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Abstract: This study aimed to investigate the in vitro skin permeation and in vivo 

antineoplastic effect of curcumin by using liposomes as the transdermal drug-delivery 

system. Soybean phospholipids (SPC), egg yolk phospholipids (EPC), and hydrogenated 

soybean phospholipids (HSPC) were selected for the preparation of different kinds of 

phospholipids composed of curcumin-loaded liposomes: C-SPC-L (curcumin-loaded SPC 

liposomes), C-EPC-L (curcumin-loaded EPC liposomes), and C-HSPC-L (curcumin-loaded 

HSPC liposomes). The physical properties of different lipsomes were investigated as 

follows: photon correlation spectroscopy revealed that the average particle sizes of the 

three types of curcumin-loaded liposomes were 82.37 ± 2.19 nm (C-SPC-L), 83.13 ± 4.89 nm 

(C-EPC-L), and 92.42 ± 4.56 nm (C-HSPC-L), respectively. The encapsulation efficiency 

values were found to be 82.32 ± 3.91%, 81.59 ± 2.38%, and 80.77 ± 4.12%, respectively. 

An in vitro skin penetration study indicated that C-SPC-L most significantly promoted 

drug permeation and deposition followed by C-EPC-L, C-HSPC-L, and curcumin solution. 

Moreover, C-SPC-L displayed the greatest ability of all loaded liposomes to inhibit the 

growth of B16BL6 melanoma cells. Therefore, the C-SPC-L were chosen for further 

pharmacodynamic evaluation. A significant effect on antimelanoma activity was observed 

with C-SPC-L, as compared to treatment with curcumin solution in vivo. These results 

suggest that C-SPC-L would be a promising transdermal carrier for curcumin in  

cancer treatment.  
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1. Introduction 

Curcumin (Figure 1) is a compound isolated from the turmeric plant and primarily used as a natural 

yellow pigment. It has a variety of biological activities and pharmacological actions, such as  

anti-inflammatory, anti-carcinogenic, and anti-virus properties, as well as promising clinical 

applications due to its low toxicity [1–3]. In recent years, curcumin has been shown to inhibit cell 

proliferation in a variety of human cancer-cell lines in vitro [4–6] and has been used both to prevent 

and treat various cancers in vivo [7,8]. However, its extremely low aqueous-solubility and rapid 

intestinal and hepatic metabolism, which result in poor systemic bioavailability, restrict its oral use [9]. 

By contrast, transdermal drug delivery has many advantages over other administration routes, for 

example avoidance of gastrointestinal and hepatic metabolism, convenient administration for the 

patient, and easy withdrawal of treatment if necessary. Therefore, it has promise as a suitable 

administration route for curcumin. However, the highly hydrophobic properties and the excellent 

barrier function of the skin lead to a very low percutaneous penetration of curcumin, which makes 

developing a transdermal-delivery system for curcumin a challenge. 

Figure 1. Chemical structure of curcumin. 

 

Providing a potential vehicle are liposomes, small artificial vesicles of spherical shape with a 

membrane composed of phospholipid bilayers [10]. They are widely used as carriers, especially in 

their application to topical delivery for a variety of drugs, because of their small size, biodegradability, 

hydrophobic and hydrophilic character, and low toxicity [11]. Results from several studies demonstrate 

that liposomes have the potential to enhance drug penetration into the skin, improve therapeutic 

effectiveness, reduce serious side effects, and act as local depots for the sustained release of drugs [12,13]. 

Many researchers have further reported that adding ethanol, edge activators, and some surfactant can 

influence the percutaneous permeability behavior of liposomes [14,15]. However, as the main 

component of liposomes, phospholipids, specifically, the kind of phospholipid, can directly influence 

the physical properties of liposomes, even their permeability behavior.  

In order to take advantage of these properties, our study aimed to develop a curcumin-loaded 

liposome system, which could enhance the skin delivery of curcumin. In order to investigate the 

influence of different phospholipids types on skin delivery of curcumin and gain access to the optimal 

formulation, natural phospholipids from different sources, SPC and EPC, and the synthetic 

phospholipid HSPC were chosen to prepare curcumin-loaded liposomes. The effect of these liposomes 

on in vitro skin permeation and antineoplastic activity was investigated by a Franz diffusion cell and 
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B16BL6 melanoma cells cytotoxicity experiment. Moreover, the C-SPC-L that showed higher skin 

permeation and in vitro antineoplastic activity compared with the others were selected to evaluate the 

in vivo antineoplastic capacity using the melanoma-bearing mouse model.  

2. Results and Discussion 

2.1. Physical Characterization of Liposome Dispersions 

Particle size analysis showed that the sizes of C-SPC-L, C-EPC-L and C-HSPC-L were in the range 

of 82.37 ± 2.19 nm to 92.42 ± 4.56 nm (Table 1), indicating that these vesicles were all of a small size. 

This is a highly desirable property in terms of their topical application, since it has been shown that 

decreasing the vesicles’ particle size increases the penetration of encapsulated drugs into the deeper 

skin layers [16]. Furthermore, there was no significant difference in particle size between the C-SPC-L 

and C-EPC-L, whereas the particle size of the C-HSPC-L was slightly larger than that of the other two 

liposome types. The polydispersity index (PDI) of the investigated vesicles showed values from  

0.247 ± 0.028 to 0.279 ± 0.039, indicating homogenous populations (PDI < 0.3) of vesicles (Table 1). 

Regarding zeta potential, all vesicles displayed a negative surface charge ranging from −10.39 ± 2.67 

to −12.88 ± 1.38 mv. In general, nanoparticles could form a stable dispersion when the absolute value 

of zeta potential was above 30 mv due to the electric repulsion between particles. Although the 

absolute value of zeta potential of these liposomes were less than 30 mv, the results of the stability 

tests showed that the liposomes were stable at 4 °C within 2 months (see Figure 2). In addition, as shown in 

Table 1, the great EE values of these liposomes ranged from 80.77 ± 4.12% to 82.32 ± 3.91%, which 

indicates that there was no significant difference in encapsulation efficiency among these liposomes.  

Table 1. Characterization parameters of different formulations (mean ± SD, n = 3). 

Liposome 
dispersion 

Particle size 
(nm) 

Polydispersity 
index 

Zeta potential 
(mv) 

EE (%,w/w) 

C-SPC-L 82.37 ± 2.19 0.247 ± 0.028 −12.88 ± 1.38 82.32 ± 3.91 
C-EPC-L 83.13 ± 4.89 0.261 ± 0.013 −11.97 ± 1.92 81.59 ± 2.38 

C-HSPC-L 92.42 ± 4.56 0.279 ± 0.039 −10.39 ± 2.67 80.77 ± −4.12 

Figure 2. Morphology of curcumin-loaded liposomes. (A) C-SPC-L; (B) C-EPC-L; and 

(C) C-HSPC-L. Scale length: 200 nm; (D) C-SPC-L (2 months later); (E) C-EPC-L  

(2 months later); and (F) C-HSPC-L (2 months later). Scale length: 100 nm. 

 

(C) (B) (A) 



Molecules 2012, 17 5975 

 

 

Figure 2. Cont. 

 

2.2. Liposome Morphology  

Transmission Electron Microscopy (TEM) was used to study the vesicles’ morphology. According 

to morphological evaluation analysis, all vesicle types seemed to have a similar spherical or oval shape 

(Figure 2). These oval-shaped vesicles may have resulted from the liposomes’ deformation, which 

might occur during the sample preparation. In addition, TEM failed to reveal any structural differences 

among these vesicle types, indicating that phospholipid type did not have a significant impact on 

vesicle structure. 

2.3. Differential Scanning Calorimetry Characterization 

Differential Scanning Calorimetry (DSC) is used to characterize the melting and crystallization 

behavior of crystalline materials. Figure 3 shows the DSC curves of curcumin, the physical mixture 

with or without curcumin, and three kinds of curcumin-loaded liposomes. The melting points for the 

three kinds of physical mixture I were found to be generally between 121.8 °C and 137.6 °C. 

Curcumin alone exhibited a melting peak of approximately 177.1 °C. The physical mixture with 

curcumin showed a melting point of approximately 177.1 °C; however, this phenomenon was not 

observed in liposomes. Moreover, the melting point of lipid material in the three kinds of liposomes 

dropped 5–13 °C compared with the corresponding physical mixtures I and II. These two results 

indicate an interaction of lipid material with the curcumin, which was in an amorphous state in the 

liposomes. Meanwhile, the intercalated drug molecules might disrupt hydrogen bonds spanning 

adjacent head-groups, thereby destroying the specific structural arrangement of a particular polar head-

group region, further reducing the melting point of the liposomes’ component lipids. Similar findings 

were noted previously by Sainz et al. [17].  

(D) (E) (F) 
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Figure 3. Heating curves of DSC for curcumin, physical mixture with or without 

curcumin, and liposomes systems: Physical mixtures I: physical mixture without curcumin; 

physical mixtures II: physical mixture with curcumin. A: Curcumin; B: Physical mixtures 

I(SPC); C: Physical mixtures II(SPC); D: C-SPC-L; E: Physical mixtures I(EPC);  

F: Physical mixtures II(EPC); G: C-EPC-L; H: Physical mixtures I(HSPC); I: Physical 

mixtures II(HSPC); J: C-HSPC-L. 

 
2.4. In Vitro Drug Release 

The in vitro-release profiles of curcumin obtained from the different formulations are shown in 

Figure 4. After 48 h, the C-SPC-L, C-EPC-L and C-HSPC-L released 67.38%, 64.22%, and 34.14% of 

their curcumin cargo, respectively. The C-HSPC-L clearly showed the almost one-fold lower release 

rate compared with that of the C-SPC-L and C-EPC-L. Similar findings were noted previously by  

Jun Chen et al. [18], who showed that the release rate of brucine encapsulated in SPC liposomes was  

two-fold faster than that of brucine encapsulated in HSPC liposomes. These results might be the 

consequence of a lower phase-transition temperature for SPC and EPC (below 0 °C) compared to that 

of HSPC (approximately 50 °C). The phase-transition temperature of a bilayer lipid membrane  

directly influences its liquidity, which in turn affects the release of curcumin from liposomes. Under 

the experimental temperature conditions, the lower film liquidity of the bilayer lipid membrane in  

C-HSPC-L was less than the C-SPC-L and C-EPC-L, which slowed down the release of curcumin 

from the C-HSPC-L. 
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Figure 4. Release percentage (%) of curcumin from the C-SPC-L, S-EPC-L, and C-HSPC-L 

systems. Each value is represented as the mean ± S.D. (n = 3). 
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2.5. Skin Penetration 

The percutaneous penetration curves and the cumulative amount of curcumin that permeated 

through the skin are represented in Figure 5 and Table 2, while the amounts of curcumin delivered 

from various formulations to different skin layers are represented in Figure 6. The cumulative amount 

of curcumin in different formulations that permeated through the skin in 24 h was 34.84 μg·cm−2 for  

C-SPC-L, 31.97 μg·cm−2 for C-EPC-L and 21.87 μg·cm−2 for C-HSPC-L, values which were 1.78-, 

1.55- and 0.74-fold higher than curcumin solution (12.56 μg·cm−2), respectively. The total amount of 

curcumin retained in the skin showed a similar order to the cumulative amount of curcumin, which was 

2.80-, 2.44-, and 1.23-fold higher than the curcumin solution. For the retention in different skin sheets, 

the amount of curcumin decreased in the following order: 0–30 μm > 30–60 μm > 60–90 μm (Figure 6). 

These results indicated the liposomes exerted a positive effect on the skin penetration and retention of 

curcumin. Meanwhile, the C-SPC-L and C-EPC-L provided a higher total penetration and retention 

amount for curcumin compared with the C-HSPC-L. This might be due to the difference of the  

phase-transition temperature for the different phospholipids. This temperature, which is the point at 

which the lipids transferred from gel to liquid phase, was directly related to the degree of the 

phospholipids’ unsaturation. In liquid phase, a given lipid will exchange locations with its neighbor, 

which permits the lipid to diffuse and thus wander across the surface of the membrane. Unlike the 

liquid phase, lipids in a gel phase are locked in place [19]. Therefore, at the experimental temperature 

conditions (37 °C), the SPC and EPC (which mainly contains unsaturated lecithin) that have lower 

transition temperatures, displayed better liquidity and percutaneous penetration ability compared with 

HSPC (hydrogenated lecithin). Similar observations were made by previously by Makiko et al. [20].  
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Figure 5. Effects of the phospholipids on curcumin permeated through excised rat skin. 

(mean ± SD, n = 3). 
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Table 2. Effects of the phospholipids on curcumin permeability and flux (mean ± SD, n = 3). 

Sample 
Curcumin permeated 

at 24 h (μg·cm−2) 
Curcumin retained  

in skin at 24 h (μg·cm−2)  
Flux (μg·cm−2h−1)

Curcumin solution 12.56 ± 2.77 1.49 ± 0.18 0.59 ± 0.11 
C-SPC-L 34.84 ± 4.33 5.66 ± 0.43 1.45 ± 0.31 
C-EPC-L 31.97 ± 3.37 5.23 ± 0.35 1.34 ± 0.24 

C-HSPC-L 21.87 ± 2.93 3.32 ± 0.21 0.96 ± 0.18 

Figure 6. Effects of phospholipids on curcumin retained in the excised rat skin (mean ± SD, 

n = 3) * p < 0.05 versus curcumin group. 

 

2.6. Cytotoxicity 

In order to investigate the in vitro antitumor activity of the liposomes, they were applied to B16BL6 

melanoma cells in an MTT assay. As shown in Figure 7, all curcumin formulations had a significant 

growth-inhibiting effect on the cell line. After treatment with curcumin liposomes and curcumin 
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solution for 36 h, the IC50 values of the B16BL6 melanoma cells were 10.02 μg·mL−1 (C-SPC-L), 

11.35 μg·mL−1 (C-EPC-L), 14.04 μg·mL−1 (C-HSPC-L) and 22.42 μg·mL−1 (curcumin solution), 

respectively. These results indicate that these liposomes can significantly increase the inhibitory effect 

of curcumin on B16BL6 melanoma cells. One possible mechanism for the improved antiproliferation 

effect could be that the fusion of the lipids’ particles and cell membrane surface promoted the transfer 

of drug from the extracellular to intracellular regions [21]. Phospholipids, the major components of the 

liposome, which have good biocompatibility could promote the delivery through the cell membrane 

and increase drug concentration in the cells, further enhancing the anti-cell effect of the drugs. Similar 

observations were made previously by Marilena et al. [22]. In addition, at the same concentrations of 

curcumin, the C-SPC-L formulation had higher cell-inhibition ratios than the other two formulations, 

whereas the C-HSPC-L formulation showed the lowest. There was no significant difference between 

C-SPC-L and C-EPC-L in cell-inhibiton ratios. At the cell-culture temperature condition (37 °C), the 

greater liquidity of C-SPC-L and C-EPC-L increased the ability of the liposomes to interact with the 

cell membrane, further promoting the release of the curcumin into the cells and enhancing its  

anti-proliferation effect on B16BL6 melanoma cells. 

Figure 7. Growth-inhibiting effect of curcumin on B16BL6 cells. The results are expressed 

as percentage of cell-inhibition rate as compared to untreated, control cells. Data are 

represented as mean ± S.D. (n = 3). * p < 0.05 versus curcumin solution group. 

 

2.7. Effects on Tumor Growth 

To assess whether curcumin-loaded liposomes foster antitumor activity in vivo, the C-SPC-L were 

chosen for pharmacodynamic evaluation. With the exception of the cyclophosphamide (positive 

control) group, the other groups were mixed with Carbomer hydrogels in order to obtain semisolid 

liposomal formulations which were convenient for application. At present, there are no marketed drugs 

administrated via the percutaneous route for the treatment of melanoma; therefore, cyclophosphamide, 

which is commonly used in antitumor experiments, was selected as the drug for positive control. 

In Figure 8A, the tumor volume in the C-SPC-L and cyclophosphamide groups was visibly smaller 

than in the blank control group. The order of tumor weight of the various groups was blank control 
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group > the vehicle group > curcumin solution group > C-SPC-L group > positive control group 

(Figure 8B). As can be seen from Figure 8C, the positive control and C-SPC-L group showed  

greater antimelanoma effects, whereas the vehicle and curcumin group exhibited only a minor effect 

on tumor growth. 

Figure 8. Curcumin-loaded liposomes inhibit tumor growth in vivo. Tumors excised from 

C57BL/6 mice are exhibited in (A). a: blank control group; b: vehicle(drug-free liposome 

carbomer hydrogel); c: 20 mg·kg−1 curcumin solution in 1% carbomer hydrogel;  

d: 20 mg·kg−1 C-SPC-L in 1% carbomer hydrogel, a–d are transdermally administered 

every day; e: 20 mg·kg−1 cyclophosphamide by intraperitoneal injection. Tumor weight and 

inhibition rates accounting for tumor weight are shown in (B) and (C). * p < 0.05 versus 

control group, + p < 0.05 versus vehicle group. 
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Figure 8. Cont. 

 

The tumor inhibition rates of the C-SPC-L group versus the blank control group was 43.6 ± 3.6%, 

which was 1.74-fold higher than that of the curcumin solution group. These results indicate that the  

in vivo antimelanoma efficacy of the C-SPC-L group was significantly higher than that of curcumin 

alone at the same dose level of curcumin. This clearly indicates the advantage of the liposome in the 

delivery of curcumin. 

3. Experimental 

3.1. Chemicals 

Curcumin (purity > 95%) was purchased from Nanjing Zelang Medical Technology Co, Ltd 

(Nanjing, China). SPC was provided by Shanghai Taiwei Pharmaceutical Co, Ltd (Shanghai, China). 

EPC and HSPC were supplied by Shanghai Advanced Vehicle Technology Co. (Shanghai, China). 

HPLC grade acetonitrile and acetic acid from Tedia Co. (Fairfield, OH, USA) were used for the mobile 

phase. Sephadex G-50 was obtained from Pharmacia (Uppsala, Sweden). All other reagents (typically 

analytical grade or better) were used as received.  

3.2. Animals and Cell Lines 

Murine melanoma (B16BL6) cells were obtained from KeyGEN Biotech (Nanjing, China) and 

maintained in our laboratory. Male Sprague-Dawley rats (200–230 g) and male and female C57BL/6 

mice (18–20 g) were obtained from the SLEK Lab Animal Center of Shanghai (Shanghai, China). The 

animal experiment protocol was reviewed and approved by the Institutional Animal Care and Use 

Committee of the Jiangsu Provincial Academy of Chinese Medicine.  

3.3. Liposome Preparation 

Liposomes—which were composed of phospholipid, cholesterol, and Tween-80—were prepared by 
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chloroform, then the mixture was dried to a thin film at 50 °C using a rotary evaporator (ChongYe RE 

3000, Shanghai, China). The obtained film was hydrated with a phosphate buffer saline (PBS) of pH 

6.5 which tween-80 was dissolved in for 30 min at 60 °C. Afterwards, all liposome dispersions were 

sonicated (3 min, 80 W) with a probe sonicator (Noise Isolating Tamber, JY92-IIN, Ninbo, China) to 

obtain a small liposome particle size. SPC, EPC, and HSPC were selected as the lipids to prepare the 

curcumin-loaded liposomes; the cholesterol was applied to improve the liquidity of lipid membrane, 

and tween-80 was used to improve the encapsulation efficiency of the liposomes. The composition of 

the different liposome dispersions is represented in Table 3. 

Table 3. Composition of different curcumin-loaded liposome formulations. 

Formulation 
Curcumin 

(mg) 
SPC 
(mg) 

EPC
(mg)

HSPC 
(mg) 

Cholesterol 
(mg) 

Tween-80 
(mg) 

PBS pH 6.5 
(mL) 

C-SPC-L 2 40 - - 5 5 1 
C-EPC-L 2 - 40 - 5 5 1 

C-HSPC-L 2 - - 40 5 5 1 

3.4. Photon Correlation Spectroscopy  

The particle size and the polydispersity index (PDI) for each of these liposomes were determined  

by photon correlation spectroscopy (Zetasizer Nano ZS ZEN3600, Malvern Instruments Corp., 

Worcestershire, UK) at 25 °C under a fixed angle of 90° in polystyrene cuvettes after suitable dilution 

in ultrapure water. The measurements were obtained by using a 633 nm He-Ne laser. The zeta 

potential was measured in folded capillary cells using the Zetasizer. Liposomes were prepared by 

diluting with ultrapure water until the appropriate concentration of particles was achieved. The 

conductivity of each sample was adjusted to 50 S·cm−1 by 0.1 mmol·L−1 sodium chloride solution for 

zeta potential measurement. The zeta potential values were calculated using the Smoluchowski 

equation [23]. 

3.5. Determination of Encapsulation Efficiency 

The mini-column centrifugation method was used to assay entrapment efficiency [24]. Sephadex 

G50 was chosen, swollen in distilled water for at least 12 h and stored at 4 °C. A small piece of cotton 

was inserted in the bottom of the barrels of a 2 cm3 injection syringe, which was then filled with 

sephadex G50. Excess water was centrifuged off at 1,500 rpm for 3 min, and 0.5 mL PBS (pH6.5) was 

added, then centrifugation repeated twice. Approximately 0.5 mL of the drug-free liposome dispersion 

was placed in the injection syringe, which was then centrifuged as before for presaturation. Curcumin-

loaded liposomes were then added and eluted by water twice. The filtrate was accurately taken, 

dissolved and diluted with methanol. Following this, the drug content in the resultant solution was 

determined by HPLC, and the calculated drug amount was designated as WEntrapped. An equal volume 

of curcumin-loaded liposome suspension was also determined and the calculated drug amount was 

designated as WTotal: 

100
W

W
EE%

Total

ppedEntra   
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where WEntrapped and WTotal were the weight of the entrapped drug and the total drug  

amount, respectively. 

3.6. Transmission Electron Microscopy 

The microstructures of liposomes were examined by TEM (Tecnai 12, Philips, Amsterdam, The 

Netherlands) using the negative-stain method. Samples were diluted appropriately with ultrapure water 

before preparation for TEM. A drop of each sample was applied to a copper grid coated with carbon 

film and the resultant construct was then air-dried. Following this, the films were negatively stained 

with 2% phosphotungstic acid solution and air-dried under room temperature. After these steps, the 

samples investigated via TEM. 

3.7. Differential Scanning Calorimetry 

DSC analysis was performed using the DSC 204 (Netzsch, Hanau, Germany). A scan rate of  

10 °C·min−1 was employed with a temperature range of 25–350 °C. An approximately 10 mg sample 

was taken for analysis, with an empty pan was used as reference. Physical mixture I (containing 

phospholipids, cholesterol and Tween-80), physical mixture II (containing curcumin, phospholipids, 

cholesterol and Tween-80) and curcumin-loaded liposome samples were prepared for thermal analysis. 

The measurements of each sample were repeated twice. 

3.8. In Vitro Drug Release 

A Franz diffusion cell was used to perform the release experiment. The dialysis tubing (molecular 

weight cutoff of 8,000 to 14,000) was mounted between the donor and the receptor compartments. The 

cell provided a diffusional area of 0.785 cm2, and the receptor compartment was 10 mL. The donor 

medium consisted of 0.2 mL of vehicle containing different types of liposomes. To maintain the sink 

condition, 0.5% tween-80 with 20% ethanol (v/v) in pH 6.5 PBS was used as receptor medium. The 

system was adjusted to ensure that the membrane surface was at 37 °C to mimic the in vivo conditions. 

The stirring rate was 400 rpm and the temperature was 37 °C. At different intervals (1, 2, 4, 8, 10, 12, 

18, 24, 36, and 48 h), the receptor samples were removed and replaced with fresh receptor medium. 

The receptor samples were then analyzed for the drug content by HPLC. The cumulative amount of 

drug released was determined as a function of time, and the release rate was calculated. 

3.9. Skin Preparation 

Rat abdominal skin, obtained after plastic surgery, was used for the penetration studies. The 

subcutaneous fatty tissue was removed from the skin using a scalpel and surgical scissors. After the 

fatty tissue was completely removed, the surface of the skin was cleaned with saline solution. The skin 

was stored in saline solution at 4 °C, then used within 1 day.  

3.10. Skin-Penetration Experiment 

The skin permeation of curcumin was measured using a Franz diffusion assembly. The nominal 

surface of the Franz cell was 0.785 cm2 and the receptor compartments had a capacity of 
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approximately 10 mL. The full-thickness abdominal skin was mounted between the donor and receptor 

compartments with the stratum corneum side facing the donor compartment. The donor medium 

consisted of 0.5 mL of vehicle-containing curcumin. The receptor medium had a pH of 6.5 PBS 

(content 0.5% tween-80 and 20% ethanol) to maintain the sink condition. The stirring rate and the 

temperature were kept at 400 rpm and 37 °C. At appropriate intervals (1, 2, 4, 6, 8, 10, 12, and 24 h), 

1mL of receptor medium was withdrawn and immediately replaced with an equal volumes of fresh 

medium, The receptor samples were then analyzed for the drug content by HPLC. After the permeation 

experiment, the skin with the 0.785 cm2 permeated area was cut and washed three times using a cotton 

cloth containing ethanol. After this, the skin was frozen at −20 °C on a metal sample holder and 

sectioned three slices from the surface into 90 μm thick layers with a cryotome (Thermo-Shandon, 620 

Electronic, Pittsburgh, PA, USA). The skin sheets were put together in the following scheme: vial  

1 = 0–30 μm skin cuts, vial 2 = 30–60 μm skin cuts, vial 3 = 60–90 μm skin cuts.  

3.11. HPLC Assay 

Methanol was used for the extraction of curcumin from the skin cuts. The skin cuts were extracted 

with 1 mL methanol and the samples were sonically extracted for 60 min. Following this, each sample 

was centrifuged for 15 min at 14,000 rpm (Anke TGL-16G, Shanghai, China). The supernatant was 

then analyzed for curcumin content by HPLC. The other samples which form the in vitro drug release 

and skin penetration experiment were centrifuged for 15 min at 14,000 rpm, and the supernatant was 

analyzed for curcumin content by HPLC. The HPLC system (Agilent 1100, Agilent Technologies, 

Palo Alto, CA, USA) consisted of a pump, a UV detector, and an Agilent-C18 column (5 μm,  

4.6 × 150 mm). The mobile phase consisted of acetonitrile and 0.4% (v/v) acetic acid solution, in the 

ratio of 48:52 (v:v). The flow rate of the mobile phase was 1.0 mL·min−1. The column effluent was 

monitored at 430 nm.  

3.12. Data Analysis of Skin Penetration  

Cumulative amounts of curcumin permeated over with time were used to calculate the transdermal 

drug flux, which was obtained from the slope of the regression line fitted to the linear portion of the 

profile. The skin flux can be experimentally determined from the following equation [25]:  

J = (dQ/dt)/A 

where J is the steady-state flux (μg·cm−2·h−1), A is the diffusion area of skin tissue (cm2) through which 

drug permeation takes place, and dQ/dt is the amount of drug passing through the skin per unit time at 

a steady-state (μg·h−1).  

3.13. MTT Assay 

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) assay was used to 

evaluate the cytotoxicity of curcumin and curcumin-loaded liposomes. Briefly, cells in the logarithmic 

growth phase were plated at a density of 0.9 × 104/well in 96-well plates. 24 h later, the cells were 

treated with various concentrations of curcumin solution and curcumin-loaded liposomes (0, 5, 10, 15, 

20, and 25 μg·mL−1). After incubation for 36 h, 10 μL of MTT (5 mg·mL−1) was added to each well, 
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which were then incubated for 4 h at 37 °C. Following this, the supernatant was discarded and 100 μL 

DMSO was added to each well. The absorbance value at 550 nm was measured using a microplate 

reader (Thermo Labsystems, Helsinki, Finland). Any interference of the absorbance readings  

by particle fluorescence was monitored and accounted for. All experiments were performed with  

three replicates. 

3.14. Pharmacodynamic Evaluation 

Male and female C57BL/6 mice (18–20 g) of 6–8 weeks old were maintained under standard 

environmental conditions (temperature of 25 °C ± 2 °C and relative humidity of 50% ± 10%) and fed 

with a standard diet and water. The B16BL6 melanoma cells were trypsinized, resuspended in PBS  

(2 × 107 cells/mL), and subcutaneously injected into the notum of the C57BL/6 mice. The mice were 

randomly divided into five groups (n = 10/group) according to the treatment received: The blank 

control, curcumin solution, vehicle, C-SPC-L and cyclophosphamide. Cyclophosphamide (20 mg·kg−1) 

was administered every day by intraperitoneal injection (i.p.) as the positive control. The other 

treatments were administered by percutaneous penetration daily. For curcumin-based treatments,  

20 mg·kg−1 of curcumin in 1% carbomer gel was used. After 16 consecutive days, the tumors were 

excised and weighed [26]. 

3.15. Statistical Analysis 

Data are mean ± standard deviation (S.D.) from three independently performed experiments. 

Statistical analysis was carried out using the One-way ANOVA (SPSS 11.5 software). p < 0.05 was 

considered statistically significant. 

4. Conclusions 

In conclusion, different types of phospholipids can directly influence the penetration behavior of 

liposomes. Although all the liposomes we constructed in this experiment offered the significant 

improvement in the skin penetration, deposition, and antimelanoma activity of curcumin, the C-SPC-L 

formulation was most effective. The aforementioned results suggest that C-SPC-L could be a 

promising transdermal carrier for curcumin in the treatment of skin cancer. 
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