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Abstract: In this report a short and efficient synthesis of the dibenz[b,f]oxepin framework 

through intramolecular SNAr and McMurry reactions is described. The diaryl ethers required 

for the McMurry reaction have been obtained in good yields under microwave-assisted 

conditions of the reaction of salicylaldehydes with fluorobenzaldehydes without catalysts. 

Application of an intramolecular McMurry reaction to the synthesized diarylethers using 

TiCl4/Zn in THF gave the target dibenzo[b,f]oxepin system in 53%–55% yields. 

Keywords: dibenzoxepins; Wittig reaction; McMurry reaction; aromatic nucleophilic 

substitution 

 

1. Introduction 

The dibenz[b,f]oxepin scaffold is an important synthetic target because a large number of 

compounds having this skeleton present relevant biological activities; such as antidepressant [1], 

anxiolytic [2], antipsychotic [3,4], angiotensin-II-receptor-antagonist [5], and anti-inflammatory 

properties [6]. Additionally, a number of natural occurring dibenz[b,f]oxepins have been isolated from 

plants of the genus Bauhinia (fam. Fabaceae) and many of them also exhibit important biological 

activities [7]. For example, bauhinoxepin A isolated from Bauhinia saccocalyx Pierre (Figure 1), 

shows antimycobacterial activity [8]. Pettit et al. isolated bauhiniastatin 1 from Bauhinia purpurea L., 
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which exhibits significant growth inhibition activity against several human cancer lines [9]. From the 

same plant, Kittakoop et al. have described bauhinoxepin J, which shows potent antimycobacterial  

and antimalarial activities, as well as tumor growth inhibitory activity, against KB cells [10]. 

Bulbophylol B is another interesting example isolated from Bulbophyllum kwangtungense Schlecht 

(fam. Orchidaceae), which displays significant cytotoxicity against human epithelial carcinoma (HeLa) 

and human erythromyeloblastoid leukemia (K562) cell lines [11]. 

Figure 1. Structure of some natural dibenz[b,f]oxepins. 

bauhinoxepin A bauhiniastatin 1 bauhinoxepin J bulbophylol 

Synthetic approaches to natural dibenzo[b,f]oxepins have been directed mainly to the preparation of 

dihydro derivatives. For example, the total synthesis of bauhinoxepin J using an intramolecular 

persulfate-mediated radical addition to a quinone was described by Krauss and Kim [12]. Furthermore, 

Katoh et al. [13] have also recently described their synthesis using the reaction of an aryllithium 

derivative with a phenylacetaldehyde and subsequent internal nucleophilic addition/elimination sequences 

as key steps. Yao et al. have described the synthesis of bulbophylol employing Wittig, selective 

reduction and intramolecular Ullmann reactions as key steps (18% overall yield over 12 steps) [14].  

It is noteworthy that the synthesis of bauhinoxepin A and bauhiniastatin 1 are not reported, probably 

because the described routes to dibenzo[b,f]oxepins are multi-step procedures or require the 

preparation of complex starting materials [15]. Some interesting approaches have been described 

recently, but they are limited to the synthesis of dibenz[b,f]oxepincarboxylic acid derivatives [16,17]. 

In connection with our interest on the synthesis of bioactive heterocyclic quinones [18,19], herein we 

describe a convenient procedure for the preparation of the dibenzo[b,f]oxepin scaffold. 

Retrosynthetic analysis of the tricyclic system I led us to consider two strategies (Scheme 1). 

Approach A, is via an intramolecular Ullmann, or nucleophilic aromatic substitution (SNAr) reaction [20]. 

Path B, was envisaged through an intramolecular McMurry reaction, which has been used successfully 

in the synthesis of natural products [21], but there are no precedents for the preparation of 

dibenzo[b,f]oxepins using it, except for sulfur and selenium analogues [22]. 

Scheme 1. Strategies for the synthesis of dibenzo[b,f]oxepin scaffold. 
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2. Results and Discussion 

First, we focused our research on the synthesis of a Z-stilbene. To achieve our objective, we 

planned to apply the Wittig reaction that gives high Z selectivity when both the ylide and benzaldehyde 

incorporate ortho-halo and ortho-alkoxy substituents [23,24]. Thus, Wittig reaction of o-bromobenzyl-

triphenylphosphonium salt 1 [23] with 2-formylphenyl-4-methylbenzene sulfonate (2) in the presence 

of potassium t-butoxide gave stilbene 3 (87%) as a single isomer. Attempts to obtain dibenzo[b,f]oxepin 5a 

directly from compound 3, by applying an intramolecular palladium-catalyzed biaryl ether formation 

using Pd(OAc)2 and tri(o-tolyl)phosphine as described by Harayama et al. for an aza-analog [25]  

were unsuccessful. Cleavage of the p-toluenesulfonate group under standard basic conditions 

(KOH/EtOH-H2O) gave phenol 4 which was directly converted to dibenzo[b,f]oxepin 5a (72%) by 

treatment with cesium carbonate in DMSO at 180 °C under microwave irradiation (Scheme 2). 

Scheme 2. Synthesis of dibenzoxepin 5a by intramolecular SNAr reaction. 

 
Reagents and conditions: (a) t-BuOK, THF, 0 °C, 30 min; (b) 2, THF, 18 h, rt; (c) KOH,  

EtOH-H2O, 1 h reflux; (d) DMSO, Cs2CO3, MW, 180 °C,15 min. 

Considering the low synthetic efficiency of the Wittig process, we focused our attention on the 

intramolecular McMurry reaction. Therefore, we concentrated our attention on the preparation of 

suitable diaryl ether precursors. The synthesis of o-phenoxybenzaldehydes by Ullmann or SNAr 

nucleophilic aromatic substitution reactions of salicylaldehydes with aryl halides normally requires 

harsh conditions, long reaction times and often gives low yields [26–28]. Considering the successful 

application of microwave irradiation to improve the nucleophilic SNAr reaction of activated aryl 

halides with phenols [29], we decided to use this methodology to obtain diaryl ethers 8. Therefore, 

preliminary experiments were carried out in order to determine the optimal conditions for the synthesis 

of 8a using highly polar solvents such as DMSO or DMA and K2CO3 or Cs2CO3 as bases [20].  

The reaction of 1.2 equivalents of 2-hydroxybenzaldehyde (6a) with 1.0 equivalent of  

2-fluoro-benzaldehyde (7a) and K2CO3 (2 equiv.) in DMSO using microwave irradiation over a wide 

temperature range was examined. The best result was obtained when the reaction was carried out at 

120 °C (Table 1, entry 3) with a 73% yield of dialdehyde 8a and at higher temperatures a progressive 

degradation of compound 8a was observed. Similar results were obtained using DMA and Cs2CO3 as 

solvent and base, respectively (Table 1, entry 14). Using the optimized conditions, 2-fluoro-6-(2-

formylphenoxy)-benzaldehyde (8b) and 2-(2-formylphenoxy)-6-methoxybenzaldehyde (8c) were 

obtained in 80% and 82% yield. Finally, the treatment of dialdehyde 8a with TiCl4 (3.0 equiv.) and Zn 

(6.0 equiv.) in THF at reflux for 2.5 h gave compound 5a in 55% yield through an intramolecular 

McMurry coupling reaction. Similarly, dialdehydes 8b and 8c underwent intramolecular McMurry 

coupling to give dibenzoxepins 5b and 5c (53%–55%) (Scheme 3). 
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Table 1. Optimization of microwave-induced synthesis of 2,2'-oxybis(benzaldehyde) 8a. 

 
      6a         7a          8a 

Entry Temp. (°C) Base Solvent Time (min) Yields (%) 

1 100 °C K2CO3 DMSO 30 48% 
2 110 °C K2CO3 DMSO 30 67% 
3 120 °C K2CO3 DMSO 30 73% 
4 130 °C K2CO3 DMSO 30 72% 
5 140 °C K2CO3 DMSO 30 55% 
6 160 °C K2CO3 DMSO 30 3% a 
7 100 °C Cs2CO3 DMSO 30 50% 
8 110 °C Cs2CO3 DMSO 30 65% 
9 120 °C Cs2CO3 DMSO 30 73% 

10 130 °C Cs2CO3 DMSO 30 70% 
11 140 °C Cs2CO3 DMSO 30 45% 
12 160 °C K2CO3 DMA 30 0% a 
13 120 °C K2CO3 DMA 30 72% 
14 120 °C Cs2CO3 DMA 30 73% 
15 120 °C K2CO3 DMA 24 h 71% b 

a The decomposition of the product was observed; b Reaction performed without microwave irradiation. 

Scheme 3. Synthesis of dibenzo[b,f]oxepin scaffold via McMurry reaction. 

 
 6a R1 = H 7a R2 = H 8a R1 = R2 = H (73%) 5a R1 = R2 = H (55%) 

 6a R1 = H 7b R2 = F 8b R1 = H, R2 = F (80%) 5b R1 = H, R2 = F (53%) 

 6b R1 = OMe 7a R2 = H 8c R1 = OMe, R2 = H (82%) 5c R1 = OMe, R2 = H (55%) 

Reagents and conditions: (a) DMSO, MW, 120 °C 30 min; (b) Zn, TiCl4, THF, 12 h rt. 

The mechanism of the McMurry reaction is still under debate, but new evidences suggest 

participation of a metallopinacol intermediate formed by dimerization of ketyl radicals [30–33]. A 

possible mechanism for our route is shown in Scheme 4. 

Scheme 4. Possible mechanism for the McMurry reaction formation of dibenzo[b,f]oxepins. 
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3. Experimental 

3.1. General 

Melting points were measured on a Stuart Scientific SMP3 apparatus (Stuart Scientific, Manchester, UK) 

and are uncorrected. Infrared (IR) spectra ( max) were recorded on a Bruker Model Vector 22 

spectrophotometer (Bruker Optik GmbH, Bremen, Germany). 1H- (400 MHz) and 13C-NMR (100 MHz) 

spectra were obtained on a Bruker AM-400 instrument (Bruker BioSpin GmbH, Rheinstetten, 

Germany), using tetramethylsilane as internal reference. Column chromatography was performed on 

silica gel Merck 60 (70–230 mesh) (Merck, Darmstadt, Germany). High-resolution mass spectrum was 

obtained using a Thermo Finnigan mass spectrometer Model MAT 95XP (Thermo Finnigan,  

San Jose, CA, USA). Microwave-assisted reactions were carried out in an Anton Paar Monowave  

300 Microwave Synthesis Reactor (Anton Paar GmbH, Graz, Austria) in 30 mL sealed vials. THF was 

freshly distilled over sodium. DMSO and DMA were dried over 4 Å molecular sieves prior to use. 

Cs2CO3 and K2CO3 were dried overnight at 200 °C prior to use. All other reagents were used without 

further purification. 

(Z)-2-(2-Bromostyryl)phenyl 4-methylbenzenesulfonate (3). t-BuOK (157 mg, 1.4 mmol) was added to 

a suspension of phosphonium salt 1 (615 mg, 1.2 mmol) in THF (15 mL), at 0 °C and under a nitrogen 

atmosphere. The mixture was stirred at 0 °C for 30 min and a solution of aldehyde 2 (276.3 mg,  

1.0 mmol) in THF (10 mL) was added via syringe. The reaction mixture was allowed to warm to room 

temperature and stirred for 18 h. The cooled reaction mixture was poured into water (30 mL) and 

extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried with 

MgSO4 and concentrated under reduced pressure. The crude product was purified by silica gel flash 

chromatography (CH2Cl2-hexane, 1:9) to give stilbene 3 (375 mg, 87%) as colorless oil. IR (KBr): 

max 3061, 1597, 1444, 1366, 1262, 1025, 810, 722, 671 cm−1. 1H-NMR (CDCl3): δ 2.39 (s, 3H), 6.56 

(d, J = 12 Hz, 1H), 6.61 (d, J = 12 Hz, 1H), 6.75 (d, J = 8 Hz, 1H), 6.90–7.10 (m, 6H), 7.29 (d,  

J = 8 Hz, 2H), 7.54 (d, J = 8 Hz, 1H), 7.80 (d, J = 8 Hz, 2H). 13C-NMR (acetone-d6): δ 22.1, 124.0, 

124.8, 126.7, 128.0, 128.4, 130.0 (2C), 130.3, 130.6, 131.4 (2C), 131.7, 131.9, 132.1, 132.6, 133.9, 

134.2, 138.3, 147.3, 149.0. HRMS (EI): m/z [M+] calcd for C21H17BrO3S: 428.0082; found: 428.0077. 

Dibenz[b,f]oxepin (5a). Stilbene 3 (215 mg, 0.5 mmol) was added to a solution of KOH (900 mg,  

16 mmol) in a mixture of EtOH (15 mL) and H2O (15 mL) and the suspension was heated under reflux 

for 1 h. After cooling, the reaction mixture was acidified with aqueous HCl (10%) to pH 4 and 

extracted with CH2Cl2 (3 × 25 mL). The combined organic extracts were washed with saturated 

aqueous NaHCO3, dried, and filtered through a short column of silica gel. After the removal of the 

solvent, the residue was dissolved in DMSO (5.0 mL) and Cs2CO3 (651.6 mg, 2.0 mmol) was added. 

The reaction mixture was heated in a microwave reactor at 180 °C for 15 min. After cooling, the 

solvent was evaporated under reduced pressure and the crude product was purified by flash column 

chromatography (silica gel, EtOAc-hexanes; 1:9) to afford 5a (70 mg, 72%), mp 108.5–109.5 °C  

(Lit. 106–108 °C [34], 110–111 °C [35]). IR (KBr): max 3069, 3044, 1483, 798 cm−1.  
1H-NMR (acetone-d6) δ 6.82 (s, 2H), 7,19 (t, J = 7,8 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 7.30 (d, J = 7.8 Hz, 

2H), 7.38 (t, J = 7.8 Hz, 2H). 13C-NMR (acetone-d6) δ 122.9, 126.6, 131.1, 131.6, 131.7, 132.3, 159.1. 
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3.2. General Procedure for the Preparation of Diarylethers 8 

A mixture of hydroxybenzaldehyde 6a (1.2 mmol), fluorobenzaldehyde 7 (1.0 mmol), cesium 

carbonate (1.30 g, 4.0 mmol) and DMSO (4.0 mL) in a 30 mL microwave vial was irradiated at 120 °C 

for 30 min under nitrogen. The reaction mixture was diluted with dichloromethane (20 mL), washed 

with brine (3 × 10 mL), dried (MgSO4) and evaporated. The residue was purified by flash column 

chromatography (EtOAc-hexanes, 1:9). 

2,2'-Oxybis(benzaldehyde) (8a). Following general procedure, from 2-hydroxybenzaldehyde (146.5 mg, 

1.2 mmol) and 2-fluorobenzaldehyde (124.1 mg, 1.0 mmol) compound 8a was obtained (168 mg, 

74%), mp 76–77 °C (Lit. 74 °C [36], 77.0–77.5 °C [37]). IR (KBr): max 1686, 1574, 1473, 1454, 1393, 

1301, 1224, 760 cm−1. 1H-NMR (acetone-d6): δ 7.11 (d, J = 8.3 Hz, 2H), 7.39 (t, J = 7.7 Hz, 2H), 7.72 

(m, 2H), 7.96 (dd, J = 7.7, 1.5 Hz, 2H), 10.53 (s, 2H), 13C-NMR (acetone-d6): δ 121.6, 126.7, 129.6, 

131.0, 138.4, 161.2, 190.9. 

2-Fluoro-6-(2-formylphenoxy)benzaldehyde (8b). Following the general procedure, from  

2-hydroxybenzaldehyde (146.5 mg, 1.2 mmol) and 2,6-difluorobenzaldehyde (142.1 mg, 1.0 mmol) 

compound 8b was obtained (196 mg, 80%), mp 80–81 °C. IR (KBr): max 1685, 1611, 1598, 1577, 

1396, 787 cm−1. 1H-NMR (CDCl3) δ 6.73 (d, J = 8.3 Hz, 1H), 6.99 (m, 2H), 7.33 (t, J = 7.5 Hz, 1H), 

7.54 (m, 1H), 7.62 (ddd, J = 8.3, 7.5, 1.5 Hz, 1H), 7.99 (dd, J = 7.5, 1.5 Hz, 1H), 10.44 (s, 1H),  

10.51 (s, 1H), 10.43 (s, 1H). 13C-NMR (CDCl3) δ 112.5, 112.7, 115.0, 115.1, 119.7, 125.3, 127.7, 

129.8, 136.4, 136.5, 158.5, 159.0, 186.2, 188.9. HRMS (EI): m/z [M+] calcd for C14H9FO3: 244.0536; 

found: 244.0532. 

2-Hydroxy-6-methoxybenzaldehyde (6b). A solution of 2,6-dimethoxybenzaldehyde (2.0 g, 12 mmol) 

in CH2Cl2 (20 mL) was added dropwise to a stirred suspension of AlCl3 (2.4 g, 18 mmol) in CH2Cl2 

(30 mL) at −20 °C. The reaction mixture was allowed to warm to room temperature and then stirred 

for 6 h. After the addition of 6 M HCl (20 mL) the biphasic mixture was stirred vigorously for 12 h 

and the aqueous solution was extracted with CH2Cl2 (3 × 20 mL) The combined organic extracts were 

washed with water, brine, dried (MgSO4) and evaporated under reduced pressure. Purification of the 

residue by flash chromatography on silica gel (EtOAc-hexanes; 1:9) gave compound 6b (1.7 g, 93%), 

mp 72–74 °C (Lit. 73–75 °C [38]). 

2-(2-Formylphenoxy)-6-methoxybenzaldehyde (8c). Following general procedure, from 2-hydroxy-6-

methoxybenzaldehyde (182.6 mg, 1.2 mmol) and 2-fluorobenzaldehyde (124.1 mg, 1.0 mmol) 

compound 8a was obtained (210 mg, 82%), mp 116–117 °C. IR (KBr): max 2914, 2862, 2762, 1687, 

1600, 1279, 1236, 758, 737 cm−1. 1H-NMR (CDCl3) δ 3.97 (s, 3H), 6.54 (d, J = 8.4 Hz, 1H), 6.83 (d,  

J = 8.4 Hz, 1H), 6.86 (dd, J = 8.4, 1.8 Hz, 1H), 7.22 (tt, J = 7.8, 1.8 Hz, 1H), 7.48 (t,  

J = 8.4 Hz, 1H), 7,52 (ddd, J = 8.4, 7.8, 1.8 Hz, 1H), 7.95 (dd, J = 7.8, 1.8 Hz, 1H), 10.48 (s, 1H), 

10.52 (s, 1H). 13C-NMR (CDCl3) δ 56.7, 108.0, 112.5, 117.4, 118.8, 124.3, 127.4, 129.1, 136.1,  

136.2, 158.3, 159.7, 163.1, 188.4, 189.5. HRMS (EI): m/z [M+] calcd for C15H12O4: 256.0736;  

found: 256.0733. 
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3.3. General Procedure for the McMurry Reaction 

To a stirred suspension of zinc powder (98.1 mg, 3.0 mmol) in anhydrous THF (40 mL) cooled to 

−5 °C under an argon atmosphere, TiCl4 (284.5 mg, 1.5 mmol) was slowly added via syringe keeping 

the temperature under 0 °C. The reaction mixture was allowed to warm to room temperature and then 

heated at reflux for 2.5 h. The reaction was quenched with saturated NH4Cl solution and extracted with 

CH2Cl2 (3 × 20 mL). The combined organic layers were dried (MgSO4) and concentrated. The crude 

material was purified by flash chromatography (hexanes) to give the desired product. 

Dibenzo[b,f]oxepin (5a). Following the general procedure, from 2,2'-oxybis(benzaldehyde) (8a)  

(226.2 mg, 1.0 mmol) compound 5a was obtained (107 mg, 55%), mp 108.5–109.5 °C. 

1-Fluorodibenzo[b,f]oxepin (5b). Following general procedure, from 2-fluoro-6-(2-formylphenoxy)-

benzaldehyde (8b) (244.2 mg, 1.0 mmol) compound 5a was obtained (115 mg, 54%), mp 40.5–41.5 °C. 

IR (KBr): max 3051, 1613, 1571, 1442, 1259, 1007, 774 cm−1. 1H-NMR (acetone-d6) δ 6.93 (d,  

J = 11.5 Hz, 1H), 6.97 (d, J = 11.5 Hz, 1H), 7.03 (ddd, J = 9.6, 8.4, 1.2 Hz, 1H), 7.13 (dt, J = 8.4, 1.2 Hz, 

1H), 7.23 (dd, J = 7.6, 1.2 Hz, 1H), 7.35 (dd, J = 7.6, 1.7 Hz, 1H). 13C-NMR (acetone-d6) δ 112.3, 

117.4, 120.0, 121.8, 122.6, 126.6, 129.9, 130.4, 130.5, 130.9, 131.4, 157.7, 159.5, 161.5. HRMS (EI): 

m/z [M+] calcd for C14H9FO: 212.0637; found: 212.0640. 

1-methoxydibenzo[b,f]oxepin (5c). Following general procedure, from 2-(2-formylphenoxy)-6-

methoxybenzaldehyde (8c) (256.3 mg, 1.0 mmol) compound 5c was obtained (124 mg, 55%),  

mp 63–64 °C. IR (KBr): max 1599, 1570, 1464, 1075, 778 cm−1. 1H-NMR (acetone-d6) δ 3.90 (s, 3H),  

6.84 (d, J = 11.6 Hz, 1H), 6.89 (d, J = 8.3 Hz, 1H), 7.06 (d, J = 11.6 Hz, 1H), 7.20 (td, J = 7.4, 1.6 Hz, 

1H), 7.24 (m, 1H), 7.30 (dd, J = 7.6, 1.6 Hz, 2H), 7.35 (t, J = 8.4 Hz, 1H), 7.38 (ddd, J = 8.4, 7.4, 1.6 Hz, 

1H). 13C-NMR (CDCl3) δ 56.2, 107.3, 114.1, 120.1, 121.6, 125.1, 125.2, 129.4, 129.5, 129.9, 130.3, 

131.5, 157.5, 157.8, 159.53. HRMS (EI): m/z [M+] calcd for C15H12O2: 224.0837; found: 224.0831. 

4. Conclusions 

In conclusion, we have developed a short synthesis of dibenzo[b,f]oxepin derivatives using SNAr 

and intramolecular McMurry reactions. An efficient process to obtain diarylethers through SNAr 

reaction of salicylaldehydes with fluorobenzaldehydes using microwave irradiation is described. 

McMurry reaction of diarylethers using TiCl4 and Zn in THF afforded the target tricyclic system in 

reasonable yields (53%–55%). Further work on the synthesis of natural and pharmacologically active 

dibenzo[b,f]oxepins are under way. 
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Supplementary materials can be accessed at: http://www.mdpi.com/1420-3049/18/12/14797/s1. 
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