Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Optimization of Extraction Time
SPME fiber | 15 min | 30 min | 45 min | 60 min | 75 min |
---|---|---|---|---|---|
Carboxen/PDMS (75 μm) | 27 | 32 | 32 | 38 | 27 |
PDMS/DVB (65 μm) | 24 | 26 | 20 | 25 | 23 |
DVB/CAR/PDMS (50/30 μm) | 15 | 16 | 16 | 18 | 12 |
PDMS (100 μm) | 13 | 10 | 12 | 12 | 15 |
2.2. The Effect of SPME Fiber Coating on Analytical Results
Volatiles | CAS# | RI/RI *a | Qual b | I method c | Carboxen/PDMS | PDMS/DVB | DVB/CAR/PDMS | PDMS | ||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Peak area (%) | Peak area (%) | Peak area (%) | Peak area (%) | |||||||||
FST1 | FST2 | FST1 | FST2 | FST1 | FST2 | FST1 | FST2 | |||||
60 min | 60 min | 30 min | 30 min | 60 min | 60 min | 75 min | 75 min | |||||
Alcohols and phenol | ||||||||||||
1-Propanol | 71-23-8 | <604/568[12] | 72 | MS, S | 0.49 | 0.98 | 0.19 | 0.62 | 0.86 | 0.98 | 3.41 | 2.48 |
1-Butanol | 71-36-3 | 663/662[13] | 91 | MS,RI,S | 3.92 | 5.03 | 4.55 | 4.18 | 2.81 | 3.86 | 7.06 | 9.84 |
3-Methyl-1-butanol | 123-51-3 | 734/734[12] | 72 | MS,RI,S | 0.17 | ND | 0.22 | ND | 0.10 | ND | 0.10 | ND |
1-Hexanol | 111-27-3 | 871/871[14] | 83 | MS,RI,S | 0.54 | 0.31 | 0.29 | 0.29 | ND | ND | ND | 0.64 |
1-Octen-3-ol | 3391-86-4 | 983/983[15] | 70 | MS,RI | 0.76 | 0.16 | 0.26 | 0.21 | 0.31 | ND | ND | ND |
Phenylethyl alcohol | 60-12-8 | 1120/1121[16] | 90 | MS,RI,S | 0.27 | 0.33 | 0.32 | 0.19 | ND | ND | ND | ND |
4-Methyl-1-(1-m ethylethyl)-3-Cyclohexen-1-ol | 562-74-3 | 1183/1180[17] | 95 | MS,RI | 0.10 | 0.54 | ND | 0.38 | ND | ND | ND | ND |
Phenol | 108-95-2 | 996/995[18] | 95 | MS,RI,S | 11.68 | 17.59 | 6.16 | 6.95 | 5.23 | 10.33 | 2.99 | 5.05 |
Total | 17.93 | 24.94 | 11.99 | 12.82 | 9.31 | 15.17 | 13.56 | 18.01 | ||||
carboxylic acids | ||||||||||||
Acetic acid | 64-19-7 | 628/637[19] | 72 | MS,RI,S | ND | 1.89 | ND | 7.05 | ND | ND | 6.53 | 3.72 |
Propanoic acid | 79-09-4 | 719/740[20] | 91 | MS,RI,S | 0.14 | 0.21 | 0.24 | 1.87 | ND | ND | 6.37 | 1.09 |
Butanoic acid | 107-92-6 | 823/822[21] | 91 | MS,RI,S | 1.40 | 2.85 | 0.40 | 6.23 | ND | ND | 13.50 | 7.61 |
Total | 1.54 | 3.95 | 0.64 | 15.15 | 0 | 0 | 26.40 | 12.42 | ||||
Ester | ||||||||||||
Ethyl acetate | 141-78-6 | 617/612[22] | 72 | MS,RI,S | 0.67 | 0.85 | 0.27 | ND | 0.72 | 0.48 | ND | 2.60 |
Ethyl propanoate | 105-37-3 | 713/714[12] | 72 | MS,RI | 0.26 | ND | 0.20 | ND | 0.21 | ND | ND | ND |
n-Propyl acetate | 109-60-4 | 716/712[12] | 72 | MS,RI | 0.29 | 0.60 | 0.19 | ND | 0.17 | ND | ND | ND |
Ethyl butanoate | 105-54-4 | 803/803[19] | 93 | MS,RI,S | 3.51 | 0.89 | 2.64 | 2.26 | 2.83 | 2.83 | 2.07 | 6.01 |
Butyl acetate | 123-86-4 | 815/812[12] | 83 | MS,RI,S | 3.52 | 3.10 | 1.32 | 7.52 | 0.80 | 0.59 | 2.18 | 2.96 |
3-Methyl-1-butyl acetate | 123-92-2 | 877/877[23] | 83 | MS,RI,S | 0.19 | ND | 0.15 | ND | ND | ND | ND | ND |
Propyl butanoate | 105-66-8 | 899/900[24] | 86 | MS,RI | 0.72 | ND | 0.26 | 0.37 | 0.39 | ND | 0.39 | 0.92 |
Butyl propanoate | 590-01-2 | 909/910[12] | 83 | MS,RI | 0.44 | ND | 0.47 | 0.11 | 0.15 | ND | 0.40 | ND |
Hexyl acetate | 142-92-7 | 1014/1008[24] | 90 | MS,RI | 0.36 | ND | 0.13 | 0.15 | ND | ND | ND | ND |
Total | 9.96 | 5.44 | 5.63 | 10.41 | 5.27 | 3.90 | 5.04 | 12.49 | ||||
Aldehyde and ketone | ||||||||||||
Benzaldehyde | 100-52-7 | 962/962[25] | 97 | MS,RI,S | 0.73 | 0.26 | 0.47 | ND | 0.31 | ND | ND | ND |
benzeneacetaldehyde | 122-78-1 | 1046/1046[26] | 78 | MS,RI,S | 0.17 | 0.10 | ND | ND | ND | ND | ND | ND |
2-Pentanone | 107-87-9 | 689/687[27] | 70 | MS,RI | 0.31 | 0.23 | 0.13 | ND | ND | ND | ND | ND |
2-Heptanone | 110-43-0 | 891/890[28] | 83 | MS,RI,S | 0.21 | ND | ND | ND | ND | ND | ND | ND |
2-Methyl-2-cyclopenten-1-one | 1120-73-6 | 907/914[29] | 74 | MS,RI | 0.12 | ND | ND | ND | ND | ND | ND | ND |
Total | 1.54 | 0.59 | 0.60 | 0 | 0.31 | 0 | 0 | 0 | ||||
Sulfide | ||||||||||||
Dimethyl disulfide | 624-92-0 | 743/742[30] | 98 | MS,RI,S | 6.52 | 6.10 | 7.98 | 5.32 | 5.20 | 3.99 | 6.92 | 12.36 |
Dimethyl trisulfide | 3658-80-8 | 971/972[22] | 94 | MS,RI,S | 14.55 | 12.62 | 17.12 | 11.93 | 5.83 | 6.51 | 9.44 | 16.88 |
Methyl (methylthio) methyl disulfide | 42474-44-2 | 1129/1139[31] | 86 | MS,RI | 0.19 | 0.11 | 0.13 | 0.21 | ND | ND | ND | ND |
Dimethyl tetrasulfide | 5756-24-1 | 1221/1220[32] | 93 | MS,RI | 1.53 | 2.83 | 13.16 | 5.03 | 4.10 | 5.84 | 6.69 | 4.16 |
Total | 22.79 | 21.66 | 38.39 | 22.49 | 15.13 | 16.34 | 23.05 | 33.40 | ||||
Heterocycles | ||||||||||||
2-Pentylfuran | 3777-69-3 | 992/992[12] | 87 | MS,RI | 0.34 | 0.07 | 0.21 | 0.13 | 0.25 | ND | ND | ND |
2-Pentylthiophene | 4861-58-9 | 1163/1164[33] | 83 | MS,RI | 0.09 | ND | 0.17 | ND | ND | ND | ND | ND |
Indole | 120-72-9 | 1304/1303[34] | 97 | MS,RI,S | 36.76 | 31.01 | 38.64 | 37.38 | 64.79 | 45.55 | 19.78 | 21.00 |
Total | 37.19 | 31.08 | 39.02 | 37.51 | 65.04 | 45.55 | 19.78 | 21.00 | ||||
Alkene | ||||||||||||
Limonene | 138-86-3 | 1030/1030[35] | 95 | MS,RI | 0.14 | ND | ND | ND | ND | ND | ND | ND |
Copaene | 3856-25-5 | 1382/1382[36] | 96 | MS,RI | 0.31 | 0.35 | ND | ND | ND | ND | ND | ND |
alpha-Caryophyllene | 6753-98-6 | 1468 | 95 | MS | 0.49 | 0.62 | ND | ND | ND | 1.59 | ND | ND |
Aromadendrene | 109119-91-7 | 1475/1470[37] | 76 | MS,RI | 0.20 | 0.28 | ND | ND | ND | 0.55 | ND | ND |
alpha-Panasinsen | 56633-28-4 | 1532 | 94 | MS | 0.29 | 0.44 | ND | ND | ND | 1.16 | ND | ND |
Total | 1.43 | 1.69 | 0 | 0 | 0 | 3.30 | 0 | 0 | ||||
Others | ||||||||||||
Dimethylamine | 124-40-3 | <604 | 72 | MS | 0.17 | ND | ND | ND | ND | ND | 0.82 | 0.01 |
Eucalyptol | 470-82-6 | 1033/1033[38] | 98 | MS,RI,S | 0.05 | ND | 0.13 | 0.34 | ND | ND | ND | 0.61 |
Total | 0.22 | 0 | 0.13 | 0.34 | 0 | 0 | 0.82 | 0.62 | ||||
All total | 92.60 | 89.35 | 96.40 | 98.72 | 95.06 | 84.26 | 88.65 | 97.94 |
2.3. Volatile Compounds of FST
3. Materials and Methods
3.1. Materials
3.2. Headspace Solid-Phase Microextraction-Gas-Chromatography-Mass Spectrometry (Headspace-SPME-GC-MS)
3.2.1. SPME Sampling
3.2.2. Analysis by GC-MS
4. Conclusions
Acknowledgements
References and Notes
- Wu, C.-M.; Wang, J.; Cao, W.-Q. Gray Tofu Satety Problem and Its Control. Shipin Yu Fajiao Gongye 2005, 31, 97–99, 103. [Google Scholar]
- Teng, D.-F.; Lin, C.-S.; Hsieh, P.-C. Fermented Tofu: Sufu and Stinky Tofu. In Handbook of Food and Beverage Fermentation Technology, Food Science and Techology; CRC Press: New York, NY, USA, 2004; pp. 571–582. [Google Scholar]
- Han, B.-Z.; Rombouts, F.M.; Robert Nout, M.J. A Chinese fermented soybean food. Int. J. Food Microbiol. 2001, 65, 1–10. [Google Scholar]
- Qi, S.-P.; Weng, X.-C. Study on volatile flavor compounds of Unfermented Smelly Tofu. Shi Pin Ke Xue 2007, 28, 400–404. [Google Scholar]
- Kim, J.-S.; Chung, H.-Y. GC-MS analysis of volatile components in a fermenting Chaw-tofu model broth. Food Sci. Biotechnol. 2002, 11, 417–420. [Google Scholar]
- Chao, S.-H.; Tomii, Y.; Watanabe, K.; Tsai, Y.-C. Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. Int. J. Food Microbiol. 2008, 123, 134–141. [Google Scholar]
- Hwan, C.-H.; Chou, C.-C. Volatile components of the Chinese fermented soya bean curd as affected by the addition of ethanol in ageing solution. J. Sci. Food Agric. 1999, 79, 243–248. [Google Scholar]
- Lee, S.-H.; Kim, Y.-T.; Shon, M.-Y.; Han, S.-Y.; Park, J.-R.; Park, S.-K. Major components of fermented Tofu prepared with different molds and coagulants. Food Sci. Biotechnol. 2002, 11, 93–98. [Google Scholar]
- Yu, A.-N.; Sun, B.-G. Flavour substances of Chinese traditional smoke-curd bacon. Food Chem. 2005, 89, 227–233. [Google Scholar]
- Song, H.-L.; Candwallader, K.R. Aroma components of American Country Ham. Food Chem. 2008, 73, 29–35. [Google Scholar]
- Yu, A.-N.; Sun, B.-G.; Tian, D.-T.; Qu, W.-Y. Analysis of volatile compounds in traditional smoke-cured bacon (CSCB) with different fiber coatings using SPME. Food Chem. 2008, 110, 233–238. [Google Scholar]
- Pino, J.A.; Mesa, J.; Muñoz, Y.; Martí, M.P.; Marbot, R. Volatile components from mango (Mangifera indica L.) cultivars. J. Agric. Food Chem. 2005, 53, 2213–2223. [Google Scholar]
- Condurso, C.; Verzera, A.; Romeo, V.; Ziino, M.; Trozzi, A.; Ragusa, S. The leaf volatile constituents of Isatis tinctoria by solid-phase microextraction and gas chromatography/mass spectrometry. Planta Med. 2006, 72, 924–928. [Google Scholar]
- Boulanger, R.; Crouzet, J. Free and bound flavour components of Amazonian fruits: 3-Glycosidically bound components of cupuacu. Food Chem. 2000, 70, 463–470. [Google Scholar]
- Cho, I.H.; Namgung, H.-J.; Choi, H.-K.; Kim, Y.-S. Volatiles and key odorants in the pileus and stipe of pine-mushroom (Tricholoma matsutake Sing.). Food Chem. 2008, 106, 71–76. [Google Scholar] [CrossRef]
- Jalali-Heravi, M.; Zekavat, B.; Sereshti, H. Characterization of essential oil components of Iranian geranium oil using gas chromatography-mass spectrometry combined with chemometric resolution techniques. J. Chromatogr. A 2006, 1114, 154–163. [Google Scholar]
- Angioni, A.; Barra, A.; Coroneo, V.; Dessi, S.; Cabras, P. Chemical composition, seasonal variability, and antifungal activity of Lavandula stoechas L. ssp. stoechas essential oils from stem/leaves and flowers. J. Agric. Food Chem. 2006, 54, 4364–4370. [Google Scholar]
- Mjøs, S.A.; Meier, S.; Boitsov, S. Alkylphenol retention indices. J. Chromatogr. A 2006, 1123, 98–105. [Google Scholar] [CrossRef]
- Suriyaphan, O.; Drake, M.; Chen, X.Q.; Cadwallader, K.R. Characteristic aroma components of British farmhouse cheddar cheese. J. Agric. Food Chem. 2001, 49, 1382–1387. [Google Scholar]
- Alissandrakis, E.; Kibaris, A.C.; Tarantilis, P.A.; Harizanis, P.C.; Polissiou, M. Flavour compounds of Greek cotton honey. J. Sci. Food Agric. 2005, 85, 1444–1452. [Google Scholar]
- Schwambach, S.L.; Peterson, D.G. Reduction of Stale Flavor Development in Low-Heat Skim Milk Powder via Epicatechin Addition. J. Agric. Food Chem. 2006, 54, 502–508. [Google Scholar]
- Jarunrattanasri, A.; Theerakulkait, C.; Cadwallader, K.R. Aroma Components of Acid-Hydrolyzed Vegetable Protein Made by Partial Hydrolysis of Rice Bran Protein. J. Agric. Food Chem. 2007, 55, 3044–3050. [Google Scholar]
- Ansorena, D.; Gimeno, O.; Astiasarán, I.; Bello, J. Analysis of volatile compounds by GC-MS of a dry fermented sausage: chorizo de Pamplona. Food Res. Int. 2001, 34, 67–75. [Google Scholar]
- Maia, J.G.S.; Andrade, E.H.A.; Zoghbi, M.G.B. Aroma volatiles from two fruit varieties of jackfruit (Artocarpus heterophyllus Lam.). Food Chem. 2004, 85, 195–197. [Google Scholar] [CrossRef]
- Risticevic, S.; Carasek, E.; Pawliszyn, J. Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee. Anal. Chim. Acta 2008, 617, 72–84. [Google Scholar]
- Zeng, Y.-X.; Zhao, C.-X.; Liang, Y.-Z.; Yang, H.; Fang, H.-Z.; Yi, L.-Z.; Zeng, Z.-D. Comparative analysis of volatile components from Clematis species growing in China. Anal. Chim. Acta. 2007, 595, 328–339. [Google Scholar]
- Krist, S.; Stuebiger, G.; Unterweger, H.; Bandion, F.; Buchbauer, G. Analysis of volatile compounds and triglycerides of seed oils extracted from different poppy varieties (Papaver somniferum L.). J. Agric. Food Chem. 2005, 53, 8310–8316. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, T.; Yang, B.; Liu, X.; Duan, G. Development of gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction for rapid determination of volatile constituents in ginger. J. Pharm. Biomed. Anal. 2007, 43, 24–31. [Google Scholar]
- Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D. Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles. J. Agric. Food Chem. 1999, 47, 1619–1625. [Google Scholar]
- Carunchia Whetstine, M.E.; Croissant, A.E.; Drake, M.A. Characterization of Dried Whey Protein Concentrate and Isolate Flavor. J. Dairy Sci. 2005, 88, 3826–3839. [Google Scholar]
- Valette, L.; Fernandez, X.; Poulain, S.; Loiseau, A.-M.; Lizzani-Cuvelier, L.; Levieil, R.; Restier, L. Volatile constituents from Romanesco cauliflower. Food Chem. 2003, 80, 353–358. [Google Scholar]
- Baek, H.H.; Kim, C.J.; Ahn, B.H.; Nam, H.S.; Cadwallader, K.R. Aroma extract dilution analysis of a beeflike process flavor from extruded enzyme-hydrolyzed soybean protein. J. Agric. Food Chem. 2001, 49, 790–793. [Google Scholar]
- Solina, M.; Baumgartner, P.; Johnson, R.L.; Whitfield, F.B. Volatile aroma components of soy protein isolate and acid-hydrolysed vegetable protein. Food Chem. 2005, 90, 861–873. [Google Scholar]
- Young, O.A.; Lane, G.A.; Priolo, A.; Fraser, K. Pastoral and species flavour in lambs raised on pasture, lucerne or maize. J. Sci. Food Agric. 2003, 83, 93–104. [Google Scholar]
- Saroglou, V.; Dorizas, N.; Kypriotakis, Z.; Skaltsa, H.D. Analysis of the essential oil composition of eight Anthemis species from Greece. J. Chromatogr. A 2006, 1104, 313–322. [Google Scholar]
- Baranauskiene, R.; Venskutonis, P.R.; Viskelis, P.; Dambrauskiene, E. Influence of nitrogen fertilizers on the yield and composition of thyme (Thymus vulgaris). J. Agric. Food Chem. 2003, 51, 7751–7758. [Google Scholar]
- Eminagaoglu, O.; Tepe, B.; Yumrutas, O.; Akpulat, H.A.; Daferera, D.; Polissiou, M.; Sokmen, A. The in vitro antioxidative properties of the essential oils and methanol extracts of Satureja spicigera (K. Koch.) Boiss. and Satureja cuneifolia ten. Food Chem. 2007, 100, 339–343. [Google Scholar] [CrossRef]
- Tuberoso, C.I.G.; Kowalczyk, A.; Coroneo, V.; Russo, M.T.; Dessì, S.; Cabras, P. Chemical Composition and Antioxidant, Antimicrobial, and Antifungal Activities of the Essential Oil of Achillea ligustica All. J. Agric. Food Chem. 2005, 53, 10148–10153. [Google Scholar]
- Sun, B.-G. Food Flavoring (in Chinese); Chinese Chemical Industrial Press: Beijing, China, 2003; pp. 75–354. [Google Scholar]
- Ning, H.-L.; Zheng, F.-P.; Sun, B.-G.; Xie, J.-C.; Liu, Y.-P. Solvent-free Microwave Extraction of Essential Oil from Zanthoxylum bungeanum Maxim. Shi Pin Ke Xue 2008, 34, 179–184. [Google Scholar]
- Wang, H.; Zhang, G.-S. Initial Research of Gray Sufu Fermentation. Zhong Guo Niang Zao 2003, 126, 13–20. [Google Scholar]
- Han, B.-Z.; Rombouts, F.M.; Robert Nout, M.J. Amino acid profies of sufu, a Chinese fermented soybean food. J. Food Comp. Anal. 2004, 17, 689–698. [Google Scholar]
- Sun, B.-G. Sulfur-Containing Flavour Chemistry (in Chinese); Chinese Science Press: Beijing, China, 2007; pp. 105–124. [Google Scholar]
- Sample Availability: Samples are available from the authors.
© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Liu, Y.; Miao, Z.; Guan, W.; Sun, B. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings. Molecules 2012, 17, 3708-3722. https://doi.org/10.3390/molecules17043708
Liu Y, Miao Z, Guan W, Sun B. Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings. Molecules. 2012; 17(4):3708-3722. https://doi.org/10.3390/molecules17043708
Chicago/Turabian StyleLiu, Yuping, Zhiwei Miao, Wei Guan, and Baoguo Sun. 2012. "Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings" Molecules 17, no. 4: 3708-3722. https://doi.org/10.3390/molecules17043708
APA StyleLiu, Y., Miao, Z., Guan, W., & Sun, B. (2012). Analysis of Organic Volatile Flavor Compounds in Fermented Stinky Tofu Using SPME with Different Fiber Coatings. Molecules, 17(4), 3708-3722. https://doi.org/10.3390/molecules17043708