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Abstract: Computer simulations constitute the basis of the design and discovery of new 

drugs. This approach is not only significant with regards to finding new structures, but also 

for selecting the molecules with the highest probability of being useful in the diagnostic 

process and treatment of numerous diseases. In our work, we used computational software 

to analyze 32 new acetylcholinesterase (AChE) inhibitors and formulate ADMET 

predictions. To understand the influence of the structure of our derivatives on binding 

mode, we docked all structures to the active site of AChE and assigned some 

pharmacophoric features. Finally, we undertook a chemometric analysis of all the 

compounds on the basis of FT-IR, which gave us the possibility of performing a fast 

categorization of the analyzed compounds and design compounds with similar structures. 

Keywords: acetylcholinesterase inhibitors; chemometric analysis; docking; prediction of 

BBB penetration; Ames test simulation 
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1. Introduction 

Alzheimer’s disease (AD) is a fatal neurodegenerative disease that affects elderly people. This 

disease is characterized by an irreversible degeneration of cholinergic neurons, which leads to an 

impairment of the cognitive functions. The result of this pathologic process is a decline in the 

cholinergic function of the central nervous system, which can only be visualized upon post mortem 

examination [1–3]. In the 1980s, it was confirmed that decreased level of choline acetyltransferase 

correlates with a decline in the mental status scores as described by Bartus [4]. This theory was the 

basis of one of the possible approaches to treating this disease. The treatment of AD is based on the 

improvement of cholinergic neurotransmission by inhibiting acetylcholinesterase (AChE) and 

butyrylcholinesterase (BuChE). AChE is an enzyme mainly found in the brain, muscles, erythrocytes 

and cholinergic neurons. BuChE occurs in lungs, heart, kidneys, liver and serum. In pathological states 

such as AD the level of BuChE builds up. Cholinesterase inhibitors reduce degradation of 

acetylcholine (ACh) in the synapse. Additionally, acetylcholinesterase inhibitors diminish the 

formation of amyloid fibrils and possess neuroprotective activity [5,6]. 

AD treatments have focused on reducing cognitive decline with cholinesterase inhibitors as the 

treatment of first choice, and currently five approved pharmaceuticals are available for this purpose: 

galantamine, rivastigmine, donepezil, tacrine, and memantine (an NMDA receptor antagonist). 

In 1993, tacrine (9-amino-1,2,3,4-tetrahydroacridine, THA) was approved for clinical use by the 

FDA in the United States as an effective drug in the treatment of AD. Henceforth, the chemical 

structure of THA has been modified numerous times using various approaches. On occasion, the 

modifications pertain to the tetrahydro ring or placemnt of ligands in positions 6, 7 [7,8]. Several 

modifications concern position 9 in tacrine—these were performed via an introduction of a carbon 

chain with other ligands or a tacrine moiety (resulting in a bis-tacrine or tacrine hybrid) [9,10]. Typical 

analyses of new acetylcholinesterase inhibitors (AChEIs) are concerned with measuring their activity 

(Ellman’s method) as well as examining activity towards beta-amyloid and gamma-secretase. On the 

basis of these assays, the structure-activity relationship is calculated. Very often docking to the active 

site is performed, which explains the mechanism of binding with enzyme. Sometimes, other analytic 

tools are used as well. 

The aim of this study was a pharmacokinetic characterization of a library of cholinesterase 

inhibitors for selection of the most appropriate compounds for in vivo tests, as well as the creation of a 

pharmacophore model that could be useful for the design of novel potential inhibitors. In this paper, 

we present a theoretical study of 32 new acetylcholinesterase inhibitors (Figure 1) for which in vitro 

analyses towards AChE, BuChE and their selectivities were previously reported [11–16]. Our analysis 

concerns the computer simulation of the ADMET process, which is very important in selecting specific 

compounds for subsequent experiments on animals. Also, we recorded FT-IR spectra and on the basis 

of these results, prepared a chemometric analysis. Finally, we docked all compounds to 

acetylcholinesterase from the 2CKM crystal structure and found and assigned a number of 

pharmacophoric features. 
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Figure 1. Analyzed compounds: tetrahydroacridine derivatives 1–8 and 17–24;  

cyclopenta[b]quinoline derivatives 9–16 and 25–32 [11–16]. 
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2. Results and Discussion 

2.1. Genotoxicity  

For all compounds, we calculated the probability for a positive Ames test. Assessment of 

genotoxicity was performed using standardized data and a Percepta software model (which contains a 

database of 8,607 compounds). A model of the Ames test was used to compare our compounds with 

tacrine (THA)—a reference acetylcholinesterase inhibitor. Genotoxicity for all compounds was found 

to be lower or comparable to THA for which the value of Ames test is 0.94. The replacement of the  

6-hydrazinenicotinic acid moiety with fluorobenzoic acid has a significant influence on decreasing the 

toxicity in this group of compounds as compounds with 6-hydrazinenicotinic acid moieties are more 

toxic. On the other hand, the change in the structure from 1,2,3,4-tetrahydroacridine to 

cyclopenta[b]quinoline, doesn’t appear to have any meaningful influence on toxicity (Figure 2). 

Figure 2. Genotoxicity profile for analyzed compounds. 
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We identified the structural fragments potentially responsible for genotoxic effect [17]. Analysis of 

our compounds yielded a list of structural alerts. Tacrine was used as the baseline pattern (Figure 3). 

On this structure we observe color-coded atomic/fragment contributions which suggest potential 

genotoxicity—the green part is not involved in genotoxic activity and the red is responsible for 

genotoxic properties. Each of our compounds possessed a part of the tacrine structure with an aromatic 

amine. Aromatic amines exhibit genotoxic activity after being metabolized to hydroxylamines [18–20]. 

The case of all of our compounds was similar situation, in that the same part of the aromatic ring had a 

high probability to be toxic. 

Figure 3. Visualization of the genotoxic properties for tacrine. Hazardous substructures 

(genotoxic fragments) are colored in red. 

 

Compounds 1–16 were found to be the most genotoxic. The structures of these compounds have the 

6-hydrazinonicotinate moiety (Figure 4). It is known that unsubstituted, bonded heteroatoms are 

metabolized into various unstable radicals and other reactive substructures [21]. However, in the case 

of other compounds (compounds 17–32) with 4-fluorobenzoic acid moieties, toxic activity was lower, 

suggesting that this moiety doesn’t have any influence on genotoxicity. 

Figure 4. Different “hazardous” substructures were identified. Compounds with two 

carbon atoms in the chain from every group are presented. 

 

2.2. Cardiotoxicity  

We next predicted for our compounds the probability of inhibiting the hERG potassium channel. 

We used a Global, Adjusted Locally According to Similarity (GALAS) modeling methodology (values 

of hERG inhibition are estimated automatically by the software module), which uses a comparison 

between cardiotoxicity and hERG channel at a clinically relevant concentration of Ki < 10 μM. 

Prediction of the reliability index (RI - assess the quality of the predictions) suggests that all 

compounds have a small affinity for the hERG channel. For all compounds, RI index was found to be 

at a threshold value of 0.3. 
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2.3. P-Glycoprotein Specificity 

P-glycoprotein 1 (permeability glycoprotein) is also known as a multidrug resistance protein 1 

(MDR1) or ATP-binding cassette sub-family B member 1 (ABCB1). P-gp is a well characterized 

transporter, which moves a variety of substrates across extra- and intracellular membranes. P-gp is 

extensively distributed, being expressed in the intestinal epithelium, hepatocytes, renal proximal 

tubular cells, adrenal glands, and capillary endothelial cells, which comprise the blood-brain and 

blood-testis barrier [22]. Therefore, predicting P-gp transport and inhibition is very important in many 

fields aiming to develop anti-cancer and CNS-active drugs [22]. 

P-gp inhibitor probability was found to be relatively low. In every group of compounds (Figure 1) 

we can observe that this value is increasing with the number of carbon atoms in the aliphatic chain. We 

notice for compound 24 the highest value of P-gp inhibitor probability and the lowest value is 

predicted for the compound 16. Generally, compounds with a 4-fluorobenzoic acid moiety have higher 

values than compounds with 6-hydrazinonicotinate moieties. Next, we evaluated the probability of  

P-gp substrate to transport and eliminate compounds. In this case, molecules with long aliphatic chains 

in the structures have a higher probability of being a suitable P-gp substrate (similarly to P-gp inhibitor 

probability). Derivatives with 4 and 5 carbons in the aliphatic chain had the highest probability of 

being P-gp substrates. These calculations show that tetrahydroacridine derivatives with  

6-hydrazinonicotinate moieties have higher P-gp substrate probability than cyclopenta[b]quinolines 

with florobenzoic acid moieties. Finally, compounds 3, 4, 11, 12 should undergo a very rapid transport 

to the outside of the body (the highest value of P-gp substrate probability). 

2.4. Blood Brain Barier (BBB) Penetration  

We evaluated the blood-brain barrier (BBB) penetration potential of our compounds. Each 

compound was assessed whether it would permeate to the CNS [23]. Compounds were classified using 

a reliable theoretical model with a reasonable prediction of the rate and extent of BBB permeation. The 

values of the following three, automatically calculated quantitative parameters were used to classify 

the compounds as CNS permeable or non-permeable: 

-  rate of brain penetration (LogPS); this parameter depends on essential physicochemical 

properties such as lipophilicity, ionization constants, hydrogen bonding parameters, and 

molecular size; 

-  extent of brain penetration (LogBB); cumulative effect of drug binding to brain and plasma 

(LogBB is assumed to correspond to the passive transport across blood-brain barrier); 

-  brain/plasma equilibration rate (Log(PS*fu,brain)); fu,brain – fraction unbound in plasma, calculated 

automatically [23]. 

Quantitative BBB transport parameters were automatically calculated for all 32 compounds and for 

THA as a reference. It can be observed that compounds 1–16 (compounds with 6-hydrazinenicotinate 

moieties) are CNS inactive. In the case of compounds 17–32 (compounds with fluorobenzoic acid 

moieties), only compounds 17–20 show a possibility of CNS activity. Compound 21 was found to 

possess a threshold value (Figure 5). Results of simulations for compounds 25–29 with 

cyclopenta[b]quinoline as the basic structure suggest the highest brain/plasma penetration. 
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Figure 5. CNS activity plot showing known CNS-penetrating (blue points) and 

peripherally acting drugs (red points). The green quadrates denote some currently analyzed 

molecules correctly classified by our model as CNS active for compound 19 or CNS 

inactive for compound 1. 
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We also calculated the topological polar surface area (TPSA). The major advantage of TPSA is that 

it can be used for prediction of drug transport properties such as BBB penetration. It is defined as the 

surface area (Å2) occupied by nitrogen and oxygen atoms and attached to them, polar hydrogens 

(strongly associated with hydrogen bonding capacity and polarity).  

Drugs that penetrate CNS should have lower polar surface areas than other kinds of molecules [24]. 

In the case of CNS, penetrating drugs are estimated at 60 Å2 to 90 Å2. The maximum PSA value for a 

molecule able to penetrate to the brain is around 90 Å2 [25,26]. In our study, compounds 1–16 have a 

very high level of TPSA, while the value for compounds 17–32 is 54 Å2. This is the group where we 

can look for compounds with brain affinity. 

2.5. Distribution  

In the analysis of new drugs, it is very important to know the basic pharmacokinetic parameters 

such as protein binding, volume of distribution, or affinity to serum albumin. We predicted some of 

these parameters to better characterize our compounds. For the estimation of binding of compounds to 

human plasma proteins, e.g., albumin, lipoproteins and alpha-1-acid glycoprotein we used the %PPB 

parameter as the cumulative percentage. In general, for all compounds 1–32 binding with proteins is 

very high in comparison with THA (78%). For compounds with short linkers (carbon chains) in the 

structures, it is around 91%–93% and for longer linkers with 8–9 carbon atoms in the chain, protein 

binding is nearly 99%. 

To mark the human serum albumin affinity we used logKa
HSA. We predicted this parameter for all 

our compounds. Compounds 1–16 (compounds with 6-hydrazinenicotinate moieties) have similar 

values of logKa
HSA, around 3.5, which are slightly increased with carbon chain elongation. We 

obtained very interesting data for compounds 17–32 (compounds with fluorobenzoic acid moieties) as 
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the value of logKa
HSA was bigger than that of HA. For tacrine, which was used as a reference 

compound, this value was 4.2, but for molecules 17–32 it was higher. For compound 17 it was 4.3 and 

the highest value was for compound 24 (5.06). Very often, the interactions between drugs and the 

human serum albumin can have a significant influence on the distribution volume and the elimination 

rate of drugs as a result of their binding to serum albumin [27]. 

The volume of distribution (Vd) is a theoretical volume that a drug would have to occupy, to 

provide the same concentration as in plasma. It is known that the human body is primarily (~70%) 

made up of water, therefore, this parameter depends on the physiologic properties of the body and the 

physiochemical properties of the drug. Our predicted value of Vd is expressed in liters per kg body 

weight and is similar for every group of our compounds. For our molecules, higher values of Vd 

correspond to compounds with a long carbon chain (8–9 carbon atoms) and these values are  

10.6–18.8 L/kg. On the other hand, compounds with 2 or 3 carbon atoms in the linker were found to 

have 5.2–8.6 L/kg - similar to THA (5.4 L/kg). This result suggests that compounds are destined to be 

confined to the plasma, or liquid part of the blood. If the volume is higher, the compounds will be 

distributed throughout the blood (plasma and red blood cells). 

2.6. EC50 and LC50  

LD50 is an abbreviation for Lethal Dose 50%, which is the amount of the substance required to kill 

50% of the test population per body weight (mg/kg). Currently, the U.S. Food and Drug 

Administration has begun to approve non-animal techniques for estimating LD50 in response to 

research animal cruelty concerns and the lack of validity/sensitivity of animal tests. In this analysis, we 

estimated LC50 for all compounds for fish in mg/L (ppm) at 96 h. Results suggest that the value of this 

parameter is smaller for compounds with long carbon chains. In other words, compounds with longer 

carbon chains are more toxic than compounds with 2 or 3 carbon atoms in the aliphatic linker. 

Compounds 1–8, 9–16 have very high toxicity (low LD50 values) and this seems due to the presence of 

the 6-hydrazinenicotinate moiety which is toxic. We also estimated EC50 (half maximal effective 

concentration). Results and values are similar to LC50 and refer commonly to the measure of drug's 

potency, where 50% of its maximal effect is observed. For competition binding assays and functional 

antagonist assays, IC50 is the most common summary measure of the dose-response curve. 

2.7. Docking Studies and Pharmacophore Search 

The binding mode of novel compounds with acetylcholinesterase (AChE) was evaluated by a 

docking procedure. All ligands were divided into four groups, according to the differences in their 

structure (group A: compounds 1–8, B: 9–16, C: 17–24, D: 25–32). The analysis of binding mode was 

performed with reference to the inhibitors present inside each group and between groups. All 32 

derivatives presented similar arrangement in the active gorge, interacting with catalytic and peripheral 

active site of acetylcholinesterase. The compounds belong to the dual-binding site inhibitors, which is 

very advantageous as they are able to influence numerous AChE functions. For example, these 

compounds are able to increase cholinergic transmission and inhibit the processing of Aβ through the 

PAS of the enzyme which interacted with oligomers and promoted their aggregation. All compounds 

presented the extended conformation. Tricyclic moieties, tetrahydroacridine or cyclopentaquinoline, 
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were engaged in the formation of a characteristic sandwich due to π–π stacking with Trp84 and 

Phe330. The protonated form of tacrine or its analogue gave hydrogen bond with carbonyl group of 

His440. We did not find any significant differences between those moieties, with the exception that a 

cyclopentaquinoline created a smaller hydrophobic surface area. The linker was located in the middle 

of the gorge, where it created hydrophobic interactions, mainly with Tyr334. Its optimal length was 4–5 

methylene groups (compounds 4, 20, 27 from series A, C and D, respectively) because this provided 

the best fit of the outermost aromatic fragments of the molecule to both active sites. The exception was 

series B and compound 16 with nine carbon atoms in the tether. The benzamide phenyl ring 

(compounds 17–32) interacted with Trp279 and Tyr70, forming the other sandwich with the best fit for 

compounds 20 and 27. It also created CH-π interactions with Tyr121. A similar situation was found in 

the case of series A. The pyridine ring also created a sandwich with Trp279 and Tyr70. The linker 

amine and amide groups created hydrogen bonds with carbonyl group of Ser81 and hydroxyl 

substituent in Tyr121, respectively. The strongest H-bonds between amide group and OH Tyr121 were 

formed for compounds with 4–5 carbon linkers, especially for derivative 27. Other inhibitors were not 

able to provide such a beneficial arrangement and the hydrogen bond was weaker or was not created. 

Hydrazine in compound 16 (series B) interacted by H-bond with carbonyl group of Asp276 backbone; 

consequently, pyridine ring was shifted and it wasn’t able to create classical π–π stacking. It was 

engaged in some hydrophobic interactions. The fluorine substituent (series C and D) created 

hydrophobic interactions mainly with side chain of Ile175 and also with Trp279 and Tyr70. The 

binding mode of the most active compound 27 is presented in Figure 6. 

Figure 6. The binding mode of compound 27 into the active site of acetylcholinesterase. 

 

The top-ranked poses for each ligand were the starting point for creating the pharmacophore model. 

It was assumed that docking solutions represented bioactive conformations. These conformations were 

compared to one another to find and assign a number of pharmacophoric features, enabling generation 

of eight-point pharmacophore. This model was composed of three aromatic, two hydrophobic, and 

three H-bond donor features. The first five elements (F1, F5 – donors, F2, F3 – aromatic,  

F4 – hydrophobic) were precisely assigned and corresponded to the tricyclic moiety (two aromatic and 

one cycloalkyl rings) with two hydrogen bond donors. They were responsible for good affinity to 

catalytic active site of acetylcholinesterase. The F6 hydrophobic feature conditioned interactions in the 

middle of the active gorge. The last two elements, F7 (donor) and F8 (aromatic), provided binding with 
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the peripheral anionic site. Their assignment was found to be of limited accuracy; therefore the radius 

of the tolerance sphere of these features was larger. The distances between all features are presented in 

Figure 7. The knowledge of a pharmacophore model might be useful in further studies on 

acetylcholinesterase inhibitors. It can be used in the design of novel active compounds or in virtual 

screening. Currently, several pharmacophore models for cholinesterase inhibitors were described, and 

among them there is a model for a series of tacrine derivatives [28]. This model consists of six 

features: two hydrogen-bond donors (HBDs), one hydrogen-bond acceptor (HBA), two aromatic rings 

(RA) and one hydrophobic feature (H). Comparing presented above and our model, we can state that 

both contain six common elements, however our model possesses two additional features and all 

distances between important elements were measured and presented. This comparison indicates that 

different methodologies led to valuable results for further design of potential inhibitors. Our 

pharmacophore enables to optimize novel molecules as well as to perform screening of huge databases 

in relatively short period of time. 

Figure 7. Pharmacophore model for the novel class of acetylcholinesterase inhibitors 

(meaning of colors: orange – aromatic feature, green – hydrophobic, pink – H-bond donor; 

radius of feature represents precision of assignment). 

 

2.8. Chemometric Analysis 

Two multivariate chemometrics methods, principal component analysis (PCA) and hierarchical 

cluster analysis (HCA), were used for chemical characterization of the analyzed compounds based on 

their ATR-FT-IR spectra. PCA identifies the natural clusters in the data set by the decorrelation of the 

variables, and converts them into the linear combinations called principal components.  

The first two principal components (PC1 and PC2) explain the maximum available overall 

variances and can be used to make a two-dimensional map. This map enables the analysis of 

similarities between the spectra. As shown in Figure 8, the analyzed compounds were categorized into 

two significant groups. The first group (compounds 1–16), represents compounds with hydrazinyl 

substituents, while the other group represents fluoro derivatives of the analyzed substances 

(compounds 17–32). In this analysis, PC1 explained 60.9% of the total variance, whereas the first two 

principal components explained 75.3% of the variance. Principal component analysis can be used for 

the fast characterization of the analyzed AChE inhibitors into two main groups, in this case: hydrazine 

and fluoro derivatives.In order to perform a more specific categorization of the analyzed compounds, 

hierarchical cluster analysis was also used. HCA helps to identify the similarities between the spectra 
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using the distance between spectra and aggregation algorithms. A typical presentation of the 

hierarchical approach is a tree (dendrogram) with individual elements at one end, and a single cluster 

containing every element at the other end. In this study, hierarchical cluster analysis was performed 

with the use of Minkowski distance with p = 10 (the power of the Minkowski distance).  

Figure 8. Principal component analysis (PCA) of ATR-FT-IR spectra of 32 analyzed 

AChE inhibitors. 

 

As shown in Figure 9, the HCA method divided the substances into five main groups, with a 

significant chemical rule being observed in this case.  

Figure 9. The dendrogram obtained using Minkowski distance for ATR-FT-IR spectra of 

32 analyzed AChE inhibitors. 

 

The first (compounds 2 and 7) and the second (compounds 1, 3–6 and 8) groups represent 

hydrazinyl-substituted tetrahydroacridine derivatives. The third group (compounds 9–16) is a cluster of 
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hydrazinyl-substituted dihydrocyclopentaquinoline derivatives. The fourth (compounds 17–24) and the 

fifth groups (compounds 25–32) represent fluorotetrahydroacridine and fluorodihydrocyclo-pentaquinoline 

derivatives, respectively. Although compounds 2 and 7 are clustered separately from compounds 1–8, 

HCA is an appropriate method for investigating the similarity between IR spectra of analyzed AChE 

inhibitors. The similarity between the spectra is very often correlated with a similar chemical structure; 

fast categorization of the analyzed compounds into four main structural groups was possible in this case. 

3. Experimental  

Computer predictions of absorption, distribution, metabolism, excretion and toxicity (ADMET) 

properties were prepared with ACD/Percepta 14.0.0. The 2D structures and SMILES codes were 

drawn in ACD/Labs. 

3.1. Genotoxicity  

The genotoxicity module allows for better determination of the mutagenic potential of compounds. 

We used the following separate tools to estimate the potential hazard and the risk of genotoxicity: 

- the Ames test to provide the mutagenic potential of new compounds 

- a knowledge-based system in identifying and visualizing hazardous fragments of structures. 

These two tools enable the identification of potentially hazardous compounds and assessment of 

genotoxicity by researchers. For predicting standardized Ames genotoxicity, we used well-known 

public databases, containing more than 8,500 compounds, namely, Chemical Carcinogenesis Research 

Information (CCRIS) and Genetic Toxicology Data Bank (GENE-TOX). On the basis of this data, we 

calculated the probability of a positive Ames test of our compounds. In the next step, we used the 

genotoxicity hazards module to identify and visualize structural fragments potentially involved in 

genotoxic activity [17,29]. 

3.2. Cardiotoxicity  

The hERG potassium ion channel inhibition and analysis of this process is the basis in 

pharmacological safety research of new drugs beceause inhibition of this channel may lead for 

example to arrhythmia, which may occasionally have fatal results due to subsequent ventricular 

fibrillation [30]. Therefore, early identification of cardiotoxicity prevents costly failures and potential 

safety issues in drugs design. In ACD/Percepta we used the hERG Inhibition module to estimate the 

potential of hERG-related cardiotoxicity of potential drugs. The built model consisted of experimental 

hERG inhibition data for 663 compounds collected from two types of assays. Electrophysiological 

patch-clamp assay (512 compounds) constituted the first assay. Inhibitors were defined as compounds 

with hERG current inhibition IC50 < 10 μM; and non-inhibitors: IC50 ≥ 10 μM. The second assay 

consisted of radio ligand displacement assay (161 compounds). Inhibitors: Ki < 0.5 μM; and non-

inhibitors: Ki > 100 μM. Generally, the used modules calculated the probability of the compound being 

a hERG inhibitor, where IC50 was lower than the cut-off value of 10 μM. The data were verified and 

converted to binary representation to obtain the following values: 1 – inhibitors, 0 – non-inhibitors [30]. 
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3.3. P-Glycoprotein Specificity 

P-glycoprotein (P-gp) is an energy-dependent efflux transporter that extrudes compounds from a 

large variety of cells. P-gp is found in the epithelial cells of enterocytes along the luminal side of the 

cell. In the case of orally ingested drugs, molecules have to pass through the enterocyte to enter the 

blood. P-gp can transfer the molecules and carry them back to the luminal side of the cell; thus, 

preventing drug molecules from joining the systemic circulation, and effectively limiting 

bioavailability. In most cases, potential drugs that are substrates or inhibitors of P-gp are undesirable 

and must be, consequently, excluded from the next step of drug design. Thanks to P-gp specificity 

modules we can establish whether a compound is a P-gp substrate or inhibitor. Predicting the 

probability of a substance being a P-gp substrate or inhibitor is calculated by using a fully searchable 

database of 2,290 structures. This data contains a collection of P-gp substrates (>1,000 compounds) 

and inhibitors (>1,500 compounds). The predictive model calculates the probability for the analyzed 

compounds and provides information on:·P-gp substrate, High affinity P-gp substrate, P-gp inhibitor or 

Potent P-gp inhibitor with Ki < 1 μM [31]. 

3.4. Blood Brain Barier (BBB) Penetration 

Transport across the blood-brain barrier (BBB) is the most important feature of new drugs intended 

to have activity in the central nervous system (CNS). To estimate if the given compound will penetrate 

the brain to a sufficient level for activity in the CNS, kinetic and thermodynamic characteristics of 

drug transport across the BBB should be estimated [32]. 

BBB transport parameters were automatically calculated according to the presence or absence of 

CNS activity. It was expressed by the rate (logPS) and extent (logBB) of brain penetration. These 

parameters were automatically calculated by physicochemical descriptors: for calculating logPS 

(Permeability-Surface), software used the most important descriptors as a lipophilicity, ionization 

parameters (acid and base pKa), as well as hydrogen bonding potential and molecular size. On the 

other hand, for calculating logBB (the steady-state distribution ratio between brain tissue and plasma) 

was used unbound fraction in plasma. All descriptors were calculated automatically. In this way, we 

obtained predictions whether a given compound is permeable enough to exhibit activity in the CNS. 

BBB provides reliable and easily interpretable predictions of both rate and extent of BBB permeation 

by passive diffusion (expressed as LogPS and LogBB constants respectively) [33]. 

To prepare the plot of CNS activity, we used the parameter PS as a -F * (1 - e-Kin/F); it is defined 

from the kinetic equation of capillary transport and is equal to the influx rate constant Kin corrected for 

blood flow rate in cerebral micro capillaries denoted as F. However, the extent of brain penetration 

(logBB) is determined by the ratio of total drug concentrations in tissue and plasma at steady-state 

conditions (logBB = log(cbrainSS/cbloodSS) in further simulations we predicted the unbound fraction 

in the brain tissue (fu, brain) and brain/plasma equilibration rate log (PS * fu, brain) - combination of 

permeation rate and fraction unbound in brain [34]. 
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3.5. Distribution  

We performed the pharmacokinetic analysis of our compounds using the distribution module. 

Firstly, we predicted the extent of plasma protein binding, and then calculated the percentage of freely 

circulating compound, which was pharmacologically active. We calculated the volume of distribution 

for a quick estimation of the distribution of compounds between plasma and body tissue. In this 

module we calculate other parameters as a %PPB (the cumulative percentage of a compound bound to 

human plasma proteins, such as albumin) and Log Ka
HSA. %PPB values represent the overall fraction 

of the bound drug in human plasma; this parameter was established on the basis of almost 1s500 

compounds [35,36]. Log Ka
HSA (the human serum albumin affinity constant), where log Ka

HSA 

represents the compounds’ affinity constant to human serum albumin, was used to calculate %PPB. 

Experimental data, used in model originated from direct chromatographic determination of binding 

strength to that particular protein (human serum albumin): log Ka
HSA = log([LA]/[L][A]); where,  

[LA] – the concentration of ligand bound to albumin, [L] – free ligand, [A] – concentration of free 

albumin. Values of the volume of distribution (Vd) constituted the last parameter of the distribution, 

showing the effect of physicochemical properties (LogP and ionization) in the body. Supplementary 

distribution/Vd module calculates the apparent volume of distribution of drugs in the human body 

expressed in liters per kg body weight (L/kg). When this parameter is high then the drug is distributed 

in tissue (i.e., not in plasma). 

3.6. EC50 and LC50  

EC50 and LC50 were calculated using ECOSAR Version 1.10 software (US Environmental 

Protection Agency). This software is based on more than 150 SAR (structure-activity relationship) 

models and has been developed for more than 50 chemical classes based on measured test data. This 

data have been submitted by industry. It estimates the aquatic toxicity of chemicals possessing a 

structure similar to that of the chemicals for which aquatic toxicity has previously been measured  

in vitro. The analyzed compounds have been developed based on ECOSARs models datasets [37]. 

3.7. Molecular Modeling 

Corina on-line (Molecular Networks) was used for creating three-dimensional structure of the 

ligands. Checking the atom types, adding hydrogen atoms, and assignment of Gasteiger-Marsili were 

performed with Sybyl 8.0 (Tripos). Acetylcholinesterase from the 2CKM crystal structure was 

prepared for docking in the following way: all histidine residues were protonated at Nε, the hydrogen 

atoms were added, and ligand and water molecules were removed. The binding site was defined as all 

amino acid residues within 10 Å from the reference ligand – bis-(7)-tacrine. Docking was performed 

with GoldSuite 4.1 (CCDC). A standard set of genetic algorithms with population size 100, number of 

operations 100,000, and clustering with a tolerance of 1Å were applied. As a result, 10 ligand poses, 

sorted by GoldScore function value, were obtained. The results were visualized by PyMOL 0.99rc6 

(DeLano Scientific LLC). The docking poses with the highest score for each ligand were used for the 

pharmacophore generation. They were superimposed and then some features were assigned with 

MOE2009.10 (CCG). 
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3.8. ATR-FT-IR and Multivariate Chemometric Analysis 

The IR spectra of the analyzed compounds were recorded in attenuated total reflectance (ATR) 

mode using a Thermo Scientific Nicolet 6700 Fourier transform infrared spectrometer equipped with a 

smart ITR diamond adapter (Madison, Wisconsin USA). The assay was performed in the range  

650–4,000 cm−1 at spectral resolution of 2 cm−1 and the number of the sample scans was set at 32, 

meaning that each spectrum represented 32 co-added scans of the analyzed sample. The background 

(air) spectrum was also recorded in the same conditions. Spectral data was acquired with Omnic 

software and all computations were performed in the GNU R environment in version 2.14.2. 

4. Conclusions  

Several different computational approaches have been used for design of new cholinesterases 

inhibitors [38]. Usually computational strategies for acetylcholinesterase inhibitors are related to 

structure - activity relationship (SAR) and quantitative structure - activity relationship (QSAR) 

analyses or include virtual screening method [39]. Very often we can observe analysis of the selected 

bioactive conformations from docking procedure of new compounds which are used to establish a three 

dimensional model (sometimes expressed by Comparative Molecular Field Analysis - CoMFA) [40]. 

In this paper, we have presented a new kind of theoretical study of the AChEI. We decided on the 

prediction of basic ADMET parameters for the structures obtained by modification of a well-known 

AChE inhibitor – tacrine. In this study, we presented theoretical analyses of 32 previously obtained 

derivatives of tetrahydroacridine and cyclopenta[b]quinoline as inhibitors of acetylcholinesterase. We 

defined ADMET processes for our compounds on the basis of computer simulations. We calculated 

some parameters such as genotoxicity and cardiotoxicity. Those parameters suggest that derivatives of 

cyclopenta[b]quinoline have better values that warrant further analysis. The other parameters, 

specifically P-glycoprotein and BBB, show that compounds with cyclopenta[b]quinoline and 

fluorobenzoic acid substructures have the greatest probability of being active in the CNS. These 

compounds are most likely to remain in the organism for long enough time to reach therapeutical 

targets. We showed that derivatives of cyclopenta[b]quinoline were characterized by smaller 

genotoxicity in comparison with classic tetrahydroacridine derivatives. However, AChEI which have 

smaller values of EC50, LC50 are more toxic. This is observed for compounds with long carbon chains 

in conjunction with 6-hydrazinenicotinate moieties. When we compare prediction results of ADME 

parameters with AChE activity we can suggest that the best compound for in vivo testing is compound 

27 (N-[4-(2,3-dihydro-1H-cyclopenta[b]quinolin-9-ylamino)butyl]-4-fluorobenzamide), which shows 

the highest activity against AChE and it is a derivative of cyclopenta[b]quinoline with a fluorobenzoic acid 

moiety. The choice of compound 27 remains in accordance with our predictions of ADME parameters. 

Finally we performed chemometric analysis and prepared a pharmacophore model, which might be 

useful in further studies on acetylcholinesterase inhibitors. Results of chemometric analysis can be routinely 

applied to future data in order to predict the same quality parameters for similar groups of new 

compounds before making UV analysis. On the other hand, the pharmacophore model may be used in 

the design of novel active compounds or in the virtual screening, giving the possibility of a fast 

categorization of the analyzed compounds. It can be use to check a lot of virtual libraries with 
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structures of new compounds in silico and to find compounds with high probability to be 

acetylcholinesterase inhibitors. 
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