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Abstract: The methanol extract of an assemblage of Halimeda stuposa and a Dictyota sp., 

yielded three natural products characteristic of Dictyota sp., and one of Halimeda sp. These 

included the xenicane diterpene 4-hydroxydictyolactone (1), and the diterpenes dictyol E (2), 

8,11-dihydroxypachydictyol A (3) and indole-3-carboxaldehyde (4). A minor revision of 

1 and new spectroscopic data for 1 and 2 are provided, along with associated anti-cancer 

activities of compounds 1–4. 
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1. Introduction 

There have been many reports involving chemical investigations of algae from the genera Halimeda 

[1–4] and Dictyota [5–10], with Dictyota species in particular being a prolific source of novel terpenoids. 

Considering the well documented history of terpenoid chemistry having significant biological activity 

[11–13], this genus of alga is an attractive target for the discovery of novel bioactive metabolites. 

While investigating marine derived extracts for their anti-cancer activity, the ethanol (EtOH) extract 

of the green-brown alga assemblage of Halimeda stuposa and Dictyota sp. was found to have 

significant activity and an unusual profile in the NCI 60 cell line COMPARE analysis [14] The 

methanol (MeOH) extract of a large scale recollection was subjected to bioassay-guided fractionation, 

using C18 flash vacuum liquid chromatography and preparative C18 HPLC, to yield the xenicane 

lactone 4-hydroxydictyolactone (1) [15], as well as the known diterpenes dictyol E (2) [16],  

8,11-dihydroxypachydictyol A (3) [17], and indole-3-carboxaldehyde (4) [18] (Figure 1). Described 

below are a minor revision of 1, as well as CD data and molecular modelling studies, in accordance 

with the absolute configuration previously reported [19], and NMR evidence confirming the presence 

of the minor cis conformer of 1 [20]. Also presented are the complete 1H-NMR data for 2, as well as 

the biological activities of 1–4 against a panel of human tumour and normal mammalian cell lines. 

Figure 1. Structures of the xenicane lactone 4-hydroxydictyolactone (1), the diterpenes 

dictyol E (2) and 8,11-dihydroxypachydictyol A (3), and indole-3-carboxaldehyde (4). 
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2. Results and Discussion 

4-Hydroxydictyolactone (1) was isolated from the MeOH extract with a HRESIMS molecular 

weight indicative of the molecular formula C20H30O3 and corresponding to six double bond 

equivalents. 1H- and 13C-NMR resonances (Supporting information Table S1) were identical to those 

first reported for the naturally occurring [15] and the synthetic 4-hydroxy-dictyolactone (1) [19], 

except for the C-7 and C-13 resonances. HSQC correlations (Supporting information Figure S4) were 

observed from H 5.32 (H-7) to C 125.3 and from H 5.02 (H-13) to C 123.9, indicating that the 

original assignments of these carbons were reversed. The C-1–C-9 double bond was assigned an  

E-configuration owing to the large coupling constants exhibited due to the axial-axial orientation of H-1 

(δ 5.32, dd, 11.4, 4.2 Hz) and Ha-2 (δ 3.20, dddd, 17.5, 11.4, 2.2, 2.2) [21] whilst 13C-NMR data for C-20 

(C 20.0) confirmed the E geometry of C-6–C-7 [22]. All other spectroscopic data matched that 

reported [15], however, as previously noted by Williams et al. [19], a differing optical rotation for the 

naturally occurring 1 {[α]21
D −87° (c 0.25, CHCl3)}was observed. Guella et al. [20] showed that 1 

undergoes a slow conformation medium-ring flipping between the predominant trans- (C-20 trans to 

H-3) and the minor cis-conformer (C-20 cis to H-3). Further inspection of the 1H and COSY NMR 

data confirmed the presence of the minor cis-conformer (Supporting Information Table S1), the ratio 

of which may influence the optical rotation. Closer inspection of the 1H-NMR of the 50% MeOH flash 

column fraction revealed the presence of both conformers, however, only the trans-conformer was 

detected in the MeOH extract due to overlapping signals and concentration. Molecular modeling 

studies, where the geometry of both the double bonds (C-2–C-9 and C-6–C-7) in the carbocycle was 

constrained to E, were performed to determine which of the 16 possible stereoisomers (taking into 

consideration both trans- and cis-carbocycle conformations giving a total of 32 possibilities) matched 

the coupling constants observed in the 1H-NMR data. As expected four possible structures matched the 
1H-NMR data, trans-2R,3R,4S,10R, trans-2R,3R,4S,10S, trans-2S,3S,4R,10S and trans-2S,3S,4R,10R. 

The naturally occurring [15, 20] and synthetic studies [19] report measurement of optical rotation, 

but no CD data. The absolute configuration at C-2 of 1 was corroborated by CD measurement. The CD 

spectrum of 1 showed a large negative Cotton effect at 226 nm ( = −38.44, *), and a small 

positive Cotton effect at 258 nm ( = 5.42, n*). Applying the quadrant rule [23]; viewing the ring 

along the O-C-19-C-1 axis, resulted in C-3 extending into the negative upper right quadrant. This 

finding is reconcilable with an S configuration at C-2 (Figure 2c,d) and in agreement with the naturally 

occurring [15] and the synthetic 4-hydroxydictyolactone (1) [19], trans-2S,3S,4R,10R, where 10R has 

previously been determined by x-ray crystallography [24] and synthetic studies [20]. 

Dictyol E (2) was also isolated from the MeOH extract with a HRESIMS molecular weight 

indicative of the molecular formula C20H32O2 and corresponding to five double bond equivalents. 

Initial comparison of experimental 1H- and 13C-NMR resonances (Table 1) with those reported for the 

naturally occurring dictyol E (2) [16], indicated that the literature 1H-NMR data was incomplete and 

that a full assignment of the structure was required. NMR resonances (Table 1) confirmed the presence 

of two trisubstituted double bonds (δC 141.0, 132.0, 124.2, 124.2; δH 5.34, 1H, br s; 5.16, 1H, br t,  

J = 6.9 Hz) and one disubstituted double bond (δC 152.0, 107.4; δH 4.78, 1H, s; δH 4.76, 1H, s) as well 

as three olefinic methyls (δC: 25.7, 15.9, 17.5; δH 1.82, 3H, s; 1.69, 3H, s; 1.62, 3H, s), a tertiary methyl 
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(δC: 25.3; δH 1.26, 3H, s) and an oxy-methine (δC: 74.4; δH
 4.20, 1H, dd, J = 7.8, 2.0 Hz), consistent with 

reported values. Five additional methylenes and three methines were also observed. 

Figure 2. The possible trans-conformers, based on 1H-NMR coupling constants, viewed 

along the C=O bond towards C-18, of 4-hydroxydictyolactone (1) as obtained from MM2 

calculations [25]; (a) trans-2R,3R,4S,10R; (b) trans-2R,3R,4S,10S; (c) trans-2S,3S,4R,10S 

and (d) trans-2S,3S,4R,10R. R=(CH2)2CHC(CH3)2. 

 

Analysis of the COSY NMR data for 2 (Table 1) showed an extended 1H-1H spin system from H-3 

(δH 5.34, 1H, br s) to H2-9 (δH 2.69, 1H, ddd,14.8, 4.6, 2.4 Hz) via H-1 (δH 2.60, 1H, q, J = 9.1 Hz) 

and H-5 (δH 2.37, 1H, m), as well as long-range 4J COSY NMR correlations from H-3 to H3-17 and  

H-5, from H-5 to H3-17 and from H3-18 to H-1 and H2-9. In addition, gHMBC correlations from δH 

2.60 (H-1) to δC 33.7 (C-2), 60.4 (C-5), 74.4 (C-6) and 152.0 (C-10) and from δH 2.37 (H-5) to 124.2 
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(C-3), 141.0 (C-4), 74.4 (C-6) and 152.0 (C-10) confirmed H-1 and H-5 as the bridgehead protons and 

readily identified the perhydroazulene skeleton. 

Table 1. 1H- and 13C-NMR data (300 MHz and 75 MHz, CDCl3) for dictyol E (2). 

No. 
13C 
δ (m) 

1H 
δ (m, J Hz) 

COSY gHMBC 

1 46.0 (d) 2.60 (1H, q, 9.1) H2-2, H-5, H2-18 C-2, C-5, C-6, C-10, C-18 
2 33.7 (t) 2.51 (1H, m ) 

2.22 (1H, dd, 14.8, 7.8) 
H-1, Hb-2 
H-1, Ha-2, H-3 

C-1, C-3, C-4, C-5 
C-1, C-3, C-4, C-5 

3 124.2 (d) 5.34(1H, br s) Hb-2, H3-17, H-5 C-1, C-2, C-4, C-5, C-17 
4 141.0 (s)    
5 60.4 (d) 2.37 (1H, m) H-1, H3-17, H-3, H-6 C-1, C-3, C-4, C-6, C-10 
6 74.7 (d) 4.20 (1H, dd, 7.8, 2.0) H-5, H-7 C-4, C-5, C-7, C-8,  
7 48.7 (d) 1.67 (1H, m) H-6 C-9, C-11, C-12 
8 21.6 (t) 1.81 (1H, m) 

1.73 (1H, m,) 
Hb-8, Ha-9 
Ha-8 

C-6, C-10, C-19 
C-7, C-11 

9 40.6 (t) 2.69 (1H, ddd, 14.8, 4.6, 2.4) 
2.13 (1H, m ) 

Hb-9, H2-8 
Ha-9, H2-18 

C-1, C-7, C-8, C-10, C-18 
C-8, C-10, C-18 

10 152.0 (s)    
11 76.3 (s)    
12 40.9 (t) 1.74 (2H, t, 8.6) H2-13 C-7, C-11, C-13, C-14, C-19
13 23.2 (t) 2.12 (1H, dd, 14.8, 8.6) 

2.02 (1H, dq, 14.8, 6.9) 
H2-12, Hb-13, H-14 
H2-12, Hb-13, H-14 

C-11, C-12, C-14, C-15 
C-11, C-12, C-14, C-15 

14 124.2 (d) 5.16 (1H, br t, 6.9) H2-13, H3-20, C-12, C-13, C-16, C-20 
15 132.0 (s)    
16 25.7 (q) 1.69 (3H, s) H-14 C-14, C-15, C-20 
17 15.9 (q) 1.82 (3H, br s) H-3, H-5 C-3, C-4, C-5 
18 107.4 (t) 4.78 (1H, br s) 

4.76 (1H, br s) 
H-1 
Hb-9 

C-1, C-5, C-9, C-10 
C-1, C-5, C-9, C-10 

19 25.3 (q) 1.24 (3H, s)  C-7, C-11, C-12 
20 17.5 (q) 1.62 (3H, br s)  C-14, C-15, C-16 

Analysis of gHMBC correlations for 2 (Table 1) between δH 1.74 (H-12) and δC 76.3 (C-11), δC 

23.2 (C-13), δC 124.2 (C-14) and δC 25.3 (C-19), and between δH 2.12/2.02 (H-13a/b) and δC
 76.3 (C-11), 

δC 40.9 (C-12), δC 124.2 (C-14) and δC 25.3 (C-19), confirmed the presence of a 6-methylhept-5-en-2-

ol side chain. Furthermore, gHMBC correlations from δH 1.26 (H3-19) to δC 48.7 (C-7) and from δH 

1.67 (H-7) to δC 76.3 (C-11) and δC 40.9 (C-12) allowed the 6-methylhept-5-en-2-ol side chain to be 

positioned at C-7. Based on these observations, the planar structure of 2 was confirmed as reported [16]. 

The configuration of the C-3–C-4 double bond must be Z in order to form the five-membered ring [26]. 

The relative stereochemical assignment was confirmed as 1R,5S,6R,7S by the positive optical rotation 

([]21
D +21 CHCl3; c 0.11) [27] and comparison with literature values [16]. 

A further two compounds were also isolated from the assemblage, 8,11-dihydroxypachydictyol A (3) 

and indole-3-carboxaldehyde (4). Their spectroscopic data matched those reported in the literature [17,18]. 

Outlined in Table 2 are the cytotoxic activities of 1–4 against a panel of human and mammalian cell 

lines. From these data there appears to be no obvious SAR, with 1–3 having approximately the same 
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activities against the three human tumour cell lines SF-268, MCF-7 and H460. However, the response 

of compounds 1–3 against HT-29, a human colon tumour cell line, and CHO-K1, a Chinese hamster 

ovary non-tumour cell line, were between two and four-fold less active as compared to those for the 

three cancer cell lines mentioned above, suggesting some selectivity. Indole-3-carboxaldehyde (4) was 

not active against any of the cell lines. 

Table 2. Cytotoxicity data [GI50 (µM)] for compounds 1–4 against the human tumour cell 

lines SF-268, MCF-7, H460, HT-29, the normal human cell line WI38, and the mammalian 

cell line CHO-K. 

Compound SF-268 a MCF-7 b H460 c HT-29 d CHO-K1 e

1 25 27 20 61 72 
2 16 22 17 46 48 
3 20 38 20 88 103 
4 NAf NA NA NA NA 
a SF-268 Central nervous system-glioblastoma cells; b MCF-7 Breast-pleural effusion 
adenocarcinoma cells; c H460 Lung-large cell carcinoma cells; d HT-29 Colon-recto-sigmoid colon 
adenocarcinoma cells; e CHO-K1 Sub-clone of Chinese hamster ovary cells; f NA = not active. 

3. Experimental 

3.1. General Procedures 

General experimental procedures are as described previously [28]. CD spectra were collected on a 

JASCO J-715 spectropolarimeter with a 0.1 dm cell. 

3.2. Plant Material 

The green/brown algal assemblage of Halimeda stuposa (Udoteaceae, Caulerpales) and Dictyota 

sp., (Dictyotaceae, Dictyotales) was collected from the passage between Shaw and Maher Islands, 

Queensland, at a depth of 7 m, in October 1987. Collection of this material was conducted under the 

Queensland Fish or Marine Products Permit no. 1780 and the GBRMPA Permit no. 87/293. A voucher 

specimen (Accession number AQ642006) has been lodged with the Queensland Herbarium. 

3.3. Bioassay 

Cellular bioassays were undertaken as described previously [28]. 

3.4. Extraction and Isolation 

Freeze dried plant material was extracted with dichloromethane (CH2Cl2) (3 × 400 mL) followed by 

MeOH (3 × 400 mL). The MeOH extract (2.7 g) was then subjected to reversed phase C18 flash 

vacuum chromatography (RP-C18, 0%, 20%, 50%, 70%, 90% and 100% MeOH in H2O and 1:1 

MeOH:CH2Cl2). The 50% MeOH fraction was further purified by semi-preparative C18 HPLC  

(4 mL/min, gradient elution from 10% CH3CN:H2O to 73% CH3CN:H2O over 14 min through a  

250 × 10 mm, 5m Phenomenex Luna C18 column) to yield the known compound indole-3-
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carboxyaldehyde (4, 0.8 mg, 0.03% dry wt of extract), which had identical physical and spectroscopic 

properties to those previously published [18]. 

The active fractions, 90% and 100% MeOH, were each pre-adsorbed onto C18, packed into a 

cartridge, then subjected to C18 preparative HPLC (9.5 mL/min, gradient elution from 50% 

H2O:CH3CN:0.1% HCO2H to 100% CH3CN:0.1% HCO2H over 40 min, followed by 20 min with 

100% CH3CN:0.1% HCO2H through 250 × 21 mm, 5m Phenomenex Luna C18 column). The 90% 

MeOH fraction yielded, 4-hydroxydictyolactone (1, 4.9 mg, 0.18% dry wt of extract) as well as  

8,11-dihydroxypachydictyol A (3, 10.4 mg, 0.39% dry wt of extract), and the 100% MeOH fraction 

yielded dictyol E (2, 5.5 mg, 0.20% dry wt of extract). The known compounds had identical physical 

and spectroscopic properties to those previously published [15–17]. 

3.4.1. 4-Hydroxydictyolactone (1) 

Pale yellow oil. []21
D −87 (CHCl3; c 0.25); IR  film

max  cm−1: 3436, 2931, 1739, 1455; UV (PDA) 

 OCN/HCH
max

23  nm: 220; CD max () (MeOH; 1.9 × 10−4 M) 226 (−38.44), 258 (5.42) nm; 1H- (300 MHz, 

CDCl3) and 13C- (75 MHz, CDCl3) NMR data see Table S1; HRESIMS m/z [M+Na]+ 341.2103 (calcd 

for C20H30O3Na 341.2087) [15]. 

3.4.2. Dictyol E (2) 

Pale yellow oil. []21
D +21 (CHCl3; c 0.11); 1H- (300 MHz, CDCl3) and 13C- (75 MHz, CDCl3) 

NMR data (Table 1) were consistent with published values [16]. 

3.4.3. 8,11-Dihydroxypachydictyol A (3) 

Pale yellow oil. 1H-NMR and 13C-NMR spectral data were consistent with published values [17]. 

3.4.4. Indole-3-carboxaldehyde (4) 

Pale yellow solid. 1H-NMR and 13C-NMR spectral data were consistent with published values [18]. 

4. Conclusions 

Four compounds, the xenicane diterpene 4-hydroxydictyolactone (1), and the diterpenes dictyol E 

(2), 8,11-dihydroxypachydictyol A (3) and indole-3-carboxaldehyde (4), were isolated from an 

assemblage of Halimeda stuposa and a Dictyota sp. Although there are many reports on the isolation 

of xenicane diterpenes from algae of the genera Dictyota sp. [12,29–34], Pachydictyon sp. [35–37], 

Glossophora sp. [38] and Dilophus sp. [15,16,39], with the latter three genera now recognized as 

Dictyota species [40], and of pachydictyane diterpenes from algae of the genera Dictyota sp. [41], 

Sargassum sp. [42], Glossophora sp. [26] and Cystoseira sp. [43], there are very few that discuss their 

cytotoxic properties (xenicanes: [12,21,29]; pachydictyanes: [21,42–44]). The bioactivity results and 

the updated spectroscopic data presented in the current work clearly show that more detailed and 

concerted investigations of these two classes of diterpenes are warranted. 
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