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Abstract: Gekko swinhonis Guenther has been used as an anti-cancer drug in traditional 
Chinese medicine for hundreds of years. Previous studies showed that the Gekko sulfated 
polysaccharide-protein complex suppressed the proliferation and migration of hepatoma cells. 
Gekko sulfated glycopeptide α was obtained from Gekko sulfated polysaccharide-protein 
complex using papain hydrolysis. Gekko sulfated glycopeptide α inhibited the proliferation 
and migration of SMMC-7721 cells. The secretion of IL-8 and the concentration of 
intracellular calcium were decreased after Gekko sulfated glycopeptide α exposure. 
SMMC-7721 cells in the control group showed abnormal features, with a polygonal shape, 
whereas this changed to a spindle shape after the treatment with Gekko sulfated 
glycopeptide α. Actin filaments were distributed diffusely along the cell membrane in 
control cells, whereas those were polymerized and preferentially accumulated in the 
cytoplasm of treated cells. Microtubules distributed in the cytoplasm of untreated cells 
were located diffusely whereas those in treated cells were polymerized. Therefore, Gekko 
sulfated glycopeptide α inhibit the migration of hepatoma cells via reducing the secretion 
of IL-8 and the concentration of intracellular calcium, as well as regulating the 
reorganization of cytoskeleton. 
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1. Introduction 

A malignant tumor is a disease in which many characteristics of normal cell biological behavior are 
lost or destroyed. Excessive proliferation and inappropriate migration are the primary cause of death of 
cancer patients [1], so the development of oncotherapeutic drugs that prevent tumour proliferation and 
migration is urgently needed. Recent research has shown that sulfated polysaccharides and/or 
glycoproteins could inhibit the proliferation and metastasis of tumor cells [2-5]. Some glycopeptides 
obtained from glycoproteins by the digestion of trypsin and papain were demonstrated to have similar 
inhibitory effects on hepatocellular carcinoma (HCC) migration as the corresponding glycoproteins [6]. 

The whole body of Gekko swinhonis Guenther, commonly known as Gecko, has been used as an 
anti-cancer drug in traditional Chinese medicine for hundreds of years. The gecko is an animal of the 
genus Gekko, family of Gekkonidae, which is widely spread throughout the north and central regions 
of China. We extracted a sulfated polysaccharide-protein complex from Gekko swinhonis Guenther, 
which was named Gekko sulfated polysaccharide-protein complex (GSPP). Further research showed 
that it had strong effect on HCC cell migration via calcium-mediated regulation of the actin filaments 
reorganization, whereas no significant effect on the secretion of interleukin-8 (IL-8). The trypan  
blue exclusion assay showed that GSPP at 200 µg/mL and 100 µg/mL can inhibit the proliferation of 
SMMC-7721 cells [7,8]. 

Sulfated polysaccharides can show improved anti-tumor activity [9], therefore we obtained a new 
sulfated glycopeptide named GSPP α using papain hydrolysis, which had lower molecular weight 
(MW) and more sulfate content than GSPP. This research focuses on whether GSPP α has better 
anti-cancer activity than GSPP after the structural modification and its underlying mechanism of action. 

2. Results and Discussion 

2.1. Homogeneity Analysis 

GSPP α was obtained from GSPP using papain hydrolysis. There was a single and symmetrically 
sharp peak at 7.98 min in high performance liquid chromatography (HPLC) profile, which suggested 
that GSPP α was homogeneous (Figure 1). In the HPLC profiles, GSPP showed a peak at 5.88 min, 
which indicated that the MW of GSPP α was smaller than that of GSPP after the digestion with papain [7]. 
The MW of GSPP α was estimated to be over 2,000 kDa as judged from the calibration curve prepared 
from standard dextrans. The optical rotation [α]D

20 of GSPP was −120° while the optical rotation [α]D
20 

of GSPP α was −60°. 
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Figure 1. HPLC profile for Gekko sulfated glycopeptides. There was a single and 
symmetrically sharp peak at 7.98 min in the HPLC profile. 

 

2.2. Fourier Transform Infrared Spectrum (FTIR) Analysis 

The FTIR spectrum of GSPP α showed a major peak at 3,421.4 cm−1, weak bands at 2,929.5, 
1,409.8, 1,256.7 and 859.2 cm−1, and a strong band at 1,601.8 cm−1. The peak at 3,421.4 cm−1 was 
characteristic of the O–H stretching vibration due to the hydroxyl group, while the bands at 2,929.5 and 
1,409.8 cm−1 were characteristic of the stretching vibration and bending vibration of the C–H of the 
methyl group. The band at 1,601.8 cm−1 was due to the N–H bending vibration of the amido group, 
which indicated the presence of glucosamine. The bands at 1,256.7 and 859.2 cm−1 were ascribed to the 
stretching vibration of the S–O and C–O–S of sulfate group (Figure 2). Spectrophotometry showed that 
the sulfate content of GSPP α was 14.7%, whereas GSPP contained around 8.65% sulfate groups [7]. 

Figure 2. FTIR of Gekko sulfated glycopeptides. FTIR spectra showed that Gekko sulfated 
glycopeptides mainly contained four types of groups, namely hydroxyl group, methyl 
group, amido group and sulfate group. 
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2.3. Amino Acid Composition and Glycopeptide Linkage Analysis 

Amino acid analysis indicated that GSPP α contained 16 types of amino acids. A solution of the 
GSPP α treated with NaOH had a more dramatical absorption at 240 nm than the non-treated purified 
compound (data not shown). The content of threonine decreased from 7.12 to 3.64 µg per mg, while that of 
aminobutyric acid increased from 0 to 1.16 µg per mg. Thus, GSPP α comprised O-glycopeptide linkages. 

2.4. Effects of GSPP α on the Proliferation and Cell Cycle Distribution of SMMC-7721 Cells 

Trypan blue exclusion assay and flow cytometry assay showed that GSPP α can more effectively 
inhibit the proliferation of SMMC-7721 cells and block cells in the S phase than GSPP. GSPP α at 
each concentration (10 μg/mL, 100 μg/mL and 200 μg/mL) was capable of inhibiting the proliferation 
of SMMC-7721 cells. Even at a concentration of 10 μg/mL, GSPP α inhibited the proliferation of 
SMMC-7721 cells strongly (P < 0.001, Figure 3A). However, GSPP only possessed an inhibitory 
effect at the concentrations of 100 μg/mL and 200 μg/mL. Ten μg/mL GSPP had no effect on the 
malignant proliferation of SMMC-7721 cells [7]. Besides, the percentage of S-phase cells in the group 
treated with 100 µg/mL and 200 µg/mL GSPP α was much higher than that of the control group  
(P = 0.001, P = 0.013, data not shown). However, GSPP α had no effect on the survival of 
SMMC-7721 cells (Figure 3B). 

Figure 3. Effects of Gekko sulfated glycopeptides on proliferation and survival of 
SMMC-7721 cells. After exposure to Gekko sulfated glycopeptides, SMMC-7721 cells 
were collected at 30 min, then 24, 48, 72, 96, 120 and 144 h. The total cell and viable cell 
counts were determined by using a trypan blue exclusion assay. The growth curves of cells 
(A) and percentage of survival (B) were plotted. Raw data for the survival were expressed 
as the percentage of survival. The values represent means ± SD. GSPP α: Gekko sulfated 
glycopeptides. 
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2.5. Effects of GSPP α on the Migration of SMMC-7721 Cells 

We investigated the effect of GSPP α on cell migration via wound-healing assay. GSPP α down 
regulated SMMC-7721 cell migration in a dose-dependent manner, as compared to the control cells 
(Figure 4). To further confirm the inhibitory effect of GSPP α on cell migration, a transwell assay was 
performed. GSPP α dramatically inhibited cell migration, compared with the untreated controls  
(P < 0.001). Even at 10 µg/mL, the inhibitory effect was obvious (Figure 5). Some glycopeptides 
obtained from glycoproteins by the digestion of trypsin and papain were demonstrated to have similar 
inhibitory effect on HCC migration as the corresponding glycoproteins [6]. Wound-healing assay and 
transwell assay indicated that GSPP α had a more significant effect than GSPP on inhibiting the 
migration of SMMC-7721 cells. 

Figure 4. Wound-healing assay of Gekko sulfated glycopeptides on SMMC-7721 cells. 
Phase-contrast microscope was used to observe the linear wound of the cells (100×). 
Indicated times (0, 24 h) depict the duration after scratching of the monolayer. (A) Control 
group; (B) 10 µg/mL Gekko sulfated glycopeptides; (C) 100 µg/mL Gekko sulfated 
glycopeptides and (D) 200 µg/mL Gekko sulfated glycopeptides. 

 

2. 6. Effects of GSPP α on The IL-8 Secretion from SMMC-7721 Cells 

IL-8 has the capacity to lead to the tumor migration via regulating the concentration of intracellular 
calcium and the reorganization of cytoskeleton [6,10,11]. GSPP at any concentration was not effectively 
against the secretion of IL-8 from SMMC-7721 cells. However, GSPP α at the concentrations of 200 
and 100 µg/mL are capable of downregulating the IL-8 secretion from SMMC-7721 cells compared 
with the control cells (P = 0.006) (Figure 6). 
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Figure 5. Transwell assay of Gekko sulfated glycopeptides on SMMC-7721 cells. After 
staining with crystal violet, cells that had penetrated through the chamber were counted 
using a light microscope. Each bar showed the number of cells that had penetrated through 
the chamber (P < 0.001). The values represent means ± SD. ● versus control group, P = 0.001; 
▽ versus 100 µg/mL GSPP α, P = 0.01; ▲ versus 200 µg/mL GSPP α, P < 0.001;  

★ versus control group, P < 0.001; □ versus 200 µg/mL GSPP α, P = 0.001; ◇ versus 
control group, P < 0.001. GSPP α: Gekko sulfated glycopeptides. 

 

Figure 6. Effect of Gekko sulfated glycopeptides on IL-8 secretion. The values represent 
means ± SD. P = 0.006. ★ versus control group, P = 0.005; ◇ versus control group,  
P = 0.001; ■ versus 10 µg/mL GSPP α, P = 0.032. GSPP α: Gekko sulfated glycopeptide.  

 

2.7. Effects of GSPP α on the Intracellular Calcium in SMMC-7721 Cells 

Many recent studies have shown that tumor cell migration is often downregulated by decreasing 
intracellular calcium concentrations, concomitant with cytoskeleton reorganization [12,13]. Calcium 
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can regulate the polymerization and reorganization of cytoskeleton via regulating the function of 
cytoskeleton binding proteins [14]. As shown in Figure 7, treatment with GSPP α resulted in a significant 
decrease of intracellular calcium content in SMMC-7721 cells in dose-dependent manner (P < 0.001). 

Figure 7. Effect of Gekko sulfated glycopeptides on the intracellular calcium concentration 
in SMMC-7721 cells. Cells were incubated with the Fluo-3 AMester and analyzed by flow 
cytometry. The values represent means ± SD. ★ versus control group, P = 0.011;  
◇ versus control group, P = 0.003; ● versus 200 µg/mL GSPP α, P = 0.002; □ versus 
control group, P < 0.001; ▲ versus 10 µg/mL GSPP α, P = 0.001; ▽ versus 100 µg/mL 
GSPP α, P = 0.002. GSPP α: Gekko sulfated glycopeptides. 

 

2.8. Effects of GSPP α on the Cytoskeleton in SMMC-7721 Cells 

The cytoskeleton provides the basic infrastructure for the maintenance of cell motility. It is known 
that there are three types of cytoskeletal proteins: Microtubules, intermediate filaments, and actin 
filaments [13]. Tumor cell migration depends mainly on the polymerization and reorganization of actin 
filaments and microtubules. The protrusive lamellipodias at the cell front are formed via actin 
polymerization, followed by the occurance of the retractable tail at the cell rear via microtubules 
reorganization [15]. Through generating both pushing and contractile forces, actin filaments and 
microtubules are capable of promoting cell motility [1]. 

To determine whether GSPP α has an effect on the cytoskeleton in SMMC-7721 cells, we studied 
the localization and configuration of actin filaments and microtubules. SMMC-7721 cells in control 
group showed abnormal feature with a polygonal shape. Modifications of cell shape were induced by 
GSPP α. SMMC-7721 cells changed to a spindle shape after the treatment with GSPP α. As shown in 
Figure 8, actin filaments in control cells were distributed diffusely along the cell membrane, whereas 
those in treated cells were polymerized and preferentially accumulated in the cytoplasm. Besides, 
microtubules in both untreated cells and treated cells were distributed in the cytoplasm. However, 
microtubules in untreated cells were diffused where as those in treated cells were polymerized (Figure 9). 
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Figure 8. Effect of Gekko sulfated glycopeptides on actin filament. Cells were incubated 
with the phalloidin rhodamine and photographed under oil microscope (600×).  
(A) Sectional images (on the left); (B) 3-dimensional images (on the right). (a) Control 
group; (b) 10 µg/mL Gekko sulfated glycopeptides; (c) 100 µg/mL Gekko sulfated 
glycopeptides and (d) 200 µg/mL Gekko sulfated glycopeptides.  

 

Figure 9. Effect of Gekko sulfated glycopeptides on the microtubules of SMMC-7721  
cells. Cells were first incubated with antibody against microtubules and then 
fluorescence-conjugated secondary antibody against the first antibody, followed by 
staining with 4’,6-diamidino-2-phenylindole and photography. Then the cells were 
photographed under oil microscope (600×). (A) Sectional images (on the left); (B) 
3-dimensional images (on the right). (a) Control group; (b) 10 µg/mL Gekko sulfated 
glycopeptides; (c) 100 µg/mL Gekko sulfated glycopeptides and (d) 200 µg/mL Gekko 
sulfated glycopeptides. 
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3. Experimental 

3.1. Cell Culture and Reagents 

The cellulose dialysis bag (MWCO 3500Da) was purchased from Union Carbide (USA). Standard 
dextrans (T10, T40, T70, T110, T500 and T2000) were purchased from Amersham Pharmacia 
(Sweden). Human HCC cell line SMMC-7721 was obtained from the Shanghai Institute of Cell 
Resource Center, Chinese Academy of Life Science. It was certified by associate professor Xiong-Zhi 
Wu from Tianjin Medical University Cancer Institute and Hospital to ensure that they were free of 
contamination and the designated type. Cells were maintained in DMEM medium (Gibco, USA) 
supplemented with 10% fetal bovine serum (Sigma, USA), 50 U/mL penicillin and 50 mg/mL 
streptomycin. Then the cells were cultured with 95% humidity and 5% CO2 at 37 °C. SMMC-7721 
cells were seeded in 12-well plates at 0.5 × 104/mL. Then the plates were incubated for 24 h in a cell 
incubator before being exposed to GSPP α (10, 100 and 200 µg/mL, respectively). For the control 
group, an equal volume of DMEM was added into the medium. A IL-8 enzyme-linked immunosorbent 
assay kit was purchased from R&D systems (USA). Fluo-3 AM ester was purchased from Invitrogen 
(USA) and phalloidin rhodamine was purchased from Molecular Probes (Carlsbad, CA). Antibody for 
microtubules staining were purchased from Boster (China). Secondary antibody was fluorescein 
isothiocyanate anti mouse-IgG (Boster, China). CXCL12 was purchased from ProSpec-Tany 
TechnoGene Ltd (Israel). Transwell chambers were purchased from Corning (USA). 

3.2. Preparation of GSPP α 

GSPP was isolated from the dried whole body of Gekko swinhonis Guenther by water extraction 
and ethanol precipitation, followed by removal of free protein and dialysis [7]. Then the new 
compound GSPP α was obtained from GSPP using protease hydrolysis [6,16]. Briefly, GSPP (10 g) 
was dissolved in phosphate buffer solution (1000 mL, pH 6.5, 0.1 mol/L), which contained 100 mg 
papain, 0.5 mol/L sodium chloride, 10 mmol/L-cysteine and 10 mmol/L-edathamil disodium. The 
reaction mixture was incubated in a water bath at 65 °C for 12 h, followed by the supplement with  
50 mg papain at 65 °C for an additional 12 h. Then the reaction mixture was concentrated and ethanol 
precipitated, followed by the removal of free protein via the Sevage method [17]. Then the solution 
was dialyzed against distilled water for 24 h to remove those materials with molecular weight less than 
3,500 Da. The material inside the dialysis bag was filtered and dried to obtain GSPP α. 

3.3. HPLC Analysis 

The GSPP α solution was injected on an Agilent 1,100 series apparatus, equipped with a Shodex 
KS-805 column (Shoko, Japan), eluted at 1 mL/min flow rate with distilled water at 35 °C. To test the 
MW of GSPP α, T-series dextrans were passed successively through the calibrated column, and their 
retention times were plotted according to the logarithm of their respective MWs. The MW of the GSPP 
α was estimated via plotting its retention time in the same graph [18]. 
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3.4. General Analysis of GSPP α 

Uronic acid content was determined according to the Blumenkrantz and Asboe-Hansen method, 
using galacturonic acid as the standard [19]. Sulfate group content was measured by spectrophotometry 
as described by Dodgson and Price [20]. Besides, amino acid composition was determined using an 
amino acid analyzer (HITACHI 835, Japan). The optical rotation of GSPP α was determined on a 
Perkin-Elmer 243B polarimeter. The infrared spectrum was recorded with dried sample using a FTIR 
spectrophotometer (NEXUS-470, USA). 

3.5. β-Elimination Reaction 

GSPP α was dissolved in a solution containing 0.3 mol/L NaOH, 1 mol/L NaBH4. The solution  
was incubated at 45 °C for 24 h, followed by supplementation with 25% acetic acid. Both solutions 
before and after the treatment with NaOH were scanned from 200 nm to 400 nm by UV-Vis 
spectrophotometer (CARY 300 BIO, Varian) and then analyzed using the amino acid analyzer. 

3.6. Trypan Blue Exclusion Assay and Flow Cytometry Analysis 

After exposure to GSPP α, SMMC-7721 cells were collected at 30 min, then 24, 48, 72, 96, 120 and 
144 h. The total cell and viable cell counts were determined using a trypan blue exclusion assay. Then, 
the growth curve of SMMC-7721 cells was drawn. The percentage of cell survival was calculated as 
follows: percentage of survival (%) = (mean viable cell number / mean total cell number) × 100%. To 
confirm the further effect of GSPP α on cell cycle distribution, cells were stained with propidium 
iodide after treatment with GSPP α for 5 days. Then cell DNA was analyzed by flow cytometry  
(BD Biosciences, USA). To analyze intracellular calcium concentration, cells were incubated with the 
Fluo-3 AM ester (5 µmol/L) for 40 min at 37 °C. The intracellular calcium content was then measured 
using flow cytometry and expressed as mean fluorescence intensity. 

3.7. Wound-Healing Assay and Transwell Assay 

A pipette tip about 1 mm in width was used to scratch the monolayer cell culture after cell 
confluency. Then the DMEM medium containing GSPP α (0, 10, 100 and 200 µg/mL) and 10% FBS 
were added for cell growth. Phase-contrast microscope was used to observe the linear wound of the 
cells after 24 h. Migration assay using a Millipore chamber was performed as described by Yang [21]. 
Four days after exposure to GSPP α, cells were serum-starved for 24 h, trypsinized, and resuspended 
in serum-free DMEM medium. Around 1 × 105 cells were seeded into the upper chamber, with the 
lower chamber supplemented with the DMEM medium containing 10% FBS and 100 ng/mL CXCL12. 
Then the chamber was incubated for 48 h at 37 °C to allow the possible migration of cells. Membranes 
were stained with crystal violet according to manufacturer’s recommendation. Then the cells on the 
upper chamber were removed. The cells that had penetrated through the membrane were counted using 
a light microscope. 
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3.8. ELISA 

The secretion of IL-8 in cell supernatant was measured by using the enzyme-linked immunosorbent 
assay kit according to the manufacturer’s protocol. IL-8 concentration was estimated via extrapolation 
from the IL-8 standard curve. 

3.9. Confocal Microscopy 

Five days after the treatment with GSPP α, cells cultured on coverslips were fixed with 4% 
paraformaldehyde, followed by permeabilization with 0.1% Triton X-100. The cells were then labeled 
with phalloidin rhodamine in blocking buffer at 4 °C overnight. Besides, to determine the configuration 
of microtubules, cells were incubated with first antibody against microtubules at 4 °C overnight, and 
fluorescence-conjugated secondary antibody against first antibody at room temperature for 1 h, 
followed by staining with 4’,6-diamidino-2-phenylindole [22]. Immunostained cells were then 
examined using a confocal microscope (Leica TCS SP5 MP, Germany). 

3.10. Statistics and Data Analysis 

All experiments were repeated three times. Single-factor ANOVA and general linear model were 
performed to analyze data. Statistical calculations were performed by SPSS (Version: 13.0, Chicago, 
USA). P < 0.05 was considered statistically significant. All values were expressed as means ± SD. 

4. Conclusions 

In summary, a new compound was obtained from Gekko sulfated glycoprotein by the digestion with 
papain and chemically characterized as Gekko sulfated glycopeptide α (GSPP α). GSPP α had less 
MW and more sulfate content than GSPP. Further research demonstrated that GSPP α had more 
significant inhibitory effects on the proliferation and migration of SMMC-7721 cells than GSPP. 
Moreover, GSPP α could inhibit the migration of SMMC-7721 cells in a dose dependent manner by 
reducing the secretion of IL-8 and the concentration of intracellular calcium, as well as regulating the 
reorganization of cytoskeleton. 
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