than 10fold, the IC50-values at 0.3 mM and 5 mM, respectively. 

The cyclic form 7 was found to be more active for CG-8, the chicken tandem-repeat-type galectin, than 

its acyclic analogue 8, the increase of relative inhibitory capacity to lactose being 4.5 fold [66]. The 

triazole at the anomeric carbon appears to be a favorable linker part, as corroborated with other types 

of glycoclusters [107]. Overall, these data and the examples from the previous paragraphs document 

the activity of cyclic glycoclusters, giving reason to add comments on ways to enhance their inhibitory 

capacity/selectivity and the potential for applications.  
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6. How to Optimize Inhibition, What to Expect 

Two main parameter changes are possible in order to increase the inhibitory capacity of a 

glycocluster on the lectin-glycan interaction, beyond the spatial features discussed so far in this review. 

The first structural region for tailoring is the aglyconic anomeric extension. It can strengthen binding 

of the sugar headgroup and provides the functional group for attachment to the scaffold. Experience 

with galectins, starting with detecting the slight enhancing effect of reactivity of p-aminophenyllactoside 

relative to lactose for galectin-1 [108,109] and further exploring other aglyconic substituents, revealed 

quantitative effects not above a several-fold increase [110,111]. More strongly, the nature of the sugar 

headgroup can exert an effect on affinity and selectivity, the second parameter change. Respective 

systematic profiling, for example by binding and inhibition assays using glycoproteins/glycan 

derivatives and free or resin-immobilized galectins, even as isotopically labeled probes in NMR 

spectroscopy, by docking protocols, titration calorimetry or glycan arrays documented the significance 

of this factor [112–121]. Exploiting this parameter holds the promise to accomplish improvements. 

Already a rather minor biomimetic adaptation such as taking advantage of the physiologic target 

specificity of galectin-4 for the sulfatide headgroup in apical delivery of glycoproteins [122,123] can 

likely be very helpful.This teamed up with dendrimeric display, taking into account this lectin’s 

sensitivity for high ligand density [86,89,124], offers a tempting perspective. Combining the power 

and creativity of synthetic carbohydrate chemistry [125] and the well-studied chemical routes toward 

multivalent display [126], for example in starburst dendrimers tailored to galectin-1 [127], with 

comprehensive case-by-case testing of galectin panels is expected to track down any discriminatory 

ability that glycoclusters have for these (and other) lectins. At the same time, the affinity increase by 

cluster design can be conducive to let it act as postal address for cargo delivery by bitopic conjugates, 

e.g., directing a phototoxin (hematoporphyrin) or inhibitors of matrix metalloproteinases to sites of 

high galectin density [128,129]. In addition to the cytofluorometric assays cyto- and histochemical 

determination of staining by labeled galectins [130,131] in the absence/presence of inhibitors will also 

define their inhibitory potential on lectin binding to physiological counterreceptors. Of note, here 

changes in signal intensity can be monitored at the membrane or the extracellular space, and also in the 

cytoplasm and nucleus, providing a sensor for the influence of glycan on intracellular lectin interactions. 

Finding optimal combinations of scaffold, linker and sugar headgroup together with its display and 

favorable dynamics will be helpful to relate spatial aspects of functionality. Considering a perspective 

for lectin blocking, such parameters will be necessary to minimize cross-reactivity among lectins of a 

family and also between different lectin families sharing carbohydrate specificity, a major caveat not to 

be neglected before claiming any application of lectin-targeted drug design [132]. Moreover, galectins 

are known as multifunctional proteins, the exact nature of the effect depending on the context. Taking 

galectin-1 as example, it can be growth inhibitory on carcinoma cells [39,43] but favor tumor 

progression and invasion not only in glioblastoma but also pancreatic carcinoma [133,134], at the same 

time for example serving as versatile immune regulator [73]. As discussed in detail previously, caution 

needs to be exercised and very detailed insights into the multifaceted galectin functionality at the 

different sites of localization gained before deliberating to interfere with binding of a certain galectin, 

within the natural network and also in the context of other lectins [132]. 
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7. Conclusions 

The growing insights into the way lectin-glycan recognition contributes to cell physiology have 

inspired chemists to design biomimetic glycoclusters. Tested primarily with plant lectins such as 

concanavalin A or peanut agglutinin as models, covalent conjugation of sugar derivatives to diverse 

scaffolds has been shown to retain the bioactivity of the sugar headgroup. The enhancement of avidity 

by cluster formation in neoglycoconjugates has been exploited for different applications, among them 

directing cargo to cells or lectin localization in tissues and cells [51,135–137]. Generally, different 

modes of CRD presentation are found among lectins, within a protein a tandem-repeat display or even 

widely separated domains and in non-covalent aggregates, as illustrated in Figure 1 for galectins or for 

C-type lectins in [138]. This spatial parameter, together with a matching display on the glycan side, is 

assumed to guide complex formation. The cross-linking is the prerequisite to start signaling for growth 

control, two examples for the biochemical details of the intracellular cascade presented in [139,140]. 

Evidently, by making the design of a range of glycan displays possible, glycoclusters become highly 

welcome tools for delineating structure-activity profiles. In molecular detail, spatial aspects can then 

be examined in assays of increasing biorelevance.  

Presented data for lactose-bearing glycoclusters revealing respective differences between galectin-1 

vs. galectins-3 and -4 substantiated that the mode of spatial presentation can markedly matter. Whether 

this line of research can be viewed to have a therapeutic perspective critically depends on collecting a 

wealth of information not just on one or few proteins but on the complexity of (a) the natural lectin 

network, (b) the inherent multifunctionality of its individual members and (c) the glycome, on the 

mentioned six levels of affinity regulation. Undoubtedly, the synthetic compounds will have their merit 

in laboratory experiments to relate spatial presentation to reactivity, a key source of 

specificity/selectivity in translating the sugar code. 
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