Electronic Supplementary Information (ESI)

Total Synthesis of Flocoumafen via Knoevenagel Condensation and Intramolcular Ring Cyclization, General Access to Natural Products

Jae-Chul Jung ^{1,†}, Eunyoung Lim ^{2,†}, Yongnam Lee ², Dongguk Min ², Jeremy Ricci ², Oee-Sook Park ^{3,*} and Mankil Jung ^{2,*}

- ¹ Department of Neuroscience and Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
- ² Department of Chemistry, Yonsei University, Seoul 120-749, Korea
- ³ Department of Chemistry, Institute for Basic Sciences, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Chungbuk, Korea
- [†] These authors contributed equally to this work.
- * Authors to whom correspondence should be addressed; E-Mails: ospark@cbnu.ac.kr (O.-S.P.); mjung@yonsei.ac.kr (M.J.); Tel: +82-43-261-2283 (O.-S.P.); Fax: +82-43-267-2279 (O.-S.P.); Tel: +82-2-2123-2648 (M.J.); Fax: +82-2-364-7050 (M.J.).

Table of Contents

¹ H-NMR and ¹³ C-NMR spectrum of compounds, 8 , 10 , 5 , and 1	S2
High-resolution 2D NMR analyses of <i>cis</i> - and <i>trans</i> - flocoumafen (FCF, 1)	S13
Computational details	
Separation and purification of cis and trans forms of flocoumafen (1) via recrystallization	S26

¹H-NMR and ¹³C-NMR spectra of compounds, 8, 10, 5, and 1.

¹H-NMR spectrum of compound **8**

¹H-NMR spectrum of compound **10**

fcf-Michael-a-cyano cinnamate-benzyl coupling

¹³C-NMR spectrum of compound **10**

fcf-Michael-a-cyano cinnamate-benzyl coupling

¹H-NMR spectrum of compound **5**.

¹³C-NMR spectrum of compound **5**.

¹H-NMR spectrum of compound **1** (*cis*-FCF)

¹³C-NMR spectrum of compound 1 (*cis*-FCF)

¹H-NMR spectrum of compound 1 (*trans*-FCF)

¹³C-NMR spectrum of compound 1 (*trans*-FCF)

High-resolution 2D NMR analyses of *cis*- and *trans*- flocoumafen 1

COSY-NMR spectrum of compound 1 (*cis*-FCF)

COSY-NMR spectrum of compound 1 (*trans*-FCF)

HMBC-NMR spectrum of compound 1 (*cis*-FCF)

HMBC-NMR spectrum of compound 1 (*trans*-FCF)

HMQC-NMR spectrum of compound 1 (*cis*-FCF)

HMQC-NMR spectrum of compound 1 (*trans*-FCF)

8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

ppm

NOESY-NMR spectrum of compound 1 (*cis*-FCF)

NOESY-NMR spectrum of compound 1 (trans-FCF)

Position	¹ H (multi ^a , <i>J</i> in Hz)	¹³ C ^b	HMBC ^c	NOESY ^d
2	,,,,,,,	163.8		
3		109.4		
4		159.7	5, 8, C	
4-OH	5.64			
5	7.72 (d, 7.5)	123.1	4, 7, 9, CH	H– $6^{\rm s}$, H– $7^{\rm m}$
6	7.32–7.23 (m)	124.1	8, 10, CH	H–5 ^s , H–7 ^s
7	7.53 (d, 7.5)	132.1	5, 9, CH	H–6 ^s , H–8 ^s , H–5 ^w
8	7.34 (d, 8.0)	116.6		
9		152.7	5, 7, 8, C	
10		116.1	6, 8, C	
1'	4.87 (dd, 5.5, 5.5)	37.5		$H-2'^{m}, H-3'^{w}$
2'	2.52–2.42 (m) 1.95–1.80 (m)	36.7	3′, 4′, CH ₂	H–1′ ^m , H–3′ ^m , H–2′′ ^w , H–6′′ ^w
3'	3.13-3.02 (m)	39.8	2", 6", 4', 10', CH	$H-2''^{s}$, $H-6''^{s}$, $H-2'^{m}$, $H-1'^{w}$
4′	3.13-3.02 (m)	38.6	5′, 3′, CH ₂	H–2' ^s , H–1' ^w , H–2'' ^w , H–6'' ^w
5'	7.32–7.23 (m)	130.1	4′, 7′, CH	$H-6'^{s}, H-4'^{m}$
6'	7.32–7.23 (m)	128.6		H–5′ ^s , H–7′ ^s
7'	7.32–7.23 (m)	128.2		H–6′ ^s , H–8′ ^s
8'	7.32–7.23 (m)	130.3		H–7′ ^s
9′		138.1	3", 5", 4', C	
10'		138.0	3", 5", 3', C	
1″		133.9	2", 6", C	
2''	7.21 (d, 9.0)	127.9		H-3" ^s
3‴	6.92 (d, 9.0)	115.0		H-2" ^s
4″		157.2	2", 6", 3", 5", benzyl, C	
5″	6.92 (d, 9.0)	115.0	•	H–6′′ ^s
6''	7.21 (d, 9.0)	127.9		H–5″ ^s
OCH ₂ - Ph	5.12 (s)	69.3	1′′′′, 2′′′, 6′′′′, 4′′, CH2	H–3 ^{'''^m} , H–5 ^{'''^m} , H–2 ^{'''^w} , H–
OBn		141 3	3''' 5''' henzyl C	Ŭ
ortho	7.53 (d. 7.5)	127.8	<i>c</i> ,	$OBn(m)^{m}$
0.000		125.6		
meta	7.62 (d, 8.0)	125.0,		$OBn(o)^{m}$
para		130.6		
CF ₃		125.3	3‴, 5‴, C	

Table S1. ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) for *cis*-flocoumaten in CDCl₃.

^a Multi., multiplicity: s, singlet; d, doublet; t, triplet; q; quartet; dd, doublet of doublet; m, multiplet; ^b The chemical shifts were extracted from ³C and HMQC experiments; ^c The correlations were assigned as quaternary, tertiary and secondary carbons from HMBC and DEPT (135) analysis; ^d NOESY intensities are marked as strong (s), medium (m), and weak (w).

Position	¹ H (multi ^a , <i>J</i> in Hz)	¹³ C ^b	HMBC ^c	NOESY ^d
2		163.4		
3		108.8		
4		160.7	5, 8, C	
4- OH				
5	7.66 (dd, 1.5, 1.5)	123.9	7, CH	H– $6^{\rm s}$, H– $7^{\rm m}$
6	7.27–7.20 (m)	124.0	8, CH	$H-5^{s}, H-7^{s}$
7	7.57–7.52 (m)	132.0	5, 9, CH	$H-6^{s}, H-8^{s}, H-5^{w}$
8	7.33–7.29 (m)	116.5	10, CH	$H-7^m H-6^w$
9		152.6	5, 7, 8, C	
10		116.3	8, C	
1′	4.72 (t, 4.0)	37.5	3′, CH	H–2′ ^m , H–8′ ^w
2'	2.36–2.32 (m)	35.9	4′, CH ₂	H–1′ ^m , H–3′ ^m , H–4′ ^w
3'	3.12–2.99 (m)	36.5	2", 6", 4', CH	H–2'' ^s , H–6'' ^s , H–2' ^m , H–1' ^w
A.I	2.22(1.12.0)	20.0	1// 2/ 5/ 0/ CH	H–2' ^s , H–5' ^m , H–2'' ^m , H–6'' ^m ,
4	3.23 (d, 12.0)	39.8	$1^{\circ}, 5^{\circ}, 5^{\circ}, 9^{\circ}, CH_2$	H–1′ ^w ,
5'	7.33–7.29 (m)	128.7	4′, 7′, CH	$H-6'^{s}, H-4'^{m}$
6'	7.39–7.34 (m)	128.1		H–5′ ^s , H–7′ ^s
7′	7.27–7.20 (m)	127.9	5′, 9′, CH	H–6′ ^s , H–8′ ^s
8'	7.39–7.34 (m)	130.7		$H-7'^{s}, H-1'^{w}$
9′		137.9	3", 5", 4', C	
10'		137.7	3″, 5″, C	
1″		134.3	2", 6", C	
2"	7.16 (d, 8.5)	128.0		H–3'' ^s , H–2' ^w
3″	6.90 (d, 8.5)	115.0		H–2'' ^s
4''		157.1	2", 6", benzyl, C	
5″	6.90 (d, 8.5)	115.0		H–6′′ ^s
6''	7.16 (d, 8.5)	128.0		H–5'' ^s , H–2' ^w
OCH ₂ -	5 12 (a)	(0.2)	1''', 2''', 6''', 4'',	
Ph	5.12 (S)	09.3	CH_2	Н-3 , Н-3 , Н-2 , Н-0
OBn		141.3	3''', 5''', benzyl, C	
ortho	7.57–7.52 (m)	127.5		$OBn(m)^{m}$
	7 (2 (1 9 0)	125.6,		$OP\pi$ (a) ^m
meta	7.03 (d, 8.0)	125.7		OB n (0)
para		130.8		
CF ₃		125.3	3′′′, 5′′′, C	

Table S2. ¹H-NMR (500 MHz) and ¹³C-NMR (125 MHz) for *trans*-flocoumafen in CDCl₃.

^a Multi., multiplicity: s, singlet; d, doublet; t, triplet; q; quartet; dd, doublet of doublet; m, multiplet; ^b The chemical shifts were extracted from ³C and HMQC experiments; ^c The correlations were assigned as quaternary, tertiary and secondary carbons from HMBC and DEPT (135) analysis; ^d NOESY intensities are marked as strong (s), medium (m), and weak (w).

Computational details

The lower energy for the *cis/trans* conformers, flocoumafens were searched the semi-empirical AM1 method. The lower energy conformers were submitted to a geometry optimization and energy calculations by density functional theories (DFT) model calculation at the B3LYP 6-31G** level. Molecular modeling was performed by using the SPARTAN 06 for Windows software package.

	Cartesian Coordinates (Angstroms)			
Atom	X	Y	Ζ	
1 H	-6.9353011	4.6009024	1.6090860	
2 C	-6.8159670	4.0889098	0.6607277	
3 C	-6.4708353	2.7086555	-1.7575650	
4 C	-6.1400002	2.8668623	0.6350600	
5 C	-7.3133211	4.6110046	-0.5273922	
6 C	-7.1421891	3.9227208	-1.7379614	
7 C	-5.9587692	2.1639172	-0.5663485	
8 H	-7.8394784	5.5606222	-0.5141897	
9 H	-7.5358153	4.3392031	-2.6595563	
10 H	-6.3310851	2.1610073	-2.6824940	
11 0	-5.6686589	2.3866706	1.8193991	
12 C	-4.9670094	1.1855089	1.9130643	
13 0	-4.5591607	0.8734530	3.0122925	
14 C	-5.2479686	0.9031442	-0.5004778	
15 0	-5.0951940	0.2791793	-1.6876135	
16 H	-4.8031940	-0.6373040	-1.5367405	
17 C	-4.7803879	0.4129877	0.6906021	
18 C	-3.9398698	-0.8488205	0.8262367	
19 C	-1.5968972	-1.8018820	0.4633332	
20 C	-2.0978399	-2.6784899	-0.6992221	
21 C	-2.4594764	-0.5293504	0.5196603	
22 H	-1.7632066	-2.3583067	1.3963936	
23 H	-2.3886955	-0.0006226	-0.4401683	
24 H	-3.9944745	-1.1176096	1.8879940	
25 H	-1.5749731	-3.6416902	-0.6986004	
26 H	-2.0869583	0.1565978	1.2862677	
27 C	-4.4668550	-2.0511552	0.0351582	
28 C	-3.5959905	-2.9170790	-0.6591940	
29 C	-5.8420371	-2.3487246	0.0581183	
30 H	-6.5104856	-1.6884488	0.6036662	
31 C	-6.3572460	-3.4599109	-0.6015164	
32 H	-7.4230544	-3.6647342	-0.5679691	
33 C	-5.4947844	-4.3077297	-1.2996920	
34 H	-5.8821018	-5.1796007	-1.8185098	
35 C	-4.1309450	-4.0339531	-1.3192066	
36 H	-3.4554772	-4.7005593	-1.8501021	

cis-flocoumafen (FCF): -1873.06139 au

37 C	-0.1100074	-1.5083172	0.3668075	
38 C	2.6616703	-0.9760435	0.2154146	
39 C	0.4310871	-0.7672743	-0.6887878	
40 C	0.7771957	-1.9796863	1.3463881	
41 C	2.1408277	-1.7223042	1.2795286	
42 C	1.7995218	-0.4993491	-0.7775648	
43 H	-0.2183916	-0.3787799	-1.4690215	
44 H	0.3901779	-2.5580354	2.1816072	
45 H	2.8209744	-2.0878148	2.0420201	
46 H	2.1724260	0.0742262	-1.6177760	
47 O	4.0158080	-0.7748973	0.2369467	
48 C	4.5979688	0.0314549	-0.7775454	
49 H	4.0941689	1.0102238	-0.8091474	
50 H	4.4667608	-0.4353351	-1.7642157	
51 C	6.0669891	0.2209249	-0.4795703	
52 C	8.7784530	0.6852527	0.0442769	
53 C	6.5474865	0.1986842	0.8339371	
54 C	6.9605271	0.4689947	-1.5275092	
55 C	8.3084479	0.7056279	-1.2707561	
56 C	7.8962497	0.4267406	1.0958138	
57 H	5.8611289	-0.0137626	1.6454737	
58 H	6.6028338	0.4726237	-2.5539618	
59 H	8.9977321	0.8901503	-2.0874508	
60 H	8.2662163	0.3966451	2.1150561	
61 C	10.2210390	0.9992336	0.3295044	
62 F	10.6560400	0.3972082	1.4590420	
63 F	11.0323376	0.6066696	-0.6786419	
64 F	10.4189761	2.3291180	0.4930310	
65 H	-1.8271457	-2.1940722	-1.6485558	
Point Group = $C1$, Order = 1, Nsymop = 1.				

cis-flocoumafen (FCF): -1873.06139 au

	Cartesian Coordinates (Angstroms)			
Atom	X	Y	Ζ	
1 H	-1.9833278	2.2425827	2.9916642	
2 C	-1.9602973	2.0027236	1.9206003	
3 C	-3.0398044	0.3883850	0.2367608	
4 C	-2.5709891	3.2038753	1.1754090	
5 C	-2.8876515	0.7826844	1.7216136	
6 H	-2.0830530	-0.0405731	-0.0822910	
7 H	-3.4342807	3.5521773	1.7598467	
8 H	-3.8720804	1.0252961	2.1373436	
9 H	-1.8617988	4.0396743	1.1585803	
10 H	-2.5033272	-0.0796866	2.2765385	
11 C	-0.5063744	1.6938820	1.5821978	
12 C	2.1905838	1.0283509	1.0542865	

13 C	0.2833264	1.0244431	2.5339457
14 C	0.0980922	2.0245780	0.3667560
15 C	1.4322233	1.7002136	0.0937481
16 C	1.6072103	0.6945716	2.2838335
17 H	-0.1509938	0.7600138	3.4955951
18 H	-0.4722434	2.5419472	-0.3970377
19 H	1.8563709	1.9765539	-0.8643062
20 H	2.2106992	0.1805328	3.0248678
21 0	3.5016666	0.6608455	0.9024518
22 C	4.1349301	0.9072200	-0.3414614
23 H	4.1759908	1.9875485	-0.5445351
24 H	3.5564502	0.4444853	-1.1561039
25 C	5.5329842	0.3328715	-0.3177460
26 C	8.1167470	-0.7502954	-0.3751208
27 C	5.9247627	-0.6117164	0.6336013
28 C	6.4509079	0.7315379	-1.2987561
29 C	7.7325591	0.1945015	-1.3325522
30 C	7.2114611	-1.1498457	0.6069695
31 H	5.2214826	-0.9175600	1.3987795
32 H	6.1621064	1.4716594	-2.0410242
33 H	8.4393024	0.5147720	-2.0912557
34 H	7.5120458	-1.8769249	1.3529945
35 C	9.4971286	-1.3411635	-0.4432598
36 F	9.6276213	-2.1888206	-1.4916283
37 F	10.4411105	-0.3838223	-0.6042990
38 F	9.8123969	-2.0361876	0.6707724
39 C	-5.3956087	-0.5687524	0.2840373
40 C	-4.0538767	-0.7327963	0.0829611
41 C	-3.5334744	-2.0500905	-0.2682061
42 O	-2.3711742	-2.3317243	-0.4544252
43 O	-4.4597015	-3.0890936	-0.4269068
44 O	-5.8520462	0.6589656	0.6310733
45 H	-6.8094758	0.7087707	0.5145573
46 C	-3.3063654	1.5916756	-0.6706547
47 C	-3.0410346	2.9033586	-0.2373060
48 C	-3.7415402	1.3909839	-1.9886677
49 H	-3.9302724	0.3780807	-2.3329765
50 C	-3.9329701	2.4563624	-2.8635328
51 H	-4.2700115	2.2701876	-3.8793253
52 C	-3.6804468	3.7590681	-2.4299946
53 H	-3.8190598	4.6010774	-3.1020472
54 C	-3.2334919	3.9691776	-1.1291263
55 H	-3.0235561	4.9806982	-0.7885773
56 C	-5.7900368	-2.9221669	-0.2177457
57 C	-8.5297392	-2.7020396	0.2328179
58 C	-6.6081120	-4.0431695	-0.3803270
59 C	-6.3260861	-1.6768773	0.1551861

60 C	-7.7111712	-1.5927475	0.3912802	
61 C	-7.9745675	-3.9284706	-0.1580617	
62 H	-6.1503606	-4.9814869	-0.6732736	
63 H	-8.1589216	-0.6592326	0.7241146	
64 H	-8.6126020	-4.7978164	-0.2826152	
65 H	-9.5953943	-2.6190819	0.4185350	
Point Group = $C1$, Order = 1, Nsymop = 1.				

Separation and purification of cis and trans forms of flocoumafen (1) via recrystallization

Even though the purity of isolated flocoumafen (1) was fully satisfactory with 99%, we need figure out structural conformation as *cis* and *trans* forms. Thus, we examined recystallization of 1 after preparation of 1 through coupling reaction, which was treated with appropriate solvent or its mixture such as ethyl acetate, acetone, diethyl ether, and hexane in order to provide structurally high purity of flocoumafen (1) (Table 2). We carried out the co-solvent system (Table 2, entries 4–8) showed superior purity and yield, whereas single solvent system (Table 2, entries 1–3) resulted relatively low purity and yields. Among many recrystallization trials, the ethyl acetate system showed the best result with purity and yield (Table 2, entries 1). In addition, an excellent result on the flash column chromatography under the standard condition using ethyl acetate/cyclohexane is shown in entry 7 of Table S3.

Entwy	Solvent ^a	Purification	Purity ^b	Ratio ^c	Yield ^d
Entry		Condition ^a	(%)	(cis:trans)	(%)
1	Ethyl acetate	0 °C, 2 h.	97.5	99:1	43
2	Acetone	0 °C, 2 h.	93.5	81:19	63
3	Diethyl ether	rt, 1 h.	92.8	52:48	10
4	Ethyl acetate/Hexane (9:1, v/v)	rt, 1 h.	96.7	81:19	12
5	Ethyl acetate/Diethyl ether (2:8, v/v)	0 °C to rt, 2 h.	89.4	45:45	30
6	Ethyl acetate/Hexane (1:2, v/v)	rt, (FCC) ^e	94.5	68:32	38
7	Ethyl acetate/Hexane (1:4, v/v)	rt, (FCC) ^e	99.9	58:42	35
8	Ethyl acetate/Hexane (1:4, v/v)	rt, (FCC) ^e	92.08	2:98	28

Table S3. Purification of flocoumafen (1).

^a Purified methods; entries 1-7: The crude FCF was dissolved to the solvents until clean solution and the mixture was evaporated excess solvent to reach half amounts and then the mixture was stirred at 0 °C or rt.; entries 1–7: The crude FCF was purified using flash column chromatograghy after recrystallization; ^b Purity was determined based on analytical HPLC using analytical column: SC₁₈; symmetry C₁₈ 5 μ m, 3.9 × 150 mm, waters; ^c The ratio is structural isomer cis and trans; ^d Isolated pure yield; ^e FCC: Flash column chromatography.