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Abstract: In this study a one step method for the preparation of substituted anilides of 

quinoline-2-carboxylic acid was developed. This efficient innovative approach is based on 

the direct reaction of an acid or ester with substituted anilines using microwave irradiation. 

The optimized method was used for the synthesis of a series of eighteen substituted 

quinoline-2-carboxanilides. The molecular structure of N-(4-bromophenyl)quinoline-2-

carboxamide as a model compound was determined by single-crystal X-ray diffraction.  

It crystallizes in the monoclinic space group with four molecules within the unit cell and 

the total structure of the compound can be described as “a slightly screwed boat”. 

Keywords: microwave-assisted synthesis; amide formation; quinoline-2-carboxanilides;  

X-ray diffraction; monoclinic lattice 
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1. Introduction 

Derivatives of quinoline and its isosteres and analogues are remarkable compounds with many 

different kinds of biological effects. A number of quinoline-related compounds express antifungal [1–4], 

antibacterial [5–7], antiviral [8–10], antineoplastic [11–15] and other activities [16–18]. 

The stable and polar amide group is an important functionality among the organic substances 

present in common natural materials like proteins. Moreover, this moiety is found in many synthetic 

compounds, such as active pharmaceutical ingredients (APIs) or prodrugs [19]. Due to these facts,  

the amide group is a subject of high interest in drug design and discovery, therefore formation of amides 

from amines and carboxylic acids and their derivatives is one of the most described transformations. 

The formation of the amide bond requires activation of a carboxylic acid functional group. The most 

common methods involve either its activation through acyl chlorides, anhydrides, active esters and 

other reactive carboxylic acid derivatives or in situ activation by using a large family of various 

coupling reagents. Although both approaches usually afford satisfactory results, they often need 

expensive coupling reagents or lead to the formation of by-products requiring further separations [20,21]. 

Microwave-assisted organic synthesis has been successfully applied in organic and medicinal 

chemistry over the last decades. The use of microwave irradiation as non-conventional energy source 

to simplify and improve classic organic reactions has become a very popular method, because it often 

leads to higher yields, improved conversions, clean product formation and shorter reaction times [22–28]. 

2. Results and Discussion 

2.1. Chemistry 

Substituted quinoline-2-carboxanilides were initially synthesized from quinoline-2-carboxylic acid 

and corresponding substituted anilines. The activation of carboxylic function was carried out by using 

an excess of thionyl chloride and catalytic amount of dimethylformamide in standard manner.  

When this type of activation was performed, in addition to desired acyl chloride 2 undesired 

chlorinated by-product 3 formed by chlorine attack on position 4 of the quinoline ring was observed 

(Scheme 1). 

Scheme 1. Standard synthesis of quinoline-2-carbonyl chloride (2) together with  

4-chloroquinoline-2-carbonyl chloride (3). 
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It is well-known that pyridine ring chlorination occurs when pyridinecarboxylic acid is treated with 

thionyl chloride in the presence of a small amount of anhydrous dimethylformamide. The formed  

so-called Vilsmeier reagent is well described and used for formation of 4-chloropyridines as 

intermediates in the synthesis of the multiple kinase inhibitor sorafenib [29]. A method for direct 
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chlorination of quinoline in position 4 has not been described in the literature so far. On the other 

hand, formation of 4-chloroquinoline derivative hampered our efforts to prepare pure quinoline-2-

carboxanilides. When anilides were prepared from the mixture of acyl chlorides 2 and 3 (20–30%), 

there was no option to separate them other than chromatography. Attempts to optimize reaction 

conditions (temperature, ratio of reagents, reaction time, etc.) to reduce the amount of undesired 

intermediate 3 all failed. 

Another possibility for the synthesis of the desired quinoline-2-carboxanilides is to perform a direct 

amidation process starting from an acid or ester precursor and substituted anilines under microwave 

irradiation [28,30]. Therefore the reaction was performed in a StartSynth microwave reactor using 

different starting materials. The method was tested on following compounds: quinoline-2-carboxylic 

acid (1a), 2-naphthoic acid (4a) and their esters methyl quinoline-2-carboxylate (1b), phenyl  

quinoline-2-carboxylate (1c) and ethyl 2-naphthoate (4b). All those compounds reacted with  

4-bromaniline as a model amine to yield the desired products N-(4-bromophenyl)quinoline-2-

carboxamide (5c) and N-(4-bromophenyl)naphthalene-2-carboxamide (6), see Scheme 2. The synthesis 

was performed under various conditions: solvent-free, in dimethylformamide (DMF) or in 

chlorobenzene (PhCl). All the reactions were performed without or with homo/heterogeneous catalysts: 

p-toluenesulfonic acid (PTSA), potassium tert-butoxide (tBuOK), silica gel and KF/Al2O3. Microwave 

output power of the reactor in all experiments was set to 800 W. The reaction temperature was 150 °C in 

order to shift the equilibrium by water removal. The ratio of an acid derivative and amine was 1:1.5. 

The reactions were irradiated up to maximum 2 h and were monitored by HPLC analysis. The results 

are summarized in Table 1. 

Scheme 2. Optimization process of synthesis of N-(4-bromophenyl)quinoline-2-carboxamide 

(5c) and N-(4-bromophenyl)naphthalene-2-carboxamide (6) under microwave irradiation. 
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Table 1. Reaction of 4-bromoaniline with quinoline-2-carboxylic (1a) and naphthalene-2-

carboxylic (4a) acids and their derivatives 1b, 1c, 4b under microwave irradiation. 

Comp. Solvent Catalyst 
Conversion after 0.5 h Conversion after 1 h Conversion after 2 h

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

1a – – 57% 37% –a –a –a –a 
4a – – – – – – 9% – 
1b – – 6% – 21% – 51% – 
4b – – – – – – – – 
1c – – 96% – 100% – –e –e 
1a DMF – – – – – – – 
4a DMF – – – – – – – 
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Table 1. Cont. 

Comp. Solvent Catalyst 
Conversion after 0.5 h Conversion after 1 h Conversion after 2 h

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

1b DMF – – – – – – – 
4b DMF – – – – – – – 
1a PhCl – – – – – – – 
4a PhCl – – – – – 7% – 
1b PhCl – – – – – – – 
4b PhCl – – – – – – – 
1a – PTSA 53% 46% 55% 44% 33% b 67% b 
4a – PTSA 20% – 46% – 100% a –a 
1b – PTSA 35% – –a –a –a –a 
4b – PTSA – – – – – – 
1a DMF PTSA –c 100% –c 100% –c 100% 
1b DMF PTSA – – – – –c – 
4b DMF PTSA – – – – – – 
1a PhCl PTSA 19% 24% 28% 25% 32% 30% 
4a PhCl PTSA – – – – – – 
1b PhCl PTSA 20% – 25% – 34% – 
4b PhCl PTSA – – – – – – 
1a – tBuOK 59% 41% 61% 39% 62% 38% 
4a – tBuOK 11% – 20% – 44% – 
1b – tBuOK 26% 74% 43% a 56% a –a –a 
4b – tBuOK – – – – – – 
1a DMF tBuOK – 100% – 100% – 100% 
4a DMF tBuOK – – – – – – 
1b DMF tBuOK –c – –c – –c – 
4b DMF tBuOK – – – – – – 
1a PhCl tBuOK 13% 27% 30% 34% 35% 41% 
4a PhCl tBuOK – – – – – – 
1b PhCl tBuOK 17% – 18% – 16% b – 
4b PhCl tBuOK – – – – – – 
1a – silica gel 63% 37% 17% 83% 53% 47% 
4a – silica gel – – 22% – 100% d – 
1b – silica gel 11% – 30% – 19% 19% 
4b – silica gel – – – – – – 
1a DMF silica gel –c – –c – –c – 
4a DMF silica gel – – – – – – 
1b DMF silica gel – – – – –c – 
4b DMF silica gel – – – – – – 
1a PhCl silica gel –c 26% 9% 23% 68% 8% 
4a PhCl silica gel – – – – – – 
1b PhCl silica gel – – 6% – 9% – 
4b PhCl silica gel – – – – – – 
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Table 1. Cont. 

Comp. Solvent Catalyst 
Conversion after 0.5 h Conversion after 1 h Conversion after 2 h

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

Amide 
5c or 6 

Product  
7 or 8 

1a – KF/Al2O3 – – – – 90% 8% 
4a – KF/Al2O3 – – –c – –c – 
1b – KF/Al2O3 10% – 18% – 35% – 
4b – KF/Al2O3 – – – – – – 
1a DMF KF/Al2O3 – 73% – 89% – 98% 
4a DMF KF/Al2O3 – – – – – – 
1b DMF KF/Al2O3 – – – – – – 
4b DMF KF/Al2O3 – – – – – – 
1a PhCl KF/Al2O3 – – 7% 24% 20% 20% 
4a PhCl KF/Al2O3 – – – – – – 
1b PhCl KF/Al2O3 – – – – –c – 
4b PhCl KF/Al2O3 – – – – – – 

a decomposition; b partial decomposition; c traces of product; d many impurities; e not performed. 

From the first tests it was already evident that the direct amidation of 2-quinaldic acid (1a) is 

hampered by formation of decarboxylated product—quinoline (7). It was determined that when the 

reaction was carried out in DMF and catalysed either with PTSA or tBuOK, only decarboxylated 

compound 7 was produced. On the other hand, in case of 2-naphthoic acid (4a) there no traces of 

decarboxylated product 8 (naphthalene) were observed. 

When the reaction was performed in solvents like DMF or chlorobenzene, it generally did not lead 

to any improvement. Although the use of methyl ester 1b suppressed decarboxylation, it did not 

enhance reactivity towards the amides significantly. The same applies to ethyl ester 4b. The results 

showed that, in almost all cases, the reactions did not proceed cleanly, and the formation of side 

products and impurities was noticed. Finally, utilization of phenyl ester 1c in reaction with 4-bromo-

aniline under microwave irradiation in solvent-free conditions showed spectacular acceleration, high 

conversion in relatively short reaction time and high product purity. Having optimized the substrate 

structure and the conditions in hand, the scope of the procedure was consequently evaluated by 

varying the aniline. Eighteen commercially available ring-substituted anilines were explored as 

reaction partners to phenyl ester 1c and very good yields (61–89%) and satisfactory purities of 

products 5–5c and 9–13c were obtained. All of the studied compounds were prepared according to 

Scheme 3. 

Scheme 3. Optimized microwave-assisted synthesis of substituted quinoline-2-carboxanilides  

5–5c, 9–13c. 
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2.2. Crystallography 

N-(4-Bromophenyl)quinoline-2-carboxamide (5c; Figure 1), crystallizes in the monoclinic space 

group P21/c with four molecules within the unit cell.  

Figure 1. Molecular structure (ORTEP 50% probability level) with H-bonding interaction 

(N(1)-H(1)···N(2) 2.663(3) Å) found in solid state structure. Selected interatomic distances 

(Ǻ) and angles (°): Br1 C14 1.897(3), C11 N1 1.404(4), N1 C10 1.359(4), C10 C1 

1.509(4), C1 N2 1.320(4), N2 C2 1.370(4), O1 C10 1.218(3); C11 N1 C10 127.9(2), N1 

C10 O1 125.4(3), N1 C10 C1 113.4(2). 

 

The total structure of 5c can be described as a slightly screwed boat with no intermolecular  

hydrogen bonding. The intramolecular N1-H1···N2 contact is present along with another short contacts 

forming the 3D structure (Figure 2), instead of a stairs-like supramolecular architecture typical for 

previously reported members of the families of N-(4-halophenyl)quinoline-2-carboxamides [31] or  

N-(4-halophenyl)pyridine-2-carboxamides [32–35]. 

Figure 2. Supramolecular architecture in X, view along the a axis. 
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These molecules have typically 2D-layered structures without H-bridges and even π-π stacking.  

On the other hand, the structure of 5c reveals a weak interaction between the C=O moiety and the 

coplanar aromatic system of the proximate molecule. The contact between the bromine atom and the 

perpendicularly oriented π-system of the quinoline ring is probably responsible for the 3D arrangement 

of molecules. 

3. Experimental Section 

3.1. General 

All chemicals were reagent grade and were purchased from Sigma-Aldrich and Acros. TLC analysis 

was performed on precoated 60 F254 plates (Merck, Darmstadt, Germany). Compounds were visualized 

by UV light (254 nm) and evaluated in iodine vapour. Small-scale microwave-assisted synthesis was 

carried out in a StartSynth multimode microwave instrument producing controlled irradiation at  

2.45 GHz (Milestone S.r.l., Sorisole, Italy). The instrument is equipped with an industrial magnetron 

and a microwave diffuser located above the microwave chamber, with continuous microwave output 

power from 0 to 1400 W. Reaction times refer to hold times at the temperatures indicated, not to total 

irradiation times. The temperature was measured with an IR sensor on the outside of the reaction 

vessel. HPLC monitoring analyses were performed on an Agilent 1200 series HPLC system equipped 

with a diode array detection (DAD) system, a quarternary model pump and an automatic injector 

(Agilent Technologies, Santa Clara, CA, USA). ChemStation Chromatography Software was used  

for data acquisition. Acetonitrile (HPLC grade, Sigma-Aldrich, 50.0%) and H2O (HPLC grade,  

Sigma-Aldrich, 50.0%) were used as the mobile phase. A Gemini-NX 100 (Phenomenex, Torrance, 

CA, USA), C18 3 μm, 2.0 × 100 mm chromatographic column was used with a total flow of  

0.2 mL/min, an injection volume of 5 μL and a column temperature of 35 °C. A detection wavelength 

of 230 nm was chosen. The melting points were determined on a Boetius PHMK 05 (VEB Kombinat 

Nagema, Radebeul, Germany) and are uncorrected. Infrared (IR) spectra were recorded on a Smart 

MIRacle™ ATR ZnSe for Nicolet™ Impact 410 FT-IR Spectrometer (Thermo Scientific, Waltham, 

MA, USA). The spectra were obtained by accumulation of 256 scans with 2 cm−1 resolution in the 

region of 4,000–600 cm−1. All 1H and 13C-NMR spectra were recorded in DMSO-d6 solutions at 

ambient temperature on a Bruker Avance III 400 MHz spectrometer (Karlsruhe, Bruker, Germany,  

400 MHz for 1H, 100 MHz for 13C). Chemical shifts are reported in ppm (). Proton chemical shifts in 

DMSO-d6 are related to the middle of the solvent multiplet (δ = 2.50). 13C-NMR spectra were 

measured using APT pulse sequences. Carbon chemical shifts are referenced to the middle of the 

solvent multiplet (δ = 39.5 in DMSO-d6). Mass spectra were measured using a LTQ Orbitrap Hybrid 

Mass Spectrometer (Thermo Electron Corporation, Waltham, MA, USA) with direct injection into an 

APCI source (400 °C) in the positive mode. 



Molecules 2012, 17 1299 

 

 

3.2. Synthesis 

3.2.1. Procedure for Classical Synthesis of Ring-substituted Quinoline- and 4-chloroquinoline-2-

carboxanilides 

Quinoline-2-carboxylic acid (1a, 1.0 g, 5.8 mmol) was suspended in thionyl chloride (2.1 mL, 3.4 g, 

28.9 mmol) at room temperature, and DMF (2 drops) was added. The mixture was refluxed for about 3 h 

and then evaporated to dryness. The residue was used directly in the next step. Into the solution of  

2-quinaldic acid chloride in dry toluene (15 mL), triethylamine (4.5 mL, 2.92 g, 32.5 mmol) and the 

corresponding substituted aniline (5.8 mmol) were added dropwise. The mixture was stirred at room 

temperature for 24 h, after which the solvent was removed under reduced pressure. The residue was 

extracted with CHCl3. The combined organic layers were washed with water and saturated aqueous 

solution of NaHCO3 and dried over anhydrous MgSO4. The solvent was evaporated to dryness under 

reduced pressure. The crude product and its 4-chloro derivative were isolated by flash chromatography 

(n-hexane/EtOAc 3: 2) and recrystallized from isopropanol or EtOAc. 

3.2.2. Procedure for the Optimization of Microwave-assisted Synthesis 

Quinoline-2-carboxylic acid (1a) or naphthalene-2-carboxylic acid (4a) or their esters 1b, 1c, 4b  

(1.7 mmol) and 4-bromoaniline (0.45 g, 2.6 mmol) were mixed in 10 mL round bottom flask and 

placed to the microwave reactor. Outlet of the reaction flask was connected with a tube attached to a 

condenser outside of the microwave reactor. The microwave output power was selected to maximum 

800 W. The stirred reaction mixture was preheated to 150 °C by microwave irradiation and let to react 

at the same temperature for 2 h. The reaction was monitored by HPLC in time periods: 0.5 h, 1 h and  

2 h. The results are presented in Table 1. 

3.2.3. General Procedure for Microwave-assisted Synthesis of Ring-substituted  

Quinoline-2-carboxanilides 

Phenyl quinoline-2-carboxylate (1c, 250 mg, 1.0 mmol) and substituted aniline (1.5 mmol) were 

mixed in 10 mL round bottom flask and placed to the microwave reactor. Outlet of the reaction flask 

was connected with a tube attached to a condenser outside of the microwave reactor. The microwave 

output power was selected to maximum 800 W in order to avoid the observed pyrolysis problems.  

The stirred reaction mixture was preheated to 150 °C by microwave irradiation and let to react at the 

same temperature for 1 h. After cooling, the reaction mixture was diluted with chloroform (20 mL), 

washed with saturated sodium bicarbonate solution (2 × 10 mL) and brine (10 mL). The organic phase 

was then dried over anhydrous Na2SO4 and the solvent was removed under reduced pressure.  

The crude product was recrystallized from isopropanol to yield pure substituted quinoline-2-carboxanilides 

5–5c, 9–13c. 

N-(2-Bromophenyl)quinoline-2-carboxamide (5a). Yield 61%; Mp. 134–135 °C; IR (Zn/Se ATR, cm−1): 

3277w, 1689s, 1588m, 1579m, 1543m, 1530s, 1496m, 1440m, 1427m, 1302w, 1132w, 1204m, 908w, 

842m, 768s, 736m, 698m; 1H-NMR (DMSO-d6), δ: 10.82 (bs, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.44 (d,  

J = 8.3 Hz, 1H), 8.23 (d, J = 8.5 Hz, 1H), 8.13 (d, J = 8.5 Hz, 1H), 8.07 (d, J = 8.3 Hz, 1H), 7.87 (t,  
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J = 7.5 Hz, 1H), 7.64–7.77 (m, 2H), 7.44 (t, J = 7.8 Hz, 1H), 7.10 (t, J = 7.7 Hz, 1H);  
13C-NMR (DMSO-d6), δ: 161.61, 148.71, 145.50, 138.60, 135.46, 132.58, 130.83, 129.26, 129.13, 

128.55, 128.53, 128.08, 125.74, 121.39, 118.19, 114.08; HR-MS: for C16H12BrN2O [M+H]+ calculated 

327.0133 m/z, found 327.0138 m/z. 

N-(3-Bromophenyl)quinoline-2-carboxamide (5b). Yield 75%; Mp. 139–140 °C; IR (Zn/Se ATR, cm−1): 

3318w, 1687m, 1581m, 1519m, 1478w, 1408m, 1296w, 1124m, 1067w, 912w, 847m, 764s, 685m;  
1H-NMR (DMSO-d6), δ: 10.89 (bs, 1H), 8.60 (d, J = 8.3 Hz, 1H), 8.19–8.32 (m, 3H), 8.09 (d,  

J = 8.0 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.87–7.93 (m, 1H), 7.68–7.78 (m, 1H), 7.27–7.40 (m, 2H); 
13C-NMR (DMSO-d6), δ: 163.02, 149.67, 145.86, 139.98, 138.21, 130.69, 130.67, 129.32, 128.97, 

128.44, 128.14, 126.59, 122.66, 121.55, 119.14, 118.77; HR-MS: for C16H12BrN2O [M+H]+ calculated 

327.0133 m/z, found 327.0143 m/z. 

N-(4-Bromophenyl)quinoline-2-carboxamide (5c). Yield 88%; Mp. 157–158 °C; IR (Zn/Se ATR, cm−1): 

3355w, 1693s, 1581m, 1522s, 1496s, 1423w, 1389m, 1305w, 1120m, 1095w, 1068m, 998w, 907w, 

839s, 807s, 769s, 693w; 1H-NMR (DMSO-d6), δ: 10.84 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.18–8.30 

(m, 2H), 8.07 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.8 Hz, 2H), 7.86–7.92 (m, 1H), 7.67–7.78 (m, 1H), 7.56 

(d, J = 8.8 Hz, 2H); 13C-NMR (DMSO-d6), δ: 162.86, 149.82, 145.87, 138.16, 137.74, 131.53, 130.64, 

129.33, 128.94, 128.37, 128.12, 122.28, 118.77, 115.80; HR-MS: for C16H12BrN2O [M+H]+ calculated 

327.0133 m/z, found 327.0129 m/z. 

N-(2-Chlorophenyl)quinoline-2-carboxamide (9a) [36]. Yield 70%; Mp. 130–131 °C; 1H-NMR 

(DMSO-d6), δ: 10.77 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.43 (d, J = 8.0 Hz, 1H), 8.21 (d, J = 8.5 Hz, 

1H), 8.10 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.3 Hz, 1H), 7.85 (t, J = 7.5 Hz, 1H), 7.64–7.75 (m, 1H), 

7.54 (d, J = 7.8 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.10–7.24 (m, 1H); 13C-NMR (DMSO-d6), δ: 161.54, 

148.70, 145.47, 138.50, 134.21, 130.75, 129.29, 129.20, 129.07, 128.46, 128.00, 127.88, 125.23, 

123.38, 121.27, 118.15; HR-MS: for C16H12ClN2O [M+H]+ calculated 283.0638 m/z, found 283.0652 m/z. 

N-(3-Chlorophenyl)quinoline-2-carboxamide (9b) [36]. Yield 80%; Mp. 127–128 °C; 1H-NMR 

(DMSO-d6), δ: 10.90 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.18–8.31 (m, 2H), 8.15 (s, 1H), 8.07  

(d, J = 8.0 Hz, 1H), 7.82–7.97 (m, 2H), 7.66–7.78 (m, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.11–7.23 (m, 1H); 
13C-NMR (DMSO-d6), δ: 163.02, 149.67, 145.87, 139.85, 138.20, 133.12, 130.68, 130.36, 129.34, 

128.98, 128.43, 128.14, 123.70, 119.82, 118.77; HR-MS: for C16H12ClN2O [M+H]+ calculated 

283.0638 m/z, found 283.0648 m/z. 

N-(4-Chlorophenyl)quinoline-2-carboxamide (9c). Yield 80%; Mp. 134–135 °C (Mp. 135–135.5 °C [37]); 
1H-NMR (DMSO-d6), δ: 10.88 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.17–8.30 (m, 2H), 8.08 (d, J = 8.0 Hz, 

1H), 8.01 (d, J = 8.8 Hz, 2H), 7.84–7.93 (m, 1H), 7.68–7.77 (m, 1H), 7.43 (d, J = 8.8 Hz, 2H);  
13C-NMR (DMSO-d6), δ: 162.87, 149.85, 145.88, 138.16, 137.34, 130.65, 129.34, 128.95, 128.62, 

128.37, 128.14, 127.69, 121.92, 118.78; HR-MS: for C16H12ClN2O [M+H]+ calculated 283.0638 m/z, 

found 283.0631 m/z. 
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N-(2-Fluorophenyl)quinoline-2-carboxamide (10a). Yield 63%; Mp. 116–117 °C; IR (Zn/Se ATR, 

cm−1): 3328w, 1691m, 1615m, 1591w, 1530s, 1504m, 1477w, 1454m, 1428m, 1317w, 1247w, 1185w, 

1126m, 1088w, 910w, 837m, 772s, 746s, 683m; 1H-NMR (DMSO-d6), δ: 10.48 (bs, 1H), 8.57 (d,  

J = 8.5 Hz, 1H), 8.17–8.25 (m, 2H), 8.13 (d, J = 8.5 Hz, 1H), 8.05 (d, J = 8.0 Hz, 1H), 7.85 (t, J = 7.3 Hz, 

1H), 7.65–7.76 (m, 1H), 7.28–7.40 (m, 1H), 7.13–7.27 (m, 2H); 13C-NMR (DMSO-d6), δ: 162.00, 

153.58 (d, 1JFC = 244 Hz), 148.95, 145.67, 138.39, 130.76, 129.24, 129.15 (d, 2JFC = 19.1 Hz), 128.45, 

128.08, 125.70 (d, 3JFC = 11.0 Hz), 125.53 (d, 3JFC = 7.3 Hz), 124.63 (d, 4JFC = 3.7 Hz), 122.91, 118.37, 

115.43 (d, 2JFC = 19.1 Hz); HR-MS: for C16H12FN2O [M+H]+ calculated 267.0934 m/z, found 267.0950 m/z. 

N-(3-Fluorophenyl)quinoline-2-carboxamide (10b). Yield 81%; Mp. 126–127 °C; IR (Zn/Se ATR, 

cm−1): 3343w, 1690s, 1588m, 1531s, 1504m, 1481s, 1409s, 1170m, 1137m, 899m, 841s, 791m, 768s, 

738m, 682s; 1H-NMR (DMSO-d6), δ: 10.91 (bs, 1H), 8.58 (d, J = 8.5 Hz, 1H), 8.16–8.31 (m, 2H), 8.08 

(d, J = 8.3 Hz, 1H), 7.95 (d, J = 11.8 Hz, 1H), 7.86–7.92 (m, 1H), 7.79 (d, J = 8.3 Hz, 1H),  

7.68–7.75 (m, 1H), 7.35–7.49 (m, 1H), 6.96 (td, J = 8.4 Hz, J = 2.0 Hz, 1H); 13C-NMR (DMSO-d6), δ: 

163.01, 162.15 (d, 1JFC =241 Hz), 149.73, 145.86, 140.11 (d, 3JFC =11.0 Hz), 138.18, 130.65, 130.31  

(d, 3JFC = 9.5 Hz), 129.33, 128.97, 128.39, 128.12, 118.77, 116.15 (d, 4JFC = 2.9 Hz), 110.47  

(d, 2JFC = 21.3 Hz), 107.09 (d, 2JFC = 26.4 Hz); HR-MS: for C16H12FN2O [M+H]+ calculated 267.0934 

m/z, found 267.0953 m/z. 

N-(4-Fluorophenyl)quinoline-2-carboxamide (10c) [36,38]. Yield 81%; Mp. 115–116 °C; 1H-NMR 

(DMSO-d6), δ: 10.83 (bs, 1H), 8.57 (d, J = 8.3 Hz, 1H), 8.17–8.29 (m, 2H), 8.06 (d, J = 8.0 Hz, 1H), 

7.94–8.02 (m, 2H), 7.87 (td, J = 7.7 Hz, J = 1.3 Hz, 1H), 7.66–7.76 (m, 1H), 7.17–7.28 (m, 2H);  
13C-NMR (DMSO-d6), δ: 162.76, 158.58 (d, 1JFC = 237 Hz), 150.03, 145.95, 138.18, 134.81  

(d, 4JFC = 2.2 Hz), 130.67, 129.39, 128.98, 128.37, 128.17, 122.31 (d, 3JFC = 7.3 Hz), 118.83, 115.26 

(d, 2JFC = 22.7 Hz); HR-MS: for C16H12FN2O [M+H]+ calculated 267.0934 m/z, found 267.0954 m/z. 

N-(2-Methoxyphenyl)quinoline-2-carboxamide (11a) [39]. Yield 79%; Mp. 111–112 °C; IR (Zn/Se 

ATR, cm−1): 3382w, 1676s, 1596m, 1532s, 1485w, 1454m, 1426m, 1334w, 1288w, 1253m, 1138m, 

1129m, 1093w, 1020s, 951w, 908m, 873w, 840m, 820w, 770s, 732s; 1H-NMR (DMSO-d6), δ: 10.68 

(bs, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.49 (d, J = 7.8 Hz, 1H), 8.25 (d, J = 8.5 Hz, 1H), 8.15 (d, J = 8.5 Hz, 

1H), 8.07 (d, J = 8.3 Hz, 1H), 7.87 (t, J = 7.3 Hz, 1H), 7.67–7.75 (m, 1H), 7.11 (d, J = 4.0 Hz, 2H), 

7.01 (dt, J = 8.2 Hz, J = 4.2 Hz, 1H), 3.98 (s, 3H); 13C-NMR (DMSO-d6), δ: 161.25, 149.34, 148.51, 

145.62, 138.55, 130.82, 129.30, 129.06, 128.44, 128.14, 126.87, 124.25, 120.68, 118.84, 118.27, 

110.91, 56.05; HR-MS: for C17H15N2O2 [M+H]+ calculated 279.1134 m/z, found 279.1148 m/z. 

N-(3-Methoxyphenyl)quinoline-2-carboxamide (11b). Yield 77%; Mp. 117–118 °C; IR (Zn/Se ATR, 

cm−1): 3352w, 1687m, 1589m, 1524m, 1503m, 1456m, 1425m, 1334w, 1284m, 1203m, 1157m, 1128m, 

1049s, 906w, 876m, 854m, 823w, 798w, 762s, 740s, 685m; 1H-NMR (DMSO-d6), δ: 10.73 (bs, 1H), 

8.58  

(d, J = 8.5 Hz, 1H), 8.19–8.32 (m, 2H), 8.07 (d, J = 8.0 Hz, 1H), 7.82–7.96 (m, 1H), 7.65–7.79  

(m, 2H), 7.59 (dd, J = 8.0 Hz, J = 1.0 Hz, 1H), 7.29 (t, J = 8.2 Hz, 1H), 6.72 (dd, J = 8.3 Hz, J = 2.01 Hz, 

1H), 3.78 (s, 3H); 13C-NMR (DMSO-d6), δ: 162.70, 159.61, 149.99, 145.88, 139.53, 138.23, 130.67, 
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129.61, 129.37, 128.97, 128.37, 128.16, 118.75, 112.47, 109.68, 105.91, 55.09; HR-MS: for 

C17H15N2O2 [M+H]+ calculated 279.1134 m/z, found 279.1129 m/z. 

N-(4-Methoxyphenyl)quinoline-2-carboxamide (11c) [36]. Yield 84%; Mp. 130–131 °C; 1H-NMR 

(DMSO-d6), δ: 10.65 (bs, 1H), 8.57 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.5 Hz, 2H), 8.07 (d, J = 7.8 Hz, 

1H), 7.82–7.95 (m, 3H), 7.63–7.78 (m, 1H), 6.97 (d, J = 9.0 Hz, 2H), 3.75 (s, 3H); 13C-NMR (DMSO-d6), 

δ: 162.28, 155.80, 150.25, 145.90, 138.09, 131.47, 130.59, 129.32, 128.87, 128.22, 128.11, 121.85, 

118.73, 113.87, 55.17; HR-MS: for C17H15N2O2 [M+H]+ calculated 279.1134 m/z, found 279.1145 m/z. 

N-(2-Methylphenyl)quinoline-2-carboxamide (12a). Yield 71%; Mp. 100–101 °C; IR (Zn/Se ATR, cm−1): 

3334w, 1686s, 1587s, 1528s, 1498M, 1454s, 1427s, 1422m, 1373w, 1305m, 1249w, 1201w, 1132m, 

1091w, 1040w, 1013w, 981w, 954m, 932w, 907m, 872m, 842s, 793w, 765s, 750s, 731s, 681s; 1H-NMR 

(DMSO-d6), δ: 10.45 (bs, 1H), 8.60 (d, J = 8.5 Hz, 1H), 8.24 (d, J = 8.5 Hz, 1H), 8.17  

(d, J = 8.3 Hz, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 7.8 Hz, 1H), 7.83–7.91 (m, 1H), 7.69–7.77 

(m, 1H), 7.22–7.31 (m, 2H), 7.08–7.16 (m, 1H), 2.37 (s, 3H); 13C-NMR (DMSO-d6), δ: 161.92, 149.67, 

145.74, 138.35, 135.97, 130.72, 130.42, 130.01, 129.38, 129.01, 128.38, 128.11, 126.40, 124.96, 

122.65, 118.49, 17.49; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 m/z, found 263.1182 m/z. 

N-(3-Methylphenyl)quinoline-2-carboxamide (12b). Yield 65%; Mp. 82–83 °C; IR (Zn/Se ATR, 

cm−1): 3355w, 1685m, 1592m, 1527s, 1503s 1457w, 1424m, 1300w, 1171w, 1125m, 908w, 852m, 773s, 

740w, 690s; 1H-NMR (DMSO-d6), δ: 10.66 (bs, 1H), 8.61 (d, J = 8.5 Hz, 1H), 8.25 (dd, J = 7.9 Hz,  

J = 5.40 Hz, 2H), 8.10 (d, J = 8.0 Hz, 1H), 7.90 (t, J = 7.5 Hz, 1H), 7.67–7.84 (m, 3H), 7.27 (t, J = 7.7 Hz, 

1H), 6.96 (d, J = 7.3 Hz, 1H), 2.32 (s, 3H); 13C-NMR (DMSO-d6), δ: 162.54, 150.03, 145.88, 138.22, 

138.20, 138.03, 130.68, 129.35, 128.94, 128.65, 128.35, 128.15, 124.75, 120.72, 118.70, 117.35, 

21.23; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 m/z, found 263.1191 m/z. 

N-(4-Methylphenyl)quinoline-2-carboxamide (12c). Yield 89%; Mp. 107–108 °C (Mp. 109.5–110 °C 

[37]); 1H-NMR (DMSO-d6), δ: 10.67 (bs, 1H), 8.59 (d, J = 8.5 Hz, 1H), 8.18–8.30 (m, 2H), 8.08 (d,  

J = 8.0 Hz, 1H), 7.79–7.94 (m, 3H), 7.72 (t, J = 7.4 Hz, 1H), 7.18 (d, J = 8.3 Hz, 2H), 2.27 (s, 3H); 
13C-NMR (DMSO-d6), δ: 162.51, 150.17, 145.93, 138.21, 135.86, 133.09, 130.69, 129.39, 129.24, 

128.94, 128.35, 128.18, 120.27, 118.77, 20.59; HR-MS: for C17H15N2O [M+H]+ calculated 263.1184 

m/z, found 263.1193 m/z. 

N-(2-Trifluoromethylphenyl)quinoline-2-carboxamide (13a). Yield 74%; Mp. 120–121 °C; IR (Zn/Se 

ATR, cm−1): 3316w, 1698s, 1590s, 1537s, 1498w, 1452m, 1423m, 1320m, 1288m, 1244w, 1202w, 

1165m, 1124m, 1094m, 1054m, 1026m, 953w, 906w, 871w, 836m, 792w, 763s, 676m; 1H-NMR 

(DMSO-d6), δ: 10.78 (bs, 1H), 8.61 (d, J = 8.3 Hz, 1H), 8.36 (d, J = 8.3 Hz, 1H), 8.23 (d, J = 8.3 Hz, 

1H), 8.07 (t, J = 8.3 Hz, 2H), 7.87 (t, J = 7.5 Hz, 1H), 7.64–7.81 (m, 3H), 7.38 (t, J = 7.7 Hz, 1H);  
13C-NMR (DMSO-d6), δ: 162.05, 148.48, 145.53, 138.74, 135.14, 133.57, 131.01, 129.48 (q, 2JFC = 37 Hz), 

129.21, 129.17, 128.68, 128.16, 126.41 (q, 3JFC = 5.1 Hz), 125.05, 124.10 (q, 1JFC = 274 Hz), 123.89 

(q, 3JFC = 5.9 Hz), 118.31; HR-MS: for C17H12F3N2O [M+H]+ calculated 317.0902 m/z, found 

317.0891 m/z. 
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N-(3-Trifluoromethylphenyl)quinoline-2-carboxamide (13b). Yield 71%; Mp. 121–122 °C; IR (Zn/Se 

ATR, cm−1): 3339w, 1692s, 1614w, 1536m, 1490m, 1424w, 1330s, 1223w, 1166m, 1109s, 1091s, 

1065m, 952w, 933w, 874s, 844m, 08s, 771s, 744w, 698s; 1H-NMR (DMSO-d6), δ: 11.08 (bs, 1H), 8.59 

(d, J = 8.5 Hz, 1H), 8.46 (s, 1H), 8.17–8.31 (m, 3H), 8.08 (d, J = 8.0 Hz, 1H), 7.89 (t, J = 7.4 Hz, 1 H), 

7.68–7.78 (m, 1 H), 7.61 (t, J = 8.0 Hz, 1 H), 7.46 (d, J = 7.5 Hz, 1H); 13C-NMR (DMSO-d6), δ: 

163.26, 149.64, 145.90, 139.23, 138.21, 130.69, 129.86, 129.35 (q, 2JFC = 32 Hz), 129.34, 129.03, 

128.45, 128.16, 124.20 (q, 1JFC = 273 Hz), 123.91, 120.24 (q, 3JFC = 3.7 Hz), 118.78, 116.61  

(q, 3JFC = 3.7 Hz); HR-MS: for C17H12F3N2O [M+H]+ calculated 317.0902 m/z, found 317.0892 m/z. 

N-(4-Trifluoromethylphenyl)quinoline-2-carboxamide (13c) [38,40]. Yield 87%; Mp. 147-148 °C;  
1H-NMR (DMSO-d6), δ: 11.02 (bs, 1H), 8.59 (d, J = 8.3 Hz, 1H), 8.26 (d, J = 8.5 Hz, 1H), 8.23  

(d, J = 8.3 Hz, 1H), 8.19 (d, J = 8.5 Hz, 2H), 8.08 (d, J = 8.0 Hz, 1H), 7.86–7.93 (m, 1H), 7.69–7.77 

(m, 3H); 13C-NMR (DMSO-d6), δ: 163.27, 149.63, 145.88, 141.95, 138.23, 130.69, 129.38, 129.03, 

128.48, 128.14, 125.96 (q, 3JFC = 3.7 Hz), 124.39 (q, 1JFC = 271 Hz), 124.00 (q, 2JFC = 32 Hz), 120.29, 

118.81; HR-MS: for C17H12F3N2O [M+H]+ calculated 317.0902 m/z, found 317.0890 m/z. 

3.3. Crystallography 

The X-ray data for the colourless crystal of 5c were obtained at 150 K using Oxford Cryostream 

low-temperature device on a Nonius KappaCCD diffractometer with MoKα radiation (λ = 0.71073 Å), 

a graphite monochromator and the  and χ scan mode. Data reductions were performed with  

DENZO-SMN [41]. The absorption was corrected by integration methods [42]. Structures were solved 

by direct methods (Sir92) [43] and refined by full matrix least-square based on F2 (SHELXL97) [44]. 

Hydrogen atoms were mostly localized on a difference Fourier map, however to ensure uniformity of 

the treatment of the crystal, all hydrogen atoms were recalculated into idealized positions (riding 

model) and assigned temperature factors Hiso(H) = 1.2 Ueq(pivot atom) or 1.5 Ueq for the methyl moiety 

with C–H = 0.93 Å for hydrogen atoms in aromatic rings moiety and N–H being 0.86 Å. Crystallographic 

data for 5c: C16H11BrN2O, M = 327.18, monoclinic, P21/c, a = 6.3620(2), b = 16.9968(7),  

c = 12.6001(10) Å, β = 105.892(5)°, Z = 4, V = 1310.42(13) Å3, Dc = 1.658 g·cm−3, μ = 3.133 mm−1, 

Tmin/Tmax = 0.559/0.671; −8 ≤ h ≥ 7, −20 ≤ k ≥ 22, −15 ≤ l ≥ 16; 9690 reflections measured (max = 27.4°), 

2941 independent (Rint = 0.0428), 2246 with I > 2σ(I), 181 parameters, S = 1.159, R1(obs. data) = 0.0404, 

wR2(all data) = 0.0672; max., min. residual electron density = 0.324, −0.389 eÅ−3.  

Crystallographic data for structural analysis have been deposited with the Cambridge 

Crystallographic Data Centre under CCDC deposition number: 858014. Copies of this information 

may be obtained free of charge from the Director, CCDC, 12 Union Road, Cambridge CB2 1EY, UK  

(fax: +44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk or www: http:// www.ccdc.cam.ac.uk). 

4. Conclusions 

A novel microwave-assisted one-pot coupling of phenyl ester of 2-quinaldic acid (1c) and  

ring-substituted anilines was successfully developed. This method provided an efficient approach for 

the synthesis of substituted quinoline-2-carboxanilides in solvent-free conditions. Interestingly,  

the reactions were applied and verified to eighteen substituted anilines. Desired carboxanilides were 
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isolated in high yields and purities. In the solid state of N-(4-bromophenyl)quinoline-2-carboxamide 

(5c) only typical intramolecular N1-H1···N2 contact was observed. The structure of 5c shows that there 

is no strong intermolecular interaction. Compound 5c is the first structure of this type of compounds with 

3D organisation due to several short contacts. In general, the developed microwave-assisted solvent-free 

procedure for preparation of aromatic amides in good yields using a simple and efficient approach may 

find broad applicability in synthesis of various substrates containing amide functions.  
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Acknowledgements 

This study was supported by the IGA VFU Brno 49/2011/FaF and the Ministry of Education, Youth 

and Sports of the Czech Republic (Project MSM 0021627501). 

References and Notes 

1. Kharkar, P.S.; Deodhar, M.N.; Kulkarni, V.M. Design, synthesis, antifungal activity, and ADME 
prediction of functional analogues of terbinafine. Med. Chem. Res. 2009, 18, 421–432. 

2. Musiol, R.; Jampilek, J.; Buchta, V.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; 
Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. 
Med. Chem. 2006, 14, 3592–3598. 

3. Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. 
Chem. 2010, 17, 1960–1973. 

4. Nakamoto, K.; Tsukada, I.; Tanaka, K.; Matsukura, M.; Haneda, T.; Inoue, S.; Murai, N.; Abe, S.; 
Ueda, N.; Miyazaki, M.; et al. Synthesis and evaluation of novel antifungal agents-quinoline and 
pyridine amide derivatives. Bioorg. Med. Chem. Lett. 2010, 20, 4624–4626. 

5. Oliva, B.; Miller, K.; Caggiano, N.; O’Neill, A.J.; Cuny, G.D.; Hoemarm, M.Z.; Hauske, J.R.; 
Chopra, I. Biological properties of novel antistaphylococcal quinoline-indole agents. Antimicrob. 
Agents Chemother. 2003, 47, 458–466. 

6. Upadhayaya, R.S.; Vandavasi, J.K.; Kardile, R.A.; Lahore, S.V.; Dixit, S.S.; Deokar, H.S.;  
Shinde, P.D.; Sarmah, M.P.; Chattopadhyaya, J. Novel quinoline and naphthalene derivatives as 
potent antimycobacterial agents. Eur. J. Med. Chem. 2010, 45, 1854–1867. 

7. Jampilek, J.; Musiol, R.; Pesko, M.; Kralova, K.; Vejsova, M.; Carroll, J.; Coffey, A.; Finster, J.; 
Tabak, D.; Niedbala, H.; et al. Ring-substituted 4-hydroxy-1H-quinolin-2-ones: Preparation and 
biological activity. Molecules 2009, 14, 1145–1159. 

8. Vaillancourt, V.A.; Cudahy, M.M.; Staley, S.A.; Brideau, R.J.; Conrad, S.J.; Knechtel, M.L.;  
Oien, N.L.; Wieber, J.L.; Yagi, Y.; Wathen, M.W. Naphthalene carboxamides as inhibitors of 
human cytomegalovirus DNA polymerization. Bioorg. Med. Chem. Lett. 2000, 10, 2079–2081. 

9. Brideau, R.J.; Knechtel, M.L.; Huang, A.; Vaillancourt, V.A.; Vera, E.E.; Oien, N.L.;  
Hopkins, T.A.; Wieber, J.L.; Wilkinson, K.F.; Rush, B.D.; et al. Broad-spectrum antiviral activity of 
PNU-183792, a 4-oxo-dihydroquinoline, against human and animal herpesviruses. Antivir. Res. 
2002, 54, 19–28. 



Molecules 2012, 17 1305 

 

 

10. Oien, N.L.; Brideau, R.J.; Hopkins, T.A.; Wieber, J.L.; Knechtel, M.L.; Shelly, J.A.;  
Anstadt, R.A.; Wells, P.A.; Poorman, R.A.; Huang, A.; et al. Broad-spectrum antiherpes activities 
of 4-hydroxyquinoline carboxamides, a novel class of herpesvirus polymerase inhibitors. 
Antimicrob. Agents Chemother. 2002, 46, 724–730. 

11. Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Wietrzyk, J.; 

Boryczka, S.; Mol, W.; et al. Investigating the antiproliferative activity of quinoline-5,8-dione 

analogues on tumour cell lines. Bioorg. Med. Chem. Lett. 2007, 17, 6138–6141. 

12. Shi, A.; Nguyen, T.A.; Battina, S.K.; Rana, S.; Takemoto, D.J.; Chiang, P.K.; Hua, D.H. 

Synthesis and anti-breast cancer activities of substituted quinolines. Bioorg. Med. Chem. Lett. 

2008, 18, 3364–3368. 

13. Gakhar, G.; Shi, A.; Hua, D.H.; Nguyen, T.A. Antitumor effect of substituted quinolines in breast 

cancer cells. Drug Dev. Res. 2008, 69, 526–534. 

14. Mrozek-Wilczkiewicz, A.; Kalinowski, D.; Musiol, R.; Finster, J.; Szurko, A.; Serafin, K.; Knas, M.; 

Kamalapuram, S.K.; Kovacevic, Z.; Jampilek, J.; et al. Investigating anti-proliferative activity of 

styrylazanaphthalenes and azanaphthalenediones. Bioorg. Med. Chem. 2010, 18, 2664–2671. 

15. Bernzweig, J.; Heiniger, B.; Prasain, K.; Lu, J.; Hua, D.H.; Nguyen, T.A. Anti-breast cancer 

agents, quinolines, targeting gap junction authors. Med. Chem. 2011, 7, 448–453. 

16. Foley, M.; Tilley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects 

for new agents Pharmacol. Ther. 1998, 79, 55–87. 

17. Nakayama, H.; Loiseau, P.M.; Bories, C.; Torres de Ortiz, S.; Schinini, A.; Serna, E.;  

Rojas de Arias, A.; Fakhfakh, M.A.; Franck, X.; Figadere, B.; et al. Efficacy of orally administered 

2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob. 

Agents Chemother. 2005, 49, 4950–4956. 

18. Kaur, K.; Jain, M.; Reddy, R.P.; Jain, R. Quinolines and structurally related heterocycles as 

antimalarials. Eur. J. Med. Chem. 2010, 45, 3245–3264. 

19. Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Jarvinen, T.; Savolainen, J. 

Prodrugs: Design and clinical applications. Nat. Rev. Drug Discov. 2008, 7, 255–270. 

20. Trost, B.M., Fleming, I., Winterfeldt, E., Eds.; Comprehensive Organic Synthesis; Pergamon Press: 

Oxford, UK, 1991; Volume 6; pp. 301–399.  

21. Katritzky, A.R.; Suzuki, K.; Singh, S.K. N-Acylation in combinatorial chemistry. ARKIVOC 

2004, i, 12–35. 

22. Lidstrom, P.; Tierney, J.P.; Wathey, B.; Westman, J. Microwave assisted organic synthesis— 

A review. Tetrahedron 2001, 57, 9225–9283. 

23. Tierney, J.P., Lidstrom, P., Eds.; Microwave Assisted Organic Synthesis; Blackwell Publishing: 

Oxford, UK, 2005. 

24. de la Hoz, A.; Diaz-Ortiz, A.; Moreno, A. Microwaves in organic synthesis. Thermal and non-thermal 

microwave effects. Chem. Soc. Rev. 2005, 34, 164–178. 

25. Hayes, B.L. Microwave Synthesis: Chemistry at the Speed of Light; CEM Publishing: Matthews, 

NC, USA, 2002. 

26. Loupy, A., Ed.; Microwaves in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2002. 

27. Varma, R.S. Advances in Green Chemistry: Chemical Syntheses using Microwave Irradiation; 

AstraZeneca Research Foundation, Kavitha Printers: Bangalore, India, 2002. 



Molecules 2012, 17 1306 

 

 

28. Bogdal, D. Microwave-assisted Organic Synthesis One Hundred Reaction Procedures; Elsevier: 
Oxford, UK, 2005. 

29. Bankston, D.; Dumas, J.; Natero, R.; Riedl, B.; Monahan, M.-K.; Sibley, R. A scaleable synthesis 
of BAY 43-9006: A potent Raf kinase inhibitor for the treatment of cancer. Org. Process. Res. 
Dev. 2002, 6, 777–781. 

30. Perreux, L.; Loupy, A.; Volatron, F. Solvent-free preparation of amides from acids and primary 
amines under microwave irradiation. Tetrahedron 2002, 58, 2155–2162. 

31. Qi, J.Y.; Qiu, L.Q.; Yang, Q.Y.; Zhou, Z.Y.; Chan, A.S.C. N-(4-Iodophenyl)quinoline-2-
carboxamide. Acta Crystallogr. E 2003, 59, o104–o105. 

32. Mocilac, P.; Lough, A.J.; Gallagher, J.F. Structures and conformational analysis of a 3 × 3 isomer 
grid of nine N-(fluorophenyl)pyridinecarboxamides. Cryst. Eng. Comm. 2011, 13, 1899–1999. 

33. Wilson, C.R.; Munro, O.Q. Unconventional hydrogen bonding and π-stacking in two substituted 
pyridine carboxamides. Acta Crystallogr. C 2010, 66, o513–o516. 

34. Qi, J.Y.; Yang, Q.Y.; Lam, K.H.; Zhou, Z.Y.; Chan, A.S.C. N-(4-Bromophenyl)pyridine-2-
carboxamide. Acta Crystallogr. E 2003, 59, o374–o375. 

35. Zhang, Q.; Zhang, S.P.; Shao, S.C. N-(4-Chlorophenyl)picolinamide. Acta Crystallogr. E 2006, 
62, o4695–o4696. 

36. Schaefer, W.; Neubert, P. Mass spectra of heterocyclic carboxylic acid amides. I. Pyridine- and 
quinolinecarboxylic acid anilides. Tetrahedron 1969, 25, 315–327.  

37. Davis, J.W., Jr. Studies with quinolines. I. Synthesis of quinaldic acid and some of its amide 
derivatives. J. Org. Chem. 1959, 24, 1691–1694. 

38. Petrie, C.; Orme, M.W.; Baindur, N.; Robbins, K.G.; Harris, S.M.; Kontoyianni, M.; Hurley, 
L.H.; Kerwin, S.M.; Mundy, G.R. Compositions and Methods for Treating Bone Deficit 
Conditions. PCT Int. Appl. WO 9715308 A1, May 1, 1997. 

39. Chan, L.; Jin, H.; Stefanac, T.; Wang, W.; Lavallee, J.F.; Bedard, J.; May, S. Isoquinoline-6-
carboxamides as potent and selective anti-human cytomegalovirus (HCMV) inhibitors. Bioorg. 
Med. Chem. Lett. 1999, 9, 2583–2586. 

40. Kiselyov, A.S. Reaction of N-fluoropyridinium fluoride with isonitriles and TMSN3: A convenient 
one-pot synthesis of tetrazol-5-yl pyridines. Tetrahedron Lett. 2005, 46, 4851–4854. 

41. Otwinowski, Z.; Minor, W. Processing of X-ray diffraction data collected in oscillation mode.  
In Methods in Enzymology 276: Macromolecular Crystallography, Part A, Carter, C.W., Jr., 
Sweet, R.M., Eds.; Academic Press: New York, NY, USA, 1997; pp. 307–326. 

42. Coppens, P. The Evaluation of Absorption and Extinction in Single Crystal Structure Analysis.  
In Crystallographic Computing, Ahmed, F.R., Hall, S.R., Huber, C.P., Eds.; Munksgaard: 
Copenhagen, Denmark, 1970; pp. 255–270. 

43. Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A. Completion and refinement of 
crystal-structures with SIR92. J. Appl. Crystallogr. 1993, 26, 343–350. 

44. Sheldrick, G.M. SHELXL-97; University of Gottingen: Gottingen, Germany, 1997. 

Sample Availability: Samples of the compounds are available from the authors. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


