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Abstract: A new hydroxychavicol dimer, 2-('-hydroxychavicol)-hydroxychavicol (1), was 

isolated from the roots of Piper betle Linn. along with five known compounds, 

hydroxychavicol (2), aristololactam A II (3), aristololactam B II (4), piperolactam A (5) 

and cepharadione A (6). The structures of these isolated compounds were elucidated by 

spectroscopic methods. Compounds 1 and 2 exhibited inhibitory effects on the generation 

of superoxide anion and the release of elastase by human neutrophils. 
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1. Introduction 

Piper betle Linn. (Piperaceae) has been extensively used in India, China, Taiwan, Thailand and 

many other countries [1]. The leaves are chewed with betel nut, to improve the taste and to prevent  

halitosis [2,3]. Traditionally, the roots has been used for the treatment of wind-cold cough, bronchial 

asthma, rheumatism, stomachalgia, edema of pregnancy, and as a contraceptive [4,5]. In previous 

phytochemical studies, several compounds, including β-sitosteryl palmitate, 3β-acetate ursolic acid, 

ursolic acid, 4-allylresorcinol, stigmast-4-en-3,6-dione and aristololactam A-II, have been isolated 

from the roots of P. betle [6–8]. Recently, we found that the ethanolic extract of the roots of this plant 

exhibited anti-inflammatory effects. Chromatography of the ethanolic extract led to the isolation of a 

new phenolic compound, 2-('-hydroxychavicol)-hydroxychavicol (1), together with hydroxychavciol 

(2), aristololactam A II (3), aristololactam B II (4), piperolactam A (5) and cepharadione A (6) [9–13] 

(Figure 1). 

Figure 1. The chemical structures of compounds 1–6. 
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Neutrophils play a pivotal role in the defense of the human body against infections. However, 

activated human neutrophils are known to cause tissue damage and to play a critical role in a variety of 

acute and chronic inflammatory diseases [14,15]. For example, high concentrations of reactive oxygen 

species and elastase produced by activated neutrophils in the sputum of patients with airway mucus 

hypersecretion has been implicated in the pathogenesis of many pulmonary diseases including asthma, 

chronic obstructive pulmonary disease, cystic fibrosis and acute respiratory distress syndrome [16–19]. 

In a search for suitable new anti-neutrophilic inflammatory agents from natural sources, the inhibition 

of O2
•− production and elastase release in human neutrophil by compounds 1–6 were assayed. This 

paper describes the isolation, the determination of the structure of the new compound and the  

anti-inflammatory activity of the isolated compounds. 
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2. Results and Discussion 

Compound 1 was obtained as a brown solid with a melting point of 73–75 °C. The EIMS gave a 

molecular ion at m/z 298 and the HREIMS spectrum gave 298.1216 (Calcd 298.1205), which 

corresponds to a molecular formula of C18H18O4. In the 1H-NMR spectrum of 1, two groups of 

aromatic proton signals could be attributed to a set of ABX-type aromatic protons at H 6.90 (1H, d,  

J = 2.4 Hz, H-2'), 6.74 (1H, d, J = 8.4 Hz, H-5'), 6.70 (1H, dd, J = 2.4, 8.4 Hz, H-6') and a 1,2,4,5-

tetrasubstituted aromatic protons at H 6.68 (1H, s, H-3) and 6.65 (1H, s, H-6), respectively. In 

addition, the signals at H 3.27 (2H, dd, J = 1.2, 6.6 Hz, H-α), 5.92 (1H, m, H-β), 4.99 (1H, m, H-) 
and 4.96 (1H, dd, J = 2.4, 4.2 Hz, H-) were assigned to an allyl substituent, and another set of 

resonances at H 6.24 (1H, bd, J = 15.6 Hz, H-α'), 6.09 (1H, td, J = 6.6, 15.6 Hz, H-β') and 3.34 (2H, 

dd, J = 1.2, 6.6 Hz, H-') were assigned to a propeneyl moiety, based on their 1H-1H COSY correlations. 

In the HMBC spectrum of 1 (Table 1 and Figure 2), the methylene proton signal at H 3.34 (H-') 
showed correlations with carbon signals at C 117.33 (C-3) and 129.79 (C-1), which also correlated to 

the olefinic methane proton signal at H 5.92 (H-β) clearly suggested that the allyl group and C-' were 

connected to C-2 and C-1 of the tetrasubstrate benzene ring, respectively. Forthemore, the olefinic 

methane proton signal at H 6.09 (H-β') displayed correlations with two aromatic quaternary carbon 

signals at C 130.46 (C-2) and 130.98 (C-1'), and the signals at H 6.24 (H-α') correlated with the 

signals of C-2' and C-6', indicated that C-α' was located at C-1'. The coupling constant (Jα'-β' = 15.6 Hz) 

indicated a trans configuration between H-α and H-β. From the above data, the structure of 1 was 

identified as 2-('-isohydroxychavicol)hydroxychavicol. 

Table 1. 1H-(600 MHz) and 13C-NMR (150 MHz) data of compound 1 (in acetone-d6, δ in 

ppm, J in Hz). 

No. C H Key HMBC (H to C) 

1 129.79   
2 130.46   
3 117.33 6.68 (1H, s) C-1, C-' 
4 144.06   
5 144.06   
6 117.46 6.65 (1H, s) C-2, C-5, C-α 
α 37.05 3.27 (2H, dd, J = 1.2, 6.6 Hz) C-2, C-6, C- 
β 138.85 5.92 (1H, m) C-1 
 115.23 4.96 (1H, dd, J = 2.4, 4.2 Hz) C-α, C-β 
  4.99 (1H, m)  

1' 130.98   
2' 113.35 6.90 (1H, d, J = 2.4 Hz) C-α', C-6', C-4' 
3' 145.87   
4' 145.29   
5' 116.00 6.74 (1H, d, J = 8.4 Hz) C-1', C-3' 
6' 119.05 6.70 (1H, dd, J = 2.4, 8.4 Hz) C-2', C-4', C-α' 
α' 131.05 6.24 (1H, bd, J = 15.6 Hz) C-2', C-6', C-' 
β' 127.35 6.09 (1H, td, J =6.6, 15.6 Hz) C-2, C-1' 
' 35.98 3.34 (2H, dd, J = 1.2, 6.6 Hz) C-1, C-3, C-α' 
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Figure 2. Key HMBC (arrow) and 1H-1H COSY (bold line) correlations of 1. 

 

 

The in vitro anti-inflammatory effects of compounds 1–6 were tested (Table 2). Compound 2 

(hydroxychavicol monomer) showed significant inhibitory effects in superoxide anion generation and 

elastase release (IC50 0.27 and 5.78 μM; Table 2 and Figure 3). 

Table 2. Effects of compounds on superoxide anion generation and elastase release by 

human neutrophils in response to FMLP/CB. 

Compound 
Superoxide anion  Elastase release 

IC50 (μM) Inh % a  IC50 (μM) Inh % a 
1 8.59 ± 2.30 94.85 ± 6.14 ***  13.14 ± 7.05 60.24 ± 3.82 *** 
2 0.27 ± 0.09 107.12 ± 1.36 ***  5.78 ± 1.56 94.42 ± 6.49 *** 
3 >30 4.15 ± 2.07  >30 19.36 ± 4.27 * 
4 >30 28.96 ± 4.05 **  >30 13.65 ± 3.67 * 
5 >30 41.06 ± 1.71 ***  >30 48.92 ± 5.32 *** 
6 >30 43.63 ± 1.05 ***  19.19 ± 3.91 58.43 ± 2.31 *** 

Sorafenib b 3.01 ± 0.25   2.25 ± 0.36  
a Percentage of inhibition (Inh %) at 30 μM concentration. Results are presented as the mean ± S.E.M. (n = 3).  

* p < 0.05; ** p < 0.01; *** p < 0.001 compared with the control value. b Sorafenib, a tyrosine kinase 

inhibitor, was used as a positive control. 

Figure 3. Concentration-dependent effects of compound 1 on O2
•− production and elastase 

release in human neutrophils. Human neutrophils were preincubated with DMSO (control) 

or compound 1 for 5 min before activation by FMLP/CB. (A) O2
•− production and (B) 

Elastase release was induced by FMLP/CB. All data are expressed as the mean ± S.E.M.  

(n = 3). * p < 0.025; ** p < 0.01; *** p < 0.001 compared to the control. 

 
(A) (B) 



Molecules 2013, 18 2567 

 

 

Compound 1 (a dimer of hydroxychavicol) also showed moderate effects in both assays (IC50 8.59 

and 13.14 μM; Table 2 and Figure 4). These findings suggest that compounds 1 and 2 merit further 

investigation as potential anti-inflammatory compounds. 

Figure 4. Concentration-dependent effects of compound 2 on O2
•− production and elastase 

release in human neutrophils. Human neutrophils were preincubated with DMSO (control) 

or compound 2 for 5 min before activation by FMLP/CB. (A) O2
•− production and (B) 

Elastase release was induced by FMLP/CB. All data are expressed as the mean ± S.E.M.  

(n = 3). * p < 0.025; ** p < 0.01; *** p < 0.001 compared to the control. 

 
(A) (B) 

3. Experimental 

3.1. General 

Melting points were determined using a Yanaco MP-I3 micro melting point apparatus and the 

thermometer was used without correction. Mass spectra were recorded using a Finnigan MAT GCQ 

spectrometer (EIMS). 1H, 13C, and 2D-NMR spectra were measured with a Varian VNMRS 600 MHz 

spectrometer. 

3.2. Plant Material 

The roots of P. betle Linn. were collected from Taitung County, Taiwan, in April 2011, and was 

identified by a taxonomist, Mr. Jun-Chih Ou. A voucher specimen (No.20110401) was deposited in the 

Department of Plant Industry, National Pingtung University of Science and Technology. 

3.3. Extraction and Isolation 

The air-dried roots of P. betle (13.6 kg) were extracted with ethanol (50 L × 2) at 50 °C for 24 h. 

After evaporation of the solvent in vacuo, the residue was partitioned between water and EtOAc to 

give water-soluble and EtOAc-soluble portions. The chromatography of the EtOAc soluble portion 

was performed using a silica gel column (70–230 mesh, 10 × 40 cm) and elution with gradient solvent 

of n-hexaneEtOAc (20:1 to 0:1) and then EtOAcMeOH (20:1 to 1:1) to yield 16 fractions  

(Fr. 1 to Fr. 16). Material Fr. 7, n-hexaneEtOAc = 5:1 eluate, was separated over a silica gel column 

and eluted with n-hexaneEtOAc (10:1 to 1:1) and Sephadex LH-20 column with MeOH to yield 
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hydroxychavicol (2, 200.3 mg). Material Fr.10, n-hexaneEtOAc = 2:1 eluate, was separated using 

Sephadex LH-20 column with MeOH to yield five subfractions (Fr. 10-1 to Fr. 10-5), of which Fr. 10-3 

was repeatedly chromatographed on Sephadex LH-20 column with MeOH, silica gel column eluted 

with n-hexaneEtOAc (3:1–0:1) and preparative TLC (n-hexaneEtOAc = 5:4) to yield aristololactam 

B II (4, 2.4 mg), 2-('-hydroxychavicol)-hydroxychavicol (1) and aristololactam A II (3, 2.1 mg). Fr. 11, 

n-hexaneEtOAc = 1:1 eluate, was re-separated on a silica gel column eluting with n-hexaneEtOAc 

(10:1–0:1) to yield piperolactam A (5, 3.5 mg) and cepharadione A (6, 4.5 mg). 

2-('-Hydroxychavicol)-hydroxychavicol (1). Brown solid, melting point 73–75 °C. 1H-NMR, 13C-NMR 

and HMBC: see Table 1. EIMS m/z (rel. int.) 298 [M]+ (6), 284 (59), 256 (23), 241 (19), 213 (39), 199 

(32), 185 (100), 171 (66), 163 (28), 157 (47). HREIMS: 298.1216 (Calcd 298.1205 for C18H18O4). 

Hydroxychavicol (2). Brown solid, melting point of 35–36 °C. 1H-NMR (600 MHz, acetone-d6):  3.21 

(2H, d, J = 6.6 Hz, H-α), 5.04–4.95 (2H, m, H-), 5.93–5.87 (1H, m, H-β), 6.50 (1H, dd, J = 8.4, 1.8 Hz, 

H-6), 6.67 (1H, d, J = 1.8 Hz, H-2), 6.73 (1H, d, J = 8.4 Hz, H-5), 13C-NMR (150 MHz, acetone-d6)  

40.1 (C-α), 115.2 (C-), 115.9 (C-5), 116.4 (C-2), 120.5 (C-6), 132.4 (C-1), 139.1 (C-β), 144.1 (C-4), 

145.7 (C-3). EIMS m/z (rel. int.) 150 [M]+ (72), 131 (63), 123 (61), 103 (82), 77 (72), 51 (100). 

Aristololactam A II (3). Yellow powder, melting point 270–271 °C. 1H-NMR (600 MHz, acetone-d6)  

3.91 (3H, s, 4-OMe), 6.97 (1H, s, H-9), 7.44 (2H, m, H-6 and H-7), 7.51 (1H, s, H-2), 7.82 (1H, m, H-8), 

9.00 (1H, m, H-5), 10.67 (1H, br s, NH). EIMS m/z (rel. int.) 265 [M]+ (68), 250 (63), 222 (60), 166 (100). 

Aristololactam B II (4). Yellow powder, melting point 260–262 °C. 1H-NMR (600 MHz, DMSO-d6) δ 

4.03 (3H, s, 4-OMe), 4.12 (3H, s, 3-OMe), 7.13 (1H, s, H-9), 7.56 (2H, m, H-6 and H-7), 7.85 (1H, s, 

H-2), 7.94 (1H, m, H-8), 9.11 (1H, m, H-5), 10.83 (1H, br s, NH). 13C-NMR (150 MHz, DMSO-d6)  

56.9 (3-OMe), 59.9 (4-OMe), 104.7 (C-9), 109.9 (C-2), 120.0 (C-4a), 121.6 (C-1), 123.4 (C-10a), 

125.5 (C-6), 126.0 (C-4b), 126.9 (C-5), 127.5 (C-7), 129.1 (C-8), 134.9 (C-8a), 135.2 (C-10), 150.5 

(C-4), 154.3 (C-3), 168.5 (C=O). EIMS m/z (rel. int.) 279 [M]+ (100), 264 (24), 236 (34), 221 (23), 209 

(21), 193 (35), 181 (35), 165 (49), 164 (56). 

Piperolactam A (5). Yellow powder, melting point >300 °C. 1H-NMR (600 MHz, CD3OD) δ 4.09 (3H, 

s, 3-OMe), 6.58 (3H, s, 3-OMe), 7.15 (1H, s, H-9), 7.53 (2H, m, H-6 and H-7), 7.77 (1H, s, H-2), 7.85 

(1H, m, H-8), 9.32 (1H, m,H-5). 13C-NMR (150 MHz, CD3OD)  57.7 (3-OMe), 107.2 (C-9), 108.9  

(C-2), 116.0 (C-4a), 116.9 (C-1), 126.2 (C-10a), 126.4 (C-6), 127.7 (C-7), 128.8 (C-4b), 129.2 (C-5), 

129.8 (C-8), 135.7 (C-8a), 135.9 (C-10), 149.7.5 (C-3), 151.6 (C-4), 172.3 (C=O). EIMS m/z (rel. int.) 

265 [M]+ (81), 250 (52), 222 (46), 166 (100), 139 (68). 

Cepharadione A (6). Orange powder, melting point >300 °C. 1H-NMR (600 MHz, DMSO) δ 3.74 (3H, 

s, NMe), 6.58 (2H, s, OCH2O), 7.72 (2H, m, H-6 and H-7), 7.92 (1H, s, H-9), 7.99 (1H, s, H-2), 8.11 

(1H, m, H-8), 8.84 (1H, m,H-5). 13C-NMR (150 MHz, DMSO)  30.2 (NMe), 103.6 (OCH2O), 107.7 

(C-2), 113.9 (C-4a), 114.3 (C-9), 120.4 (C-10a), 122.6 (C-1), 124.5 (C-4b), 125.9 (C-5), 127.3 (C-6), 

128.2 (C-7), 128.8 (C-8), 131.6 (C-8a), 132.2 (C-10), 147.6 (C-3), 151.1 (C-4), 155.8 (11-C=O), 174.2 

(12-C=O). ESIMS m/z (rel. int.) 328 [M+Na]+ (100), 320 (54), 306 [M+H]+ (44), 301 (15), 277 (13). 
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3.4. Anti-Inflammatory Activity 

Compounds 1–6 were evaluated for their anti-inflammatory activity based on their inhibition of 

against superoxide anion generation and elastase release by human neutrophils in response to 

fMLP/CB. The measurements were assayed using the method described previously [19–21]. 

4. Conclusions 

In summary, compound 1 is a new hydroxychavicol dimer and compounds 2 and 4–6 were isolated 

from the roots of P. betle for the first time. Hydroxychavicol monomer 2 was found to significantly 

inhibit superoxide anion and elastase released by human neutrophils, in response to fMLP/CB. The 

new compound 1 also proved to be moderately active in both anti-inflammatory assays. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/3/2563/s1. 
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