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Abstract: A soluble and stable one-handed helical poly(substituted phenylacetylene) 

without the coexistence of any other chiral moieties was successfully synthesized by 

asymmetric-induced polymerization of a chiral monomer followed by two-step polymer 

reactions in membrane state: (1) removing the chiral groups (desubstitution); and  

(2) introduction of achiral long alkyl groups at the same position as the desubstitution to 

enhance the solubility of the resulting one-handed helical polymer (resubstitution). The 

starting chiral monomer should have four characteristic substituents: (i) a chiral group 

bonded to an easily hydrolyzed spacer group; (ii) two hydroxyl groups; (iii) a long rigid 

hydrophobic spacer between the chiral group and the polymerizing group; (iv) a long 

achiral group near the chiral group. As spacer group a carbonate ester was selected. The 

two hydroxyl groups formed intramolecular hydrogen bonds stabilizing a one-handed 

helical structure in solution before and after the two-step polymer reactions in membrane 
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state. The rigid long hydrophobic spacer, a phenylethynylphenyl group, enhanced the 

solubility of the starting polymer, and realized effective chiral induction from the chiral 

side groups to the main chain in the asymmetric-induced polymerization. The long  

alkyl group near the chiral group avoided shrinkage of the membrane and kept the 

reactivity of resubstitution in membrane state after removing the chiral groups. The g value 

(g = ([θ]/3,300)/ε) for the CD signal assigned to the main chain in the obtained final 

polymer was almost the same as that of the starting polymer in spite of the absence of any 

other chiral moieties. Moreover, since the one-handed helical structure was maintained by 

the intramolecular hydrogen bonds in a solution, direct observation of the one-handed 

helicity of the final homopolymer has been realized in CD for the solution for the first time. 

Keywords: one-handed helicity; chirality; polymer reaction; membrane; phenylacetylene; 

asymmetric polymerization; solubility 

 

1. Introduction 

Conjugated polymers like polyacetylenes have aroused interest because of their unique properties 

such as optical resolution and enantioselective recognition [1–3]. Many kinds of polymers having 

chiral structures in their main chains and/or pendant groups have been synthesized. Among them, 

soluble chiral polymers whose chiral structures arise solely from one-handed helical conformations of 

the conjugated main chains have so far only been synthesized by the helix-sense-selective 

polymerization (HSSP) of an achiral phenylacetylene monomer by using a chiral catalytic system 

developed in our laboratory [4–15]. 

In general, there are two methods to synthesize soluble chiral polymers whose chiral structures are 

present alone in the main chain as asymmetric carbons and /or as a one-handed helical conformation. 

One is HSSP [16–19] of an achiral monomer by using a chiral catalyst as a chiral source and the other 

is asymmetric-induced polymerization (AIP), by using achiral catalysts, of monomers having a chiral 

group as a chiral source, followed by removing the chiral groups by a polymer reaction of the resulting 

polymer in solution (AIP-R) [20–29]. However, the examples where the two methods have been 

applied to synthesize conjugated polymers are very few. In fact, there has been only one example 

using HSSP reported by our group [4–15] and no examples of the use of AIP-R for obtaining soluble 

chiral conjugated polymers. 

Recently, we have successfully synthesized soluble chiral copoly(substituted phenylacetylene)s 

whose chiral structures are only in one-handed helical conformations by asymmetric-induced 

copolymerization of a chiral monomer with an achiral comonomer having a hydrophobic group(AIP) 

and subsequent desubstitution of the chiral pendant groups from the resulting polymers by one-step 

polymer reaction in membrane state (RIM; in the case of the same polymer reaction in solution, the 

one-handed helicity was racemized during the reaction [30]). We also found the efficiency in the 

asymmetric induction to the main chain in this two-step method (AIP-RIM) was better than that of 

HSSP. However, the homopolymer by AIP of the chiral monomer was insoluble and therefore 

chiralities could not be measured directly in CD for the solutions. 
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In this study, a soluble homopolymer having its chirality only in the one-handed helical backbone 

was synthesized by AIP-RIM (Scheme 1) of a chiral phenylacetylene monomer (1) (Figure 1 and 

Scheme 2). 

Scheme 1. Two-step synthetic route to stable and soluble one-handed helical  

homo- poly(substituted acetylene)s without the coexistence of any other chiral moieties. 

 

Figure 1. Molecular design of the starting one-handed helical polymer in this study.  

(1) Removable chiral source by hydrolysis for desubstitution; (2) Stabilization of the  

one-handed helical backbone by the intramolecular hydrogen bonds; (3) To enhance 

solubility of the polymer by the hydrophobicity. Effective chiral induction to the backbone 

from the chiral groups by the rigidity; (4) To enhance reactivity for resubstitution by 

enhancing the reaction space. 

 

This method consisted of AIP of 1 and two-step polymer reactions (desubstitution and 

resubstitution) in membrane state (RIM): (1) removing the chiral groups while maintaining the  

one-handed helical backbone (desubstitution); and (2) introduction of achiral long alkyl groups at the 

same position to enhance solubility of the resulting polymer while maintaining the one-handed helical 

backbone (resubstitution). As a result, CD for the resulting polymer could be measured in solution. To 

realize this purpose, the monomer 1 was designed precisely as follows (Figure 1 and Scheme 2):  

(i) a chiral group bonded by a group easily hydrolyzed; (ii) two hydroxyl groups to stabilize the  

one-handed helical backbone of the resulting polymer by the intramolecular hydrogen bonds;  
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(iii) a phenylethynylphenyl spacer to enhance the solubility of the polymers, and to realize effective 

chiral induction from the chiral side group to the main chain in AIP [31]; (iv) a long achiral alkyl 

group near the chiral group to avoid shrinkage of the polymer membrane and the reactivity of 

resubstitution in RIM after removing the chiral groups. 

Scheme 2. Synthesis of soluble one-handed helical poly(re-1) by asymmetric-induced 
polymerization followed by polymer reactions in membrane state (AIP-RIM). 

a. [Rh(nbd)Cl]2, Et3N, (AIP); b. KOH/CH3OH/THF in membrane state (RIM); c. lauroyl chloride 
in membrane state (RIM). 

2. Results and Discussion 

2.1. Synthesis of a Soluble One-Handed Helical Poly(1) Having Chiral Pendant Groups by 

Asymmetric-Induced Polymerization(AIP) of 1 

By introduction of the hydrophobic phenylethynylphenyl spacer, a soluble poly(1) was successfully 

synthesized by AIP (Scheme 2 and Table 1) [32]. The value of the specific rotation of poly(1) was 

much higher than that of the corresponding monomer (Table 1). In addition, since CD signals assigned 

to the main chain were observed for poly(1), chiral induction to the main chain was confirmed (Figure 2a). 

In spite of the long distance of the spacer (23 Å), effective chiral induction from the chiral group to the 

main chain was observed in AIP owing to rigidity of the spacer [31,33]. Moreover, one-handed 

helicity of poly(1) was stable when it was heated at 60 °C (Figure 2b). Since the CD and UV spectra 

for poly(1) (Figure 2a) were very similar to those for a one-handed helical poly(substituted 

phenylacetylene) (poly(4) in Figure 3) stabilized by intramolecular hydrogen bonds we previously 

reported [4], the backbone of poly(1) is also thought to be kept by intramolecular hydrogen bonds. 

When DMSO as a polar solvent was added to the THF solution of poly(1) showing CD around 450 nm 

assigned to the main chain (Figure 4a), the CD band disappeared and the UV band shifted to longer 

wavelengths (Figure 4b). The finding was thought to show that the intramolecular hydrogen bonds 

were broken, the helical pitch of the conjugated conformation was extended, and then the one-handed 

helical conformation was racemized. At the same time, a new CD signal assigned to the chiral group in 

the monomer unit appeared at 250 to 350 nm (Figure 4b). 
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Table 1. Characterizations of 1, poly(1) a and poly(re-1). 

a At room temperature in toluene, [1] = 0.1 mol/l, [1]/ [[Rh(nbd)Cl]2] = 100; b methanol insoluble 
part; c by GPC; d in THF; e g = ([θ]/3300)/ε. 

Figure 2. CD and UV-Vis spectra of poly(1) at (a) 25 °C and (b) 60 °C in THF. 

 

Figure 3. Chemical structures of poly(3) and poly(4). 

 

Code Yield b/% Mw c/×105 Mw/Mn c [α]D
20 d/° g450 
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1 - - - −18.4 0 
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Figure 4. CD and UV-Vis spectra of poly(1) in (a) THF, (b) THF/DMSO = 80/20 (v/v) 

and (c) THF/DMSO = 99/1 (v/v) ((c) was the solution prepared by addition of THF to the 

solution of (b)). 

 

2.2. Synthesis of an Insoluble One-Handed Helical Poly(de-1) Having no Chiral Pendant Groups by 

Removing the Chiral Groups (Desubstitution) Quantitatively from Poly(1) in Membrane State (RIM) 

After the desubstitution reaction of the chiral groups from poly(1) in membrane state (RIM), the 

obtained poly(de-1) became insoluble in any organic solvents. Therefore, the conversion of RIM was 

estimated by IR and loss of the weight of the membrane. Since the absorption at 1761 cm−1 assigned to 

the carbonyl stretching vibration in the ester carbonate bonded with the chiral groups completely 

disappeared (Figures 5a,b) and the actual weight loss was almost the same as the theoretical value 

(99.7%), quantitative removal of the chiral groups was confirmed. Because the CD and UV-Vis spectra 

of poly(de-1) were almost the same as those of poly(1) in membrane state (Figures 6a,b), it was 

suggested that poly(de-1) maintained the one-handed helical structure of the original polymer in 

membrane state during RIM. Since the broad absorption band for the hydroxyl groups in poly(de-1) at 

3750 to 3100 cm−1 was observed similar to that in poly(1) (Figures 5a,b), the one-handed helicity may 

be maintained by the intramolecular hydrogen bonds during the polymer reaction in membrane state. 
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Figure 5. IR spectra of (a) poly(1), (b) poly(de-1) and (c) poly(re-1) (film).  

 

Figure 6. CD and UV-Vis spectra of (a) poly(1), (b) poly(de-1) and (c) poly(re-1) in membrane state. 
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2.3. Synthesis of a Soluble One-Handed Helical poly(re-1) Having no Chiral Pendant Groups by 

Quantitative Introduction of Achiral Groups (Resubstitution) to Poly(de-1) in Membrane State(RIM) 

2.3.1. Quantitative Introduction of Achiral Groups (Resubstitution) by RIM 

After introduction (resubstitution) reaction of the achiral groups by the reaction of phenolic alcohol 

in poly (de-1) with lauroyl chloride in membrane state (RIM), unlike poly(de-1) the obtained poly(re-1) 

became soluble in chloroform and THF. It was found that the reaction was almost quantitative by IR 

and 1H-NMR. The 1H-NMR spectra of 1, poly(1) and poly(re-1) are shown in Figure 7 (no data is 

available for poly(de-1) because of its insolubility). The signals in the chiral menthoxy group of 

poly(1) observed at 1.48 and 0.94 ppm disappeared completely in poly(re-1), indicating the absence of 

the chiral groups in poly(re-1). In addition, since the value of the ratio of the integral values of the two 

methyl protons in the two undecyl groups at 0.87 and 0.81 ppm to the nine aromatic protons assigned 

to three types of the benzene rings at 7.80–6.73 ppm was the same as theoretical one(6:9), the 

quantitative de- and re-substitution were confirmed. It was also confirmed by the fact that the 

absorption at 1752 cm−1 in the IR spectra assigned to the carbonyl stretching vibration of the phenyl 

ester group newly appeared (Figures 5b,c). Since the broad absorption for the hydroxyl groups in 

poly(re-1) at 3750 to 3100 cm−1 was observed similar to that in poly(1) and poly(de-1) (Figures 5a–c), 

the one-handed helicity was thought to be maintained by the hydrogen bonds during the polymer 

reaction in membrane state. 

Figure 7. 1H-NMR spectra of 1 in CDCl3 and poly(1) and poly(re-1) in CDCl3/DMSO-d6. 
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In order to investigate the effect of the long alkyl group near the resubstitution reaction site on the 

reactivity, a chiral monomer(2) which has no such alkyl groups was synthesized and polymerized as 

shown in Scheme 3. AIP-RIM of 2 gave poly(de-2), and resubstitution in poly(de-2) membranes was 

attempted. As a result, the resubstitution did not proceed in poly(de-2) membranes. In the case of the 

absence of the long alkyl group, shrinkage of the membrane and decrease of the reaction space for 

resubstitution occurred after removing the bulky menthoxy groups by RIM. In fact, the ratio of 

decrease (%) of the diameter from poly(2) to poly(de-2) membranes was 13% which was larger than 

that from poly(1) to poly(de-1) membrane (4%). These results indicated that introduction of the long 

alkyl group near the chiral group reduced shrinkage of the membrane and kept the reactivity of 

resubstitution in membrane state of poly(de-1) after removing the chiral groups. 

Scheme 3. Synthesis of insoluble one-handed helical poly(de-2) by polymer reaction in 

membrane state(AIP-RIM). 

a 6 N HCl/methanol in membrane state (RIM); b lauroyl chloride in membrane state (RIM). 

2.3.2. Evidence of the One-Handed Helicity of Poly(re-1) Prepared by Two-Step RIM 

Since the obtained soluble poly(re-1) showed CD signals assigned to the main chain in THF 

(Figure 8), finally by the two-step RIMs we obtained a one-handed helical homopolymer without any 

other chiral moieties which has the same structure of the backbone as that of poly(4) (Figure 3) 

prepared only by HSSP of an achiral monomer(4). In addition, the g value (=([θ]/3,300)/ε) of the main 

chain of poly(re-1) was almost the same as that of the starting polymer, poly(1) (Table 1). Like 

poly(4), almost no change in the CD intensity of poly(re-1) was observed after heating the solution at 

60 °C (Figure 8b). This may be because the one-handed helical structure was stabilized by the 

intramolecular hydrogen bonds. When DMSO as a polar solvent was added to the THF solution of 

poly(re-1) showing CD around 450 nm assigned to the main chain (Figure 9a), the CD disappeared and 

the UV band shifted to longer wavelengths in THF/DMSO [80/20(v/v); Figure 9b], because the 

intramolecular hydrogen bonds were broken, the helical pitch of the conjugated main chain was 

extended, and the one-handed conformation was racemized similar to those in poly(4). When to the 

solution of THF/DMSO [80/20(v/v)] where no CD was observed, THF was added to reform 
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intramolecular hydrogen bonds, the resulting solution of THF/DMSO (99/1(v/v)) showed no CD 

signals (Figure 9c) although hydrogen bonds were recovered. It may be because poly(re-1) took a 

thermodynamically stable racemic helical structure during reconstruction of intramolecular hydrogen 

bonds due to the absence of the chiral groups in the side chains. 

In summary, we obtained soluble and stable one-handed helical homopolymer without any other 

chiral moieties which had a main-chain structure similar to that of poly(4) previously prepared only by 

HSSP of an achiral monomer(4). Therefore, AIP followed by the 2-steps RIM (AIP-RIM) method is 

equivalent to HSSP. 

Figure 8. CD and UV-Vis spectra of poly(re-1) at (a) 20 °C and (b) 60 °C in THF.  

 

Figure 9. CD and UV-Vis spectra of poly(re-1) in (a) THF, (b) THF/DMSO = 80/20(v/v) 

and (c) THF/DMSO = 99/1 (v/v) ((c) was the solution prepared by addition of THF to the 

solution of b). 
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3. Experimental 

3.1. General 

All of the solvents used for synthesis and polymerizations of the monomers were distilled as usual. 

The polymerization initiator, [Rh(nbd)Cl]2 (nbd = 2,5-norbornadiene), purchased from Aldrich 

Chemical was used as received. Average molecular weights (Mn and Mw) were estimated by gel 

permeation chromatography (THF as an eluent, polystyrene calibration) using JASCO Liquid 

chromatograph instruments with PU-2080, DG-2080-53, CO-2060, UV-2070, CD-2095, and two 

polystyrene gel columns (Shodex KF-807L). NMR spectra were recorded on a JEOL GSX-270 at 270 

MHz for 1H and 67.5 MHz for 13C. IR spectra were recorded on a JASCO FTIR-4200 spectrometer. 

CD spectra were measured with a JASCO J-720 spectropolarimeter. Specific rotations were recorded 

with a HORIBA SEPA-200. 

3.2. Monomer Synthesis (see Scheme 4) 

Scheme 4. Synthesis of chiral monomer 1. 

(a) Lauroyl chloride, 60 °C; (b) AlCl3, 150 °C; (c) trimethylsilylacetylene, Pd(PPh3)2Cl2, CuI, 
PPh3/Et3N, 60 °C; (d) TBAF/THF, r.t.; (e) HCHO aq., KOH/2-propanol, r.t.; (f) p-iodobenzyl 
bromide, K2CO3/acetone, reflux; (g) tert-butyldimethylchlorosilane(TBDMSCl), imidazole/THF, 
r.t.; (h) 1d, Pd(PPh3)2Cl2, CuI, PPh3/Et3N, r.t.; (i) trimethylsilylacetylene, Pd(PPh3)2Cl2, CuI, 
PPh3/Et3N, 70 °C; (j) (−)-menthyl chloroformate, Et3N/THF, r.t.; (k) TBAF, acetic acid /THF, r.t. 

3.1.1. Synthesis of 4-Bromophenyl dodecanoate (1a) 

In a 500 mL three-necked flask, p-bromophenol (7.40 g, 42.8 mmol) was heated at 90 °C. After the 

p-bromophenol melted, lauroyl chloride (10.0 mL, 43.2 mmol) was added. The solution was stirred for 

2 h at 60 °C. After cooling to room temperature, hexane (200 mL) was added. The solution was 

washed with aqueous solution of 0.5 wt% NaHCO3. The organic layer was dried with anhydrous 

magnesium sulfate. After filtration, the solvent was evaporated and the crude product was purified by 

recrystallization (hexane) to give 1a as a white solid. Yield: 95.6% (14.5 g). 1H-NMR (270 MHz, 
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CDCl3, ppm) δ: 7.86 (d, 2H, Br-PhH), 7.68 [d, 2H, HPhO(C=O)], 2.54 [t, 2H, PhO(C=O)CH2CH2], 

1.73 (m, 2H, CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone group], 0.88 (t, 3H, CH2CH3). 

3.1.2. Synthesis of 5-Bromo-2-hydroxydodecanophenone (1b) 

Anhydrous aluminium chloride (3.97 g, 29.8 mmol) was added to 1a (7.05 g, 19.8 mmol) at 110 °C. 

The resulting mixture was stirred for 2.5 h at 150 °C. After cooling to room temperature, 1 N HCl was 

added at 0 °C. After extraction with ether, the organic layer was washed with brine and dried with 

anhydrous magnesium sulfate. After filtration, the solvent was evaporated and the crude product was 

purified by silica-gel column chromatography (hexane) to give 1b as a slightly yellow solid. Yield: 

15.9% (1.12 g). Rf: 0.18 (hexane). 1H-NMR (270 MHz, CDCl3, ppm) δ: 12.3 (s, 1H, PhOH),  

7.86 [s, 1H, HPh(C=O)], 7.53 (d, 1H, Br-PhH), 6.83 (d, 1H, HO-PhH), 2.95 [t, 2H, Ph(C=O)CH2CH2], 

1.75 (m, 2H, CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone group], 0.88 (t, 3H, CH2CH3). 

3.1.3. Synthesis of 2-Hydroxy-5-trimethylsilylethynyldodecanophenone (1c) 

Trimethylsilylacetylene (0.600 mL, 4.22 mmol) was added with a syringe to a mixture of 1b (1.00 g, 

2.84 mmol), triphenylphosphine (59.0 mg, 0.225 mmol), copper iodide (64.3 mg, 0.338 mmol) and 

bis(triphenylphosphine)palladium (II) chloride (39.5 mg, 56.3 μmol) in triethylamine (19 mL). The 

mixture was stirred at 60 °C overnight. The formed salt was removed by filtration and the solution was 

concentrated. After addition of ethyl acetate (100 mL), the resulting solution was washed with brine. 

The organic layer was dried with anhydrous magnesium sulfate. After filtration, the solvent was 

evaporated and the crude product was purified by silica-gel column chromatography (hexane) to give 

1c as a slightly viscous liquid. Yield: 86.9% (991 mg). Rf: 0.10 (hexane). 1H-NMR (270 MHz, CDCl3, 
ppm) δ: 12.5 (s, 1H, PhOH), 7.89 [s, 1H, HPh(C=O)], 7.53 (d, 1H, Si-≡-PhH), 6.91 (d, 1H, HO-PhH), 

2.98 [t, 2H, Ph(C=O)CH2CH2], 1.73 (m, 2H, CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone 

group], 0.87 (t, 3H, CH2CH3), 0.26 [s, 9H, Si(CH3)3]. 

3.1.4. Synthesis of 5-Ethynyl-2-hydroxydodecanophenone (1d) 

Tetrabutylammonium fluoride (1 M in THF) (2.68 mL, 2.68 mmol) was added to a solution of 1c 

(991 mg, 2.44 mmol) in THF (7.1 mL). The solution was stirred at room temperature for 6 h. After 

addition of ethyl acetate, the solution was washed with brine and dried with anhydrous magnesium 

sulfate. After filtration, the solvent was evaporated and the crude product was purified by silica-gel 

column chromatography (hexane-ethyl acetate = 20:1) to give 1d as a white solid. Yield: 92.7%  

(685 mg). Rf: 0.43 (hexane-ethyl acetate = 20:1). IR (KBr): 3700–3000 (OH), 3312 (≡C-H), 3000–2800 

(CH), 1690 (C=O) cm−1. 1H-NMR (270 MHz, CDCl3, ppm) δ: 12.5 (s, 1H, PhOH), 7.93 [s, 1H, 

HPh(C=O)], 7.56 (d, 1H, ≡�PhH), 6.95 (d, 1H, HO-PhH), 3.02 (s, 1H, HC≡C), 2.98 [t, 2H, 

Ph(C=O)CH2CH2], 1.74 (m, 2H, CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone group], 0.88  

(t, 3H, CH2CH3). 

3.1.5. Synthesis of 4-Bromo-2,6-bis(hydroxymethyl)phenol (1e) 

Compound 1e was prepared according to our previous method [4]. 
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3.1.6. Synthesis of 1,3-Bis(hydroxymethyl)-2-(4'-iodobenzyloxy)-5-bromobenzene (1f) 

To a solution of 1e (4.77 g, 20.5 mmol) and potassium carbonate (4.52 g, 32.7 mmol) in acetone  

(40 mL), 4-iodobenzyl bromide (7.29 g, 24.5 mmol) was added under reflux. The solution was stirred 

under reflux for 24 h. The formed salt was removed by filtration and the solution was concentrated. 

After addition of ethyl acetate (100 mL), the resulting solution was washed with brine. The organic 

layer was dried with anhydrous magnesium sulfate. After filtration, the solvent was evaporated and the 

crude product was purified by silica-gel column chromatography (hexane-ethyl acetate = 3:1) to give 

1f as a white solid. Yield: 70.1% (4.80 g). Rf: 0.33 (hexane-ethyl acetate = 3:1). IR (KBr): 3770–3080 

(OH), 3082–2800 (CH) cm−1. 1H-NMR (270 MHz, CDCl3, ppm) δ: 7.77 (d, 2H, I-PhH), 7.47 (s, 2H, 

Br-PhH), 7.25 (d, 2H, PhOCH2-PhH), 5.27 (s, 2H, PhOCH2Ph), 4.80 [t, 2H, 2(CH2OH)], 4.50 [d, 4H, 

(CH2OH)]. 

3.1.7. Synthesis of 1,3-Bis(tert-butyldimethylsilyloxymethyl)-2-(4'-iodobenzyloxy)-5-bromobenzene (1g) 

tert-Butyldimethylchlorosilane (2.21 g, 14.7 mmol) was added to a solution of 1f (3.00 g, 6.69 mmol) 

and imidazole (1.82 g, 26.7 mmol) in THF (27 mL) at 0 °C. The solution was stirred for 2 h at room 

temperature. After addition of ethyl acetate (100 mL), the solution was washed with brine. The organic 

layer was dried with anhydrous sodium sulfate for 12 h. After filtration, the solvent was evaporated 

and the crude product was purified by silica-gel column chromatography (hexane) to give 1g as a 

white solid. Yield: 89.0% (4.03 g). Rf: 0.53 (hexane-ethyl acetate = 20:1). IR (KBr): 3000–2800 (CH), 

1255 (SiC-H), 838 (Si-CH) cm−1. 1H-NMR (270MHz, CDCl3, ppm) δ: 7.72 (d, 2H, I-PhH), 7.49  

(s, 2H, Br-PhH), 7.14 (d, 2H, PhOCH2-PhH), 4.82 (s, 2H, PhOCH2Ph), 4.63 [s, 4H, 2(PhCH2OSi)], 

0.92 [s, 18H, 2 (Si(CH3)2C(CH3)3)], 0.08 [s, 12H, 2(Si(CH3)2C(CH3)3)]. 

3.1.8. Synthesis of 1,3-Bis(tert-butyldimethylsilyloxymethyl)-2-{4'-[4''-hydroxy-3''-(1-oxododecyl)phenyl-

ethynyl]benzyloxy}-5-bromobenzene (1h) 

To a mixture of 1g (1.61 g, 2.38 mmol), triphenylphosphine (7.13 mg, 27.2 μmol), copper iodide 

(7.76 mg, 40.8 μmol) and bis(triphenylphosphine)palladium (II) chloride (4.77 mg, 6.80 μmol) in 

triethylamine (11.3 mL), 1d (0.681 mg, 2.27 mmol) was added. The mixture was stirred at room 

temperature overnight. The formed salt was removed by filtration and the solution was concentrated. 

After addition of ethyl acetate (50 mL), the resulting solution was washed with brine. The organic 

layer was dried with anhydrous magnesium sulfate. After filtration, the solvent was evaporated and the 

crude product was purified by silica-gel column chromatography (hexane-ethyl acetate = 30:1) to give 

1h as a slightly yellow solid. Yield: 67.7% (1.30 g). Rf: 0.40 (hexane-ethyl acetate = 20:1). IR (KBr): 

3700–3100 (OH), 3000–2800 (CH), 1690 (C=O), 1254 (SiC-H), 848 (Si-CH) cm−1. 1H-NMR (270 MHz, 

CDCl3, ppm) δ: 12.5 (s, 1H, PhOH), 7.97 [s, 1H, HPh(C=O)C], 7.63 [d, 1H, Ph-≡-PhH-O(C=O)], 7.56 

(d, 2H, PhOCH2PhH), 7.51 (s, 2H, Br-PhH), 7.39 (d, 2H, PhOCH2-PhH≡Ph), 6.99 (d, 1H, HO-PhH), 

4.89 (s, 2H, PhOCH2Ph), 4.68 [s, 4H, 2(PhCH2OSi)], 3.02 [t, 2H, Ph(C=O)CH2CH2], 1.77 (m, 2H, 

CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone group], 0.92 [s, 18H, 2(Si(CH3)2C(CH3)3)], 0.92  

(t, 3H, CH2CH3), 0.09 [s, 12H, 2(Si(CH3)2C(CH3)3)]. 



Molecules 2012, 17 446 

 

 

3.1.9. Synthesis of 1,3-Bis(tert-butyldimethylsilyloxymethyl)-2-{4'-[4''-hydroxy-3''-(1-oxododecyl)phenyl-

ethynyl]benzyloxy}-5-(trimethylsilylethynyl)benzene (1i) 

Trimethylsilylacetylene (0.342 mL, 4.60 mmol) was added with a syringe to a mixture of 1h (1.30 g, 

1.53 mmol), triphenylphosphine (32.1 mg, 0.122 mmol), copper iodide (35.0 mg, 0.184 mmol) and 

bis(triphenylphosphine)palladium (II) chloride (21.5 mg, 30.6 μmol) in triethylamine (10.2 mL). The 

mixture was stirred at 60 °C for 2 days. The formed salt was removed by filtration and the solution was 

concentrated. After addition of ethyl acetate (100 mL), the resulting solution was washed with brine. 

The organic layer was dried with anhydrous magnesium sulfate. After filtration, the solvent was 

evaporated and the crude product was purified by silica-gel column chromatography (hexane-ethyl 

acetate = 30:1) to give 1i as a slightly viscous liquid. Yield: 68.1% (1.68 g). Rf: 0.39 (hexane-ethyl 

acetate = 20:1). IR (KBr): 3700–3000 (OH), 3000–2800 (CH), 1690 (C=O), 1254 (SiC-H), 848 (Si-CH) 

cm−1. 1H-NMR (270 MHz, CDCl3, ppm) δ: 12.5 (s, 1H, PhOH), 7.97 [s, 1H, HPh(C=O)C], 7.64 [d, 
1H, Ph-≡-PhH-O(C=O)], 7.57 (d, 2H, PhOCH2PhH), 7.51 (s, 2H, Si-≡-PhH), 7.37 (d, 2H, PhOCH2-

PhH≡Ph), 6.99 (d, 1H, HO-PhH), 4.94 (s, 2H, PhOCH2Ph), 4.68 [s, 4H, 2(PhCH2OSi)], 3.02 [t, 2H, 

Ph(C=O)CH2CH2], 1.77 (m, 2H, CH2CH2CH2), 1.27 [m, 16H, (CH2)8 in dodecanone group], 0.92 [s, 18H, 

2(Si(CH3)2C(CH3)3)], 0.90 (t, 3H, CH2CH3), 0.25 [s, 9H, ≡-Si(CH3)3], 0.08 [s, 12H, 2(Si(CH3)2C(CH3)3)]. 

3.1.10. Synthesis of 1,3-Bis(tert-butyldimethylsilyloxymethyl)-2-{4'-[4''-( L-menthoxycarbonyloxy)-

3''-(1-oxododecyl)phenylethynyl]benzyloxy}-5-(trimethylsilylethynyl)benzene (1j) 

Triethylamine (41.8 μL, 0.300 mmol) was added to a solution of 1i (1.68 g, 1.94 mmol) in THF at 

room temperature. (−)-menthyl chloroformate (52.6 μL, 0.248 mmol) was added to the solution at 

room temperature and the solution was stirred for 6 h. After addition of ethyl acetate, the solution was 

washed with brine and dried with anhydrous sodium sulfate. After filtration, the solvent was 

evaporated and the crude product was purified by silica-gel column chromatography (hexane-ethyl 

acetate = 35:1) to give 1j as a slightly yellow viscous liquid. Yield: 60.3% (1.23 g). Rf: 0.37 

(hexane:ethyl acetate = 50:1). IR (KBr): 3000–2800 (CH), 1758 (O(C=O)O), 1690 (C=O), 1256 (SiC-H), 
847 (Si-CH) cm−1. 1H-NMR (270 MHz, CDCl3, ppm) δ: 7.90 [s, 1H, HPh(C=O)C], 7.65 [d, 1H, Ph-≡

-PhH-O(C=O)], 7.55 (d, 2H, PhOCH2PhH), 7.49 (s, 2H, Si-≡-PhH), 7.39 (d, 2H, PhOCH2-PhH-≡Ph), 

7.21 [d, 1H, HPhO(C=O)O], 4.89 (s, 2H, PhOCH2Ph), 4.68 [s, 4H, 2(PhCH2OSi)], 4.60–4.50 [m, 1H, 

PhO(C=O)OCH, in menthoxy group], 2.90 [t, 2H, Ph(C=O)CH2CH2], 2.22–2.05 (m, 2H, methylene, 

methine in menthoxy group), 1.69 (m, 4H, CH2CH2CH2 in dodecanone group and methylene, methine 

in menthoxy group), 1.51 (m, 2H, methylene in menthoxy group), 1.26 (m, 16H, (CH2)8 in dodecanone 

group), 1.20–1.02 (m, 3H, methylene, methine in menthoxy group), 0.95 [m, 6H, 2(CH3CH) in 

menthoxy group], 0.92 [s, 18H, 2(Si(CH3)2C(CH3)3)], 0.87 (m, 6H, CH2CH3 in dodecanone and 

CH3CH in menthoxy group), 0.26 [s, 9H, ≡-Si(CH3)3], 0.08 [s, 12H, 2(Si(CH3)2C(CH3)3)]. 

3.1.11. Synthesis of 3,5-Bis(hydroxymethyl)-4-{4'-[4''-(L-menthoxycarbonyloxy)-3''-(1-oxododecyl)-

phenylethynyl]benzyloxy}phenylacetylene (1) 

A mixture of tetrabutylammonium fluoride (1 M in THF) (0.20 mL, 0.20 mmol) and acetic acid 

(0.20 mL) (=1/1 (v/v)) was added to a solution of 1j (152 mg, 0.145 mmol) in THF (0.51 mL). The 
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solution was stirred at room temperature for 12 h. After addition of ethyl acetate, the solution was 

washed with brine and dried with anhydrous sodium sulfate. After filtration, the solvent was 

evaporated and the crude product was purified by silica-gel column chromatography (hexane-ethyl 

acetate = 3:1) to give 1 as a white solid. Yield: 21.8% (49.1 mg). Rf: 0.16 (hexane-ethyl acetate = 3:1). 

IR (KBr): 3400–3000 (-OH), 3296 (≡C-H), 2954–2854 (C-H), 1759 [O(C=O)O], 1692 (C=O). [α]D
20 

−18.39 °(c 0.500, THF). 1H-NMR (270 MHz, CDCl3, ppm) δ: 7.90 [s, 1H, HPh(C=O)C], 7.64 [d, 1H, 

Ph-≡-PhH-O(C=O)], 7.56 (d, 2H, PhOCH2PhH), 7.52 (s, 2H, ≡-PhH), 7.41 (d, 2H, PhOCH2-PhH-≡-Ph), 

7.20 [d, 1H, HPhO(C=O)O], 4.97 (s, 2H, PhOCH2Ph), 4.66 [s, 4H, 2(PhCH2OH)], 4.59–4.46 [m, 1H, 

PhO(C=O)OCH in menthoxy group], 3.06 (s, 1H, HC≡C), 2.90 [t, 2H, Ph(C=O)CH2CH2], 2.21–1.80 (m, 

2H, methylene, methine, in menthoxy group), 1.70 (m, 4H, CH2CH2CH2 in dodecanone group and 

methylene, methine in menthoxy group), 1.51 (m, 2H, methylene in menthoxy group), 1.26 [m, 16H, 

(CH2)8 in dodecanone group], 1.19–1.02 (m, 3H, methylene, methine in menthoxy group), 0.94 [br, 6H, 

2(CH3CH) in menthoxy group], 0.87 (m, 6H, CH2CH3 in dodecanone and CH3CH in menthoxy group). 
13C-NMR (CDCl3, ppm) δ:199.5 (C=O), 154.9 (Ph), 152.5 (Ph), 148.7 (C=O), 136.9 (Ph), 135.5 (Ph), 

134.5 (Ph), 132.8 (Ph), 132.6 (Ph), 131.9 (Ph), 131.4 (Ph), 127.9 (Ph), 123.5 (Ph), 122.8 (Ph), 121.3 

(Ph), 118.6 (Ph), 90.0 (C≡C), 88.2 (C≡C), 83.0 (C≡C), 80.2 (C≡C), 77.2 (CH2OPh), 76.5 [O-CH(C-) 

(C-)], 60.5 (-C-OH), 34.1, 29.7, 29.5, 29.6, 29.4, 29.3, 26.2, 22.8, 14.2 (dodecanone group), 47.0, 40.6, 

34.1, 32.0, 26.2, 23.4, 22.0, 20.8, 16.4 (menthoxy group). Anal. Calcd for C48H60O7: C, 76.97; H, 8.07. 

Found. C, 76.87; H, 7.92. 

3.2. Asymmetric-Induced Polymerization (AIP) and Polymer Reaction in Membrane State (RIM)  

(see Schemes 1 and 2) 

3.2.1. Asymmetric-Induced Polymerization (AIP) of 1 

A solution of triethylamine (34.5 μL, 0.248 mmol) and [Rh(nbd)Cl]2 (0.572 mg, 1.24 μmol) in 

toluene (0.263 mL) was added with a syringe to a solution of 1 (92.9 mg, 0.124 mmol) in toluene 

(0.265 mL). After the solution was stirred at room temperature for 6 h, the solution was diluted with 

toluene (30 mL). The solution was poured into a large amount of methanol to precipitate a red solid, 

which was filtered out and dried in vacuo. poly(1): Yield 98.6% (91.6 mg). [α]D
20 −176° (c 0.100, 

THF). IR (film): 3750–3100 (-OH), 2954–2854 (C-H), 1761 [O(C=O)O], 1696 (C=O). 1H-NMR (270 MHz, 

CDCl3, ppm) δ: 7.80–7.11 (br, 9H, PhH), 5.91 (br, 0.7H, CH2=CH), 4.83 (br, 2H, PhOCH2Ph), 4.55 

[br, 5H, 2 (PhCH2OH) and PhO(C=O)OCH in menthoxy group], 2.82 [br, 2H, Ph(C=O)CH2CH2], 2.13 

(br, 2H, methylene, methine in menthoxy group), 1.72 (br, 2H, CH2CH2CH2), 1.62 (br, 2H, methylene, 

methine in menthoxy group), 1.48 (br, 2H, methylene in menthoxy group), 1.25 [br, 16H, (CH2)8 in 

dodecanone group], 1.20–1.00 (br, 3H, methylene, methine in menthoxy group), 0.94 [br, 6H, 2(CH3CH) 

in menthoxy group], 0.87 (br, 6H, CH2CH3, in dodecanone group and CH3CH in menthoxy group). 

3.2.2. Synthesis of Poly(de-1) by Desubstitution of the Chiral Groups from Poly(1) in Membrane State 

(RIM) 

A solution of poly(1) in chloroform ((1.5 ml, 30 mg/mL) was cast on a poly(tetrafluoroethylene) 

sheet (40 cm2), and the solvent was evaporated for 24 h at room temperature. The resulting  



Molecules 2012, 17 448 

 

 

free-standing membrane was detached from the sheet and dried in vacuo for 24 h. The membrane was 

immersed in a solution of potassium hydroxide in THF/methanol (volume ratio 1/3) to desubstitute 

the chiral groups at room temperature for 36 h. After the reaction, the membrane was washed with 

methanol and then to neutralize it was immersed in a mixture of methanol/acetic acid (volume ratio 

4/1) at room temperature for 1 h. The membrane was immersed in methanol at room temperature 

overnight to remove the chiral groups remained. After washing the membrane with methanol, the 

membrane was dried in vacuo overnight. poly(de-1): The weight loss (%), calcd: 24.28, found: 24.21. 

IR (film): 3750–3100 (-OH), 2925–2855 (C-H), 1693 (C=O). 

3.3.3. Synthesis of Poly(re-1) by Resubstitution of the Achiral Groups to poly(de-1) in Membrane 

State (RIM) 

The membrane of poly(de-1) was immersed in lauroyl chloride at 60 °C for 30 min. After the 

reaction, the membrane was washed with water, methanol and then hexane. The membrane was 

immersed in methanol for 6 h to remove the chiral groups remained. After immersing the membrane in 

hexane overnight, the resulting membrane was dried in vacuo for 24 h. poly(re-1): Yield 91.4%. [α]D
20 

117° (c 0.100, THF). IR (film): 3750–3100 (-OH), 2926–2857 (C-H), 1752 [O(C=O)], 1694 (C=O). 
1H-NMR (270 MHz, CDCl3, ppm) δ:7.80–6.73 (br, 9H, PhH), 5.83 (br, 0.6H, CH2=CH), 4.87 [br, 6H, 

2(PhCH2OH) and PhOCH2Ph,)], 2.85 [br, 2H, Ph(C=O)CH2CH2], 2.34 [br, 2H, PhO(C=O)CH2CH2], 

1.68 [br, 4H, 2(CH2CH2CH2) in dodecanone groups], 1.24–1.13 [br, 32H, 2(CH2)8 in dodecanone 

groups], 0.87 [br, 3H, Ph(C=O)(CH2)10CH3], 0.81 [br, 3H, PhO(C=O)(CH2)10 CH3]. 

3.3.4. Synthesis of Poly(de-2) by Removing the Chiral Groups from Poly(2) in Membrane State (RIM) 

(Scheme 3) 

According to a procedure similar to that in 3.2.1 and 3.2.2, poly(2) and its membrane were prepared. 

The membrane was immersed in methanol/2N hydrochloric acid (volume ratio 1/1) at 0 °C for 3 days. 

It was neutralized in 28 wt% aqueous ammonia for 12 h, washed with methanol, and dried in vacuo for 24 

h. poly(de-2): The weight loss (%), calcd: 29.69, found: 29.58. IR (film): 3750–3100 (-OH), 2950–

2855 (C-H). 

4. Conclusions 

A soluble and stable one-handed helical poly(substituted phenylacetylene) without the coexistence 

of any other chiral moieties was successfully synthesized by AIP of a chiral monomer having a chiral 

group, followed by two-step RIMs of the resulting polymer: removing the chiral groups 

(desubstitution), and introduction of achiral long alkyl groups at the same position to enhance the 

solubility of the resulting one-handed helical polymer (resubstitution). There were two possible 

reasons for the success: (1) the one-handed helical main chain was maintained because the two 

polymer reactions were carried out in membrane state; and (2) the polymer’s solubilities were 

maintained by introduction of the two suitable hydrophobic groups to proper positions in the starting 

monomer. The one-handed helical main chain was kept due to stabilization by intramolecular 
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hydrogen bonds. Moreover, the difference in g values between the starting and the final polymer  

was small. 
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