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Abstract: A bulk polymerization method was used to easily and efficiently prepare  
homo-veratric acid (3,4-dimethoxyphenylacetic acid)-imprinted polymers from eight basic 
monomers: 2-vinylpyridine, 4-vinylpyridine, 1-vinylimidazole, N-allylaniline, N-allyl-
piperazine, allylurea, allylthiourea, and allylamine, in the presence of homoveratric acid as 
a template in N,N-dimethylformamide as a porogen. The imprinted polymer prepared from 
allylamine had the highest affinity to the template, showing an imprinting factor of 3.43, 
and allylamine polymers MIP8/NIP8 were selected for further studies. Their binding 
properties were analyzed using the Scatchard method. The results showed that the 
imprinted polymers have two classes of heterogeneous binding sites characterized by two 
pairs of Kd, Bmax values: Kd(1) = 0.060 μmol/mL, Bmax(1) = 0.093 μmol/mg for the higher 
affinity binding sites, and Kd(2) = 0.455 μmol/mL, Bmax(2) = 0.248 μmol/mg for the lower 
affinity binding sites. Non-imprinted polymer has only one class of binding site, with  
Kd = 0.417 μmol/mL and Bmax = 0.184 μmol/mg. A computational analysis of the energies 
of the prepolymerization complexes was in agreement with the experimental results. It 
showed that the selective binding interactions arose from cooperative three point 
interactions between the carboxylic acid and the two methoxy groups in the template and 
amino groups in the polymer cavities. Those results were confirmed by the recognition 
studies performed with the set of structurally related compounds. Allylamine polymer 
MIP8 had no affinity towards biogenic amines. The obtained imprinted polymer could be 
used for selective separation of homoveratric acid. 
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1. Introduction  

Organic network polymers, capable of recognizing small molecules, are produced by molecular 
imprinting techniques [1,2]. Molecularly imprinted polymers (MIPs) are synthesized from a functional 
monomer and a cross-linking agent in presence of a template molecule. The cavities formed in 
polymer matrix are complementary in both shape and chemical functionality to the target molecule. 
The bulk polymerization method is used for the easy and efficient preparation of MIPs [3]. Polymeric 
materials are applied in many areas such as organic synthesis and catalysis [4,5], drug discovery [6], 
combinatorial chemistry [7] and drug delivery [8]. One of the most important applications of MIPs are 
chromatographic techniques where they are used as stationary phases, for example in solid phase 
extraction (SPE) [9,10]. They have been used successfully for clean-up and enrichment of analytic 
samples containing drugs, their metabolites or biogenic molecules. The high degree of selectivity 
provided by MIPs confirms their utility for SPE [11-13]. 

Homoveratric acid (3,4-dimethoxyphenylacetic acid) was found to be main urinary metabolite of 
homoveratrylamine [2-(3,4-dimethoxyphenyl)ethylamine], a potential metabolite of dopamine with 
two methylated hydroxyl groups in the aromatic ring [14,15]. Homoveratrylamine and homoveratric 
acid are clinically important compounds, as both have attracted attention as potential neurotoxins 
involved in schizophrenia [16]. The role of both compounds in the pathogenesis of Parkinson’s disease 
is still being considered [17,18] and possible metabolism pathways investigated [19]. An increase in 
urinary excretion of homoveratric acid could be involved in the metabolism of endogenic compounds, 
and can indicate the progress of neurological diseases, or can be a result of transformation of exogenic 
compounds such as drugs [20]. Homoveratric acid has also been found also in plants [21]. 

Our group is engaged in searching for new selective materials for use in the separation and 
preconcentration of neurotransmitters and their metabolites [22,23]. Detailed studies of the 
homoveratric acid imprinted polymers are needed for further progress in search for new stationary 
phases which could be applicable to separate homoveratric acid and finally could help to explain some 
aspects of dopamine-dependent diseases.  

The rational design of MIPs is not an easy task, because of the number of experimental variables 
involved. In order to understand the mechanism of recognition in the polymer matrix, many groups 
have analyzed theoretically the energy of interactions in the prepolymerization complexes (between 
the template and the monomers) and used it successfully for discussion of MIPs affinity towards the 
analytes [24-26]. 

The aim of this paper was the synthesis of some homoveratric acid-imprinted polymers and their 
evaluation as selective separation materials. The theoretical analysis of intermolecular interactions in 
the corresponding prepolymerization complexes was utilized to rationalize the effect of the functional 
monomers on the affinity of the resulting polymers towards the template molecule. The non-covalent 
approach was applied to obtain the bulk polymers from different functional monomers. The polymer 
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with the highest imprinting factor was selected to further analysis. Next, the effects of cross-linkers on 
the recognition properties were analyzed. Scatchard analysis was employed to examine the binding 
properties. The morphology of the polymer’s’ surface was analyzed by scanning electron microscopy. 
Two sets of the non-competitive binding experiments were performed to estimate the selectivity of 
polymer toward structurally related and biologically active compounds. Finally, solid phase extraction 
was performed to estimate the ability of the imprinted material to separate homoveratric acid.  

2. Results and Discussion  

2.1. Affinity of Imprinted Polymers Towards Homoveratric Acid 

2.1.1. Imprinting Factors  
 

The polymers were prepared from eight functional monomers: 2-vinylpyridine (1), 4-vinylpyridine 
(2), 1-vinylimidazole (3), N-allylaniline (4), N-allylpiperazine (5), allylurea (6), allylthiourea (7), and 
allylamine (8) in the presence of homoveratric acid acting as the template. The polymerizations were 
carried out in N,N-dimethylformamide (DMF) as the porogen and in the presence of ethylene glycol 
dimethacrylate (EGDMA) as the cross-linker. 

Table 1. Binding capacities of MIP1–MIP8 and NIP1–NIP8 together with calculated 
imprinting factors. 

Polymer No. 
Amount of Homoveratric Acid Bound to Polymer ± S.D. 

[μmol/g] Imprinting 
Factor MIP NIP 

1 0.61 ± 0.02 0.78 ± 0.02 0.78 
2 2.23 ± 0.13 2.64 ± 0.12 0.84 
3 5.03 ± 0.32 5.55 ± 0.46 0.91 
4 0.49 ± 0.01 0.22 ± 0.01 2.23 
5 7.25 ± 0.84 8.13 ± 0.89 0.89 
6 0.98 ± 0.03 0.82 ± 0.03 1.20 
7 3.84 ± 0.02 3.92 ± 0.18 0.98 
8 3.46 ± 0.20 1.01 ± 0.06 3.43 

 
Stationary binding experiments (see Experimental) were used for determination of binding 

properties of the obtained polymer particles MIP1–MIP8 and NIP1–NIP8. The binding capacities (B, 
μmol/g) of the MIPs and NIPs for a 24 μmol/L standard solution of homoveratric acid were calculated 
according to Equation (1): 

 

 
(1)

where V represents the volume of standard solution (mL), Ci represents the initial solution 
concentration (mmol/L), Cf represents the solution concentration after adsorption (mmol/L) and M is 
the mass of polymer particles [27]. 
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The binding capacities of MIP1–MIP8 were compared to those of NIP1–NIP8 by calculation of 
the imprinting factors (IF) according to Equation (2): 

NIP

MIP

Β
BIF  

=  (2) 

Both quantities are presented in Table 1. As it can be seen, the four polymers with the highest 
capacities (MIP2, MIP3, MIP5, and MIP7) have no selectivity and their imprinting factors are below 
1. The polymer MIP1 shows both low capacity and lack of selectivity. Only three polymers (MIP4, 
MIP6, and MIP8) show selectivity towards homoveratric acid and among those, MIP8 is a most 
promising one, since it is the only polymer which has both a very high imprinting factor and sufficient 
binding capacity (see Table 1). In order to rationalize those results on a molecular level, we performed 
theoretical calculations of the structures and the energies of the prepolymerization complexes.  
 
2.1.2. Molecular Modeling of Prepolymerization Complexes 
 

Generally, in the prediction of MIP properties it is assumed that the polymer which has the highest 
affinity towards a given template should have the highest interaction energy between template and the 
appropriate monomer in the theoretical prepolymerization complex computations [28,29]. This means 
that the solution prepolymerization structure should be preserved in the polymer matrix. In our 
discussion we considered two energy parameters: the enthalpies of formation of prepolymeric 
complexes (ΔHcomplex) and the energies of the complexation reaction (ΔE) calculated using  
Equation (3): 

ΔE = ΔHcomplex − ΔHhomoveratric acid − 4ΔHmonomer             (3) 

In the computational approach we have analyzed eight functional monomers 1–8. Details of the 
computational procedures are given in Experimental section. The theoretical computations showed that 
three monomers: 2-vinylpyridine (1), 4-vinylpyridine (2), and 1-vinylimidazole (3) form unstable 
complexes with positive enthalpies of formation (ΔHcomplex) in the 21 to 43 kcal/mol range. This 
observation suggests that the monomers 1–3 do not provide highly selective binding sites in the 
resulting polymer matrix, and would not be good candidates to form selective MIPs. Those findings 
are in good agreement with the experimental studies, which revealed imprinting factors below 1. The 
weakest complex of homoveratric acid with 1-vinylimidazole is presented in Figure 1. We can observe 
only one hydrogen bond between the N atom of the imidazole ring and H atom of the carboxylic acid 
group of homoveratric acid with a length of 1.8 Å. The remaining 1-vinylimidazole molecules do not 
interact with the template. Weak homoveratric acid complexes with N-allylaniline (4) and allylthiourea 
(7) are characterized by slightly negative values of the enthalpy of formation (on average −3.5 
kcal/mol) and high negative ΔE values (on average −22 kcal/mol). The theoretical results seem to 
indicate that both monomers should form the polymers with low capacity but with imprinting sites. 
These findings agreed with the analysis of the N-allylaniline polymer, but did not agree with the 
experimental results for allylthiourea polymer. Thorough examination of the prepolymerization 
complex structure formed by allylthiourea revealed only one intermolecular interaction with the 
template, and that could be the reason why a lack of the imprinting sites was noted.  The simulations 
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for the remaining monomers 5, 6 and 8 indicate that they form the most stable complexes with 
negative energies of formation (ΔHcomplex equal to −106, −276, −105 kcal/mol, respectively) and 
negative energy of complexation (ΔE equal to −16, −15, −19 kcal/mol, respectively). 

Figure 1. A view of the prepolymerization complex of homoveratric acid with 1-vinyl-
imidazole. The hydrogen bond is shown as a red line. 

 
 

N-Allylpiperazine (5), allylurea (6), and allylamine (8) should be good candidates for the imprinting 
procedure. Unfortunately, the experiments did not confirm those findings for the polymer prepared 
from N-allylpiperazine (see Table 1). In the prepolymerization complex formed by homoveratric acid 
and N-allylpiperazine only one NH group of N-allylpiperazine is involved in a hydrogen-bonding 
interaction with the carboxylic group of homoveratric acid, and the lack of selectivity of corresponding 
polymer towards homoveratric acid indicates that this single interaction is not sufficient to create 
selective sites in the polymer matrix (like in the case of allylthiourea). The allylurea-based polymer 
showed some imprinting effect, but the low capacity of this polymer eliminated it from consideration 
for analytical applications. 

 
Figure 2. A view of the prepolymerization complex of homoveratric acid with allylamine. 
Hydrogen bonds are shown as red lines. 
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The theoretical results showed that allylamine should be the only monomer which forms very stable 
complexes with many hydrogen-bonding interactions. The structure of the complex is shown in Figure 
2. Hydrogen bonds are formed between the carboxylic acid group of template and two allylamine 
molecules. The remaining two allylamine molecules are in the proximity of the two methoxy groups  
of homoveratric acid, and one of them forms a hydrogen bond with the O atom. The experiments 
showed that the allylamine based polymer has the highest imprinting factor, together with high  
binding capacity. 
 
2.2. Evaluation of Imprinting Polymers Using Dynamic Binding Procedure 
 

The dynamic binding method is very similar to the loading step in solid phase extraction and more 
exactly reflects the ability of imprinted materials to work as a stationary phase. First, we performed the 
dynamic binding procedure (see Experimental) for the polymers MIP8 and NIP8 prepared from 
allylamine. We carried out the experiments using a 24 μmol/L standard solution of homoveratric acid 
(the same as in the stationary procedure). The binding capacities (B, μmol/g) of  MIP and NIP were 
calculated according to Equation (4): 

∑
n

1=i
n]

)(
[=

M
C - CV

B
fi

     (4) 

where V represents the volume of portion (mL) in each loading step, n is the number of loading steps 
performed until no further adsorption on polymer was observed, Ci represents the initial solution 
concentration (mmol/L), Cf represents the solution concentration after adsorption (mmol/L) and M is 
the mass of polymer particles [23].  

The results revealed that the binding capacity of MIP8 increased from 3.46 ± 0.20 to  
14.93 ± 0.57 μmol/g, and this fact resulted in a corresponding decrease in selectivity (imprinting factor 
decreased from 3.43 to 2.45). The results suggest that the binding process involves a non-specific 
adsorption.  

Next, we employed the dynamic binding procedure to analyze the binding properties of  
MIP1–MIP8 and NIP1–NIP8 at a higher homoveratric acid concentration of 0.35 mmol/L. This 
concentration was selected because it let us compare data obtained with the experiment performed with 
the set of structurally related compounds, because some of those compounds demonstrated high LODs 
and LOQs (see Experimental). The imprinting factors (IF) were calculated according to Equation (2).  

The dynamic binding procedure using a 0.35 mmol/L standard solution of homoveratric acid 
allowed to increase the binding capacity of all MIPs and NIPs, but produced the disappearance of the 
imprinting effect (IFs were close to 1) for all polymers except MIP8. The binding capacity of MIP8 
was 95.89 ± 3.68 μmol/g and its IF was 1.44. The possible reason for such behavior in the imprinted 
materials was the increase of non-specific adsorption when the higher concentrations of standard 
solution were applied on the polymer. 

On the basis of those results, the polymer MIP8 prepared from allylamine, turned out to be the most 
promising material for separation of homoveratric acid, and it was selected for further optimization of 
synthetic and analytical procedures. 
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2.3. Effect of Cross-Linker 
 

In order to improve the properties of allylamine polymer, we investigated the effect of the  
cross-linker used in the polymerization. We synthesized two pairs of MIPs and NIPs from allylamine 
and two different cross-linkers: MIP8a (using triethylene glycol dimethacrylate, TGDMA) and MIP8b 
(with trimethylolpropane trimethacrylate, TRIM), and then carried out the stationary binding 
experiments using 24 µmol/L standard solution of homoveratric acid (see Experimental). The results of 
the analyses are presented in Table 2, together with the data for MIP8. 

Table 2. Binding capacities of MIP8, MIP8a,b and NIP8, NIP8a,b together with calculated 
imprinting factors. 

Polymer 
No. 

Amount of Homoveratric Acid Bound to Polymer ± S.D. [μmol/g] Imprinting 
Factor MIP NIP 

8 3.46 ± 0.20 1.01 ± 0.06 3.43 
8a 1.41 ± 0.05 1.14 ± 0.06 1.24 
8b 4.12 ± 0.57 4.83 ± 0.64 0.85 

 
It was found, that when the the cross-linker TRIM was used to form MIP8b, the polymeric particles 

exhibited the highest binding capability, but they did not reveal any imprinting effect. This could be 
explained by the formation of the more rigid polymer matrix together with a higher specific polymer 
surface which did not favor specific adsorption. The use of TGDMA as the cross-linker also did not 
improve the properties of the MIP (see the data for MIP8a). MIP8 presents the highest imprinting 
factor towards homoveratric acid and sufficient binding capacity. 
 
2.4. Binding Characteristics 
 

On the basis of previous results, we selected MIP8 and NIP8 for a detailed analysis of their binding 
properties. We employed the Langmuir model transformed to the Scatchard Equation (5): 

( )
d

max
=

K
B - B

F
B

            (5) 

where Bmax is the total number of the binding sites, Kd is the dissociation constant, B is the bound 
amount of the analyte, and F is the unbound amount of analyte. A system which fits well the Langmuir 
model gives a straight line in the Scatchard plot, with a slope equal to - (1/Kd) and the y-intercept gives 
Bmax/Kd.  

The binding isotherms were determined by addition of a fixed amount of the polymer to various 
concentrations of homoveratric acid in the range between 0.019 and 1.2 mmol/L using a stationary 
binding procedure (see Experimental). The results are shown in Figure 3. The binding isotherms 
present typical trends for the Langmuir model (see Figure 3b). Linear fits for Scatchard analysis revealed 
two straight lines for MIP8 and only one for NIP8 (see Figure 3a). These results agree with the 
characteristics of a pair of imprinted and non-imprinted polymers obtained by the non-covalent approach. 
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Figure 3. Scatchard plots (a) and binding isotherms (b) obtained for MIP8 and NIP8. 
 

 
 

MIP8 has two classes of heterogeneous binding sites characterized by two Kd and two Bmax values: 
Kd(1) = 0.060 μmol/mL and Bmax(1) = 0.093 μmol/mg for the higher affinity binding sites, and  
Kd(2) = 0.455 μmol/mL and Bmax(2) = 0.248 μmol/mg for the lower affinity binding sites. NIP8 has 
only one class of binding site with Kd = 0.417 μmol/mL and Bmax = 0.184 μmol/mg. Therefore, the 
experiment clearly showed that the imprinting process had occurred. 

 
2.5. Morphology of Particles 
 

Scanning electron microscopy was employed to observe the surface of selected particles. First, we 
observed the surface of a pair of allylamine polymers MIP8 and NIP8. For MIP8 we observed the 
highest imprinting effect. The images showed differences in morphology of the imprinted and  
non-imprinted polymers. The MIP8 and NIP8 particles obtained in the bulk polymerization have 
irregular shapes and sizes, with a diameter of approximately 10 μm or more. The surface of MIP8 is 
more porous with a lot of small cavities. The surface of NIP8 is more uniform and smooth with only a 
small number of small cavities (Figure 4). 

Figure 4. SEM micrographs of MIP8 and NIP8 particles. 

MIP8 
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Figure 4. Cont. 

NIP8 
 
Next, we observed the surface of imprinted particles which had the highest and the lowest binding 

capacity of homoveratric acid. The highest capacity was noted for the copolymer of N-allylpiperazine 
and EGDMA in DMF (MIP5), and the lowest capacity was noted for the copolymer of allylamine and 
TGDMA in DMF (MIP8a).  

Figure 5. SEM micrographs of MIP5 and MIP8a particles. 
 

MIP5 

MIP8a

As it could be seen (Figure 5), the observable differences are significant. The surface of MIP5 is 
rough, with a number of holes and cavities, but the surface of MIP8a is very smooth, with no visible 
cavities at all. The drastic difference in the morphology explains the different binding capacity of  
the particles. 
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2.6. IR Spectra of Selected Polymers 

FTIR spectroscopy was applied to detect the monomers in the polymer matrix. We have selected 
two pair of polymers MIP1/NIP1 and MIP8/NIP8 which were prepared from the monomers showing 
the absorption bands different from those of the cross-linker. These absorption bands should derive 
from pyridine ring in polymers MIP1/NIP1, and from the amine group in polymers MIP8/NIP8.  
In the IR spectra of MIP1/NIP1 the pyridine ring is represented by weak bands located between  
3020–3080 cm−1 (νC-H), and quite strong bands located at 1450, 1490 and 1591 cm−1 (νC=C and νC=N). 
In the IR spectra of MIP8/NIP8 the alkylamine grouping is represented by two bands 3406 and 3564 
cm−1 (νsym and νasym N-H), 1635 cm−1 (δNH2) and 1084 cm−1 (νC-N). We have not observed distinct 
differences in the location of the absorption bands in the IR spectra of MIPs and NIPs. The IR spectra 
has allowed us to detect the monomers in the selected polymer matrix. 
 
2.7. Molecular Recognition Mechanism 
 

Recognition studies were performed using the set of structurally related compounds in  
non-competitive dynamic binding experiments (see Experimental). The chemical formulas of the 
analyzed compounds are shown in Figure 6, together with the columns presenting the amount of the 
corresponding analyte bound. 

Figure 6. Chemical formulas and amounts of each compound bound to MIP8 in the  
non-competitive binding experiments. 

 
 

The affinity of homoveratric acid (95.88 ± 2.31 μmol/g) towards MIP8 was very similar to the 
affinity of 3,4-dimethoxybenzoic acid (99.40 ± 2.40 μmol/g). The lowest affinities were observed for  
2-phenylethylamine, 1,2-dihydroxybenzene, and benzylamine (within the range 27.12 ± 0.65–24.40 ± 
0.59 μmol/g). 

This observation suggests that the strong interactions between the amino groups of the polymer 
matrix and the carboxylic acid group in the analyte are responsible for the recognition process. Higher 
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affinity of veratrole than 1,2-dihydroxybenzene could be the proof that methoxy groups also take a part 
in the molecular recognition mechanism. 
 
2.8. Selectivity Toward Dopamine and Its Metabolites 
 

Next, we performed experiments similar to those described above to estimate the selectivity of 
MIP8 toward dopamine, its metabolites and other compounds that could exist in the biological 
samples: serotonin, epinephrine, norepinephrine, DOPAC, homovanillic acid, 3-methoxytyramine, and 
vanilmandelic acid. The chemical formulas of the analyzed compounds are shown in Figure 7 together 
with the columns presenting the amount bound of the corresponding analyte.  

Figure 7. Chemical formulas and amounts of each compound bound to MIP8 in the  
non-competitive binding experiments. 

 
  

The results demonstrated that homoveratric acid has the highest affinity to MIP8 among all the 
biogenic compounds analyzed. Homovanillic acid, vanilmandelic acid, and DOPAC have significantly 
lower affinity, and all analyzed biogenic amines have practically no affinity to MIP8. The results 
confirmed that the prepared imprinted polymer could be used as the selective separation material, for 
instance in the solid phase extraction of homoveratric acid. 
 
2.9. Application of MIP8 to Separation of Homoveratric Acid 
 

We have applied 25 mg of MIP8 as a SPE stationary phase to confirm its application for separation 
of homoveratric acid. The experimental details are presented in Table 3. The results showed that MIP8 
could be successfully applied as a stationary phase for SPE separation of homoveratric acid. We 
worked out the procedure of elution which allowed us to recover practically the total amount of 
homoveratric acid (in respect of the adsorbed amount) from MIP8. The imprinted polymer showed 
good enrichment properties. MIP8 bound homoveratric acid from 20 mL of loading solution, and 
allowed us to produce a concentrated homoveratric acid eluate of 4 mL 



Molecules 2011, 16                            
 

 

3837

Table 3. Separation of homoveratric acid with MIP8 as the stationary phase in solid phase extraction. 

Extraction Steps MIP8 
 Found [nmol] 

1. Conditioning 
(2 mL, water) 

< L.Q.a 

 Bound [nmol] 
2. Loading 
(total of 10 × 2 mL, 75 μmol/L) 

 
829 ± 32 

 Found [nmol] 
3. Washing 
(1 mL, water) 

 
69.5 ± 2.7 

4. Eluting 
(total of 2 × 2 mL, methanol) 

 
832 ± 32 

a below limit of quantification. 

 
2.9.1. Preliminary Analysis of Homoveratric Acid Separation from Artificial Urine  

Finally, the influence of sample composition on the binding properties of MIP8 was examined 
using two artificial urine formulas AU1 [30] and AU2 [31], both spiked with homoveratric acid. Urine 
is known to be a complex matrix generally containing different inorganic salts, urea, creatinine, 
macromolecular compounds and the typical analytical procedure requires ultrafiltration and dilution. 
Therefore, for many analytical applications artificial urine is widely used for in vitro experiments [32]. 
Both selected AU formulas have different compositions: AU1 contains urea, creatinine and inorganic 
salts, but AU2 contains various inorganic salts at concentrations above the physiological limits, but 
does not contain urea or creatinine. We performed the solid phase extraction procedure as described 
before (see Experimental). The obtained results are presented in Table 4. 

Table 4. Separation of homoveratric acid using MIP8 in the SPE procedure from spiked 
artificial urines AU1 and AU2. 

Steps AU1 AU2 
 Found [nmol] 

1. Conditioning 
(2 mL, water) 

< L.Q.a < L.Q.a 

 Bound [nmol] 
2. Loading 
(total of 10 × 2 mL, 75 μmol/L) 

 
168.0 ± 6.4 

 
317 ± 12 

 Found [nmol] 
3. Washing 
(1 mL, water) 

 
28.3 ± 1.1 

 
36.0 ± 1.4 

4. Eluting 
(total of 2 × 2 mL, methanol) 

 
157 ± 6.0 

 
312 ± 12 

a below limit of quantification. 
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The results show that binding capacity of homoveratric acid to MIP8 decreased in both artificial 
urines, but it was still sufficient for its separation. Marked interference with the adsorption due to urea 
and/or creatinine was found. Any similar effect of inorganic salts was less apparent. The recovery of 
homoveratric acid from the column was high, and the feasibility of carrying out an assay based on 
MIP8 was proven.  

3. Experimental  

3.1. General 
 

3,4-Dimethoxyphenylacetic acid (homoveratric acid), 3,4-dimethoxybenzoic acid, 3,4-dihydroxy-
phenylacetic acid, 4-hydroxy-3-methoxyphenylacetic acid (homovanillic acid), and D/L-α,4-dihydroxy-
3-methoxyphenylacetic acid (D/L-vanilmandelic acid) were purchased from Alfa Aesar (Karlsruhe, 
Germany), 1,2-dimethoxybenzene, and 1,2-dihydroxybenzene were from Aldrich (Steinheim, 
Germany), benzoic acid, and 2-phenylethylamine were from POCh (Gliwice, Poland), 2-(4-hydroxy-3-
methoxyphenyl)ethylamine (3-methoxytyramine), L-3,4-dihydroxy-α-(methylamino-methyl)benzyl 
alcohol D-hydrogen bitartrate salt (L-epinephrine), 3-(2-aminoethyl)-5-hydroxyindole hydrochloride 
(serotonin) were from Sigma (Steinheim, Germany), 2-(3,4-dihydroxyphenyl)ethylamine 
hydrochloride (dopamine), (±)-1-(3,4-dihydroxyphenyl)-2-aminoethanol hydrochloride (D/L-nor-
epinephrine), and benzylamine were from Fluka (Steinheim, Germany). The functional monomers  
2-vinylpyridine (1), 4-vinylpyridine (2), 1-vinylimidazole (3), allylamine (8) were from Fluka 
(Steinheim, Germany), allylurea (6) and allylthiourea (7) were from Aldrich (Steinheim, Germany),  
N-allylpiperazine (5) was from Alfa Aesar (Karlsruhe, Germany), and N-allylaniline (4) was supplied 
by Sigma (Steinheim, Germany). The cross-linkers ethylene glycol dimethacrylate (EGDMA) and 
triethylene glycol dimethacrylate (TGDMA) were from Fluka (Steinheim, Germany), 
trimethylolpropane trimethacrylate (TRIM) was from Aldrich (Steinheim, Germany). The porogen and 
solvents N,N-dimethylformamide (DMF), methanol, and acetone were from POCh (Gliwice, Poland). 
The polymerization reaction initiator 1,1’-azobiscyclohexanecarbonitrile (CHC) was from Fluka 
(Steinheim, Germany). Perchloric acid (60%) was from Merck (Darmstadt, Germany). The monomers 
were purified (if necessary) prior to use by standard procedures (vacuum distillation or 
recrystallization from an appropriate solvent). All other reagents were used without further 
purification. Ultra-pure water was delivered from a Milli-Q purification system (Millipore, France) and 
was used to prepare all the water solutions. 

The stock solutions of the analyzed compounds were prepared by accurately weighting the 
appropriate amount of each compound and dissolving it in methanol or water adjusted to pH 3 with 
0.04 M perchloric acid (dopamine, 3-methoxytyramine, D/L-norepinephrine, L-epinephrine, and 
serotonin) to give a final concentration of 10 mmol/L. Exceptions were benzoic acid, for which  
25 mmol/L concentration solution was prepared and benzylamine and 2-phenylethylamine, for which 
concentrations of 100 mmol/L were prepared. 

The standard solutions were prepared prior to use by dilution of the appropriate stock solutions with 
ultra-pure water to obtain the desired concentrations. All stock solutions were stored in the dark at  
+8 °C.  
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The UV-Vis measurements were performed with a UV-1605PC spectrophotometer (Shimadzu, 
Germany). The calibration lines as a function of absorbance (y) versus concentration (x) were 
constructed at λmax. of the investigated compounds. Each point was measured in triplicate. The linearity 
of calibration lines was good (r2 > 0.997). The wavelengths (λmax in nm), the limits of quantification 
(LOQ in μmol/L), and the limits of detection (LOD in μmol/L) were as follows: homoveratric acid 
(278, 7.39, 2.44), benzoic acid (273, 23.31, 7.69), 3,4-dimethoxybenzoic acid (290, 5.89, 1.94), 1,2-
dihydroxybenzene (275, 8.71, 2.88), 1,2-dimethoxybenzene (273, 9.23, 3.05), 3,4-dihydroxy-
phenylacetic acid (280, 3.86, 1.27), homovanillic acid (279, 12.50, 4.13), (D/L) vanilmandellic acid 
(279, 10.36, 3.42), benzylamine (257, 178.32, 58.85), 2-phenylethylamine (258, 217.25, 71.69), 3-
methoxytyramine (279, 5.82, 1.92), dopamine (280, 6.26, 2.07), D/L-norepinephrine (279, 4.62, 1.52), 
L-epinephrine (279, 5.28, 1.74), and serotonin (276, 7.67, 2.53). IR spectra were recorded in KBr 
pellets on a FT IR Perkin Elmer SPECTRUM 1000 instrument. The scanning electron micrographs 
were taken at the Department of Chemistry, University of Warsaw, Poland. The surface of imprinted 
and non-imprinted materials were studied on a LEO 435VP microscope (Zeiss, Germany). All samples 
were Au/Pd sputtered-coated before analysis. 
 
3.2. Molecular Modeling 
 

The following compounds were used in the studies: 2-vinylpyridine (1), 4-vinylpyridine (2), 1-
vinylimidazole (3), N-allylaniline (4), N-allylpiperazine (5), allylurea (6), allylthiourea (7), allylamine 
(8) as the monomers, and homoveratric acid as the template. Three-dimensional structures were drawn 
using the Hyperchem version 7.01 software [33]. The starting structure of homoveratric acid was 
created on the basis of the published crystallographic data [34,35]. Geometries of all structures were 
optimized using the semiempirical PM3 method until the energy gradient was below 0.01 kcal/mol Å. 
The theoretical prepolymerization complex systems were built up from four monomer molecules and 
one molecule of homoveratric acid taking into account the molar ratio used in the synthetic procedure. 
The complexes were constructed manually by placing the monomer molecules in the proximity of 
functional groups of the template, in such a way that the formation of as many hydrogen bonding 
interactions as possible was allowed between the monomers and template functional groups. Starting 
distances between the atoms involved in the interactions were 2.5–3.0 Å. The enthalpies of formation 
obtained for optimized structures were used in discussion (ΔHcomplex), and to calculate the energies of 
complexation reaction (ΔE)—see the equation (3) in part 2.1.2. 
 
3.3. Preparation of Homoveratric Acid Imprinted Polymer 
 

The experimental amounts of reagents (moles, masses and volumes) used for the preparation of the 
different types of polymers are listed in Table 4. The MIPs coded as MIP1–MIP8, MIP8a,b were 
prepared by the radical bulk polymerization. Briefly, homoveratric acid as the template, the selected 
functional monomer and the cross-linker were dissolved in DMF acting as the porogen (1 mL of the 
porogen to 1 mL of the sum of monomer and the cross-linker) in thick-walled glass tubes. The molar 
ratio of the template to the functional monomer and the cross-linker was equal to 1:4:20 for EGDMA, 
TGDMA and 1:4:4 for TRIM. Next, the initiator (CHC) was added. The homogeneous solutions were 
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purged with nitrogen for ca. 3–5 min and then glass tubes were sealed. Subsequently, the 
polymerization was carried out under a nitrogen atmosphere for 24 h at 88 °C. Yields of the crude 
polymers were almost 100 %. The substrates were not detected by UV spectroscopy in the solvent after 
template extraction from polymer particles. 

Table 4. Selected details of the polymerization processes. 

No of 
MIPs 

Template 
mg [mmol] 

Functional Monomer 
mg [mmol] 

Cross-linker 
mL [mmol] 

Initiator 
mg 

Porogen
mL 

1  
39.2 [0.2] 

2-vinylpyridine (1) 
84.1 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.841 

2  
39.2 [0.2] 

4-vinylpyridine (2) 
84.1 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.841 

3  
39.2 [0.2] 

1-vinylimidazole (3) 
75.3 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.827 

4  
39.2 [0.2] 

N-allylaniline (4) 
106.6 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.863 

5  
39.2 [0.2] 

N-allylpiperazine (5) 
101.0 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.866 

6  
39.2 [0.2] 

allylurea (6) 
80.1 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.754 

7  
39.2 [0.2] 

allylthiourea (7) 
92.9 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.754 

8  
39.2 [0.2] 

allylamine (8) 
45.7 [0.8] 

EGDMA 
0.754 [4.0] 

CHC 
14.1 

DMF 
0.814 

8a  
 
39.2 [0.2] 
 

 
allylamine (8) 
45.7 [0.8] 
 

TGDMA 
1.145 [4.0] 

CHC 
14.1 

DMF 
1.109 

8b TRIM 
0.271 [0.8] 

CHC 
4.7 

DMF 
0.331 

 
The bulk rigid polymers were ground in a mortar with a pestle and wet-sieved into particles below 

45 μm diameter. Fine particles were separated by repeated decantation in acetone. Homoveratric acid 
molecules were then removed from the polymer particles using the continuous extraction process in a 
Soxhlet apparatus (24–36 h, 80 mL, methanol/water 85/15 v/v) and dried under vacuum at room 
temperature. Homoveratric acid removal was controlled by UV-Vis spectroscopy. Non-imprinted 
polymers (NIP1–NIP8, NIP8a,b) were prepared under the same polymerization conditions but without 
the template molecule and were treated in the same way as the corresponding imprinted polymers. 

 
3.4. Binding Experiments 
 

The stationary binding experiments were performed to evaluate the binding ability of MIPs and 
NIPs particles. Polypropylene tubes of 10 mL were filled with 10 mg of MIP1–MIP8, MIP8a,b or 
NIP1–NIP8, NIP8a,b. To each tube aqueous homoveratric acid standard solutions of 24 μmol/L 
concentration (5 mL) was added. The tubes were sealed and oscillated by a shaker (Heidolph, 
Germany) at room temperature for 24 h. Then, the tubes were centrifuged for 10 min at 3,000 rpm, and 
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aliquots of supernatant (0.7 mL) were used to analyze the unbound amount of homoveratric acid by 
UV-Vis spectroscopy. The amount of homoveratric acid bound to the polymer was calculated by 
subtracting the unbound amount from the initial amount of homoveratric acid. For Scatchard analysis, 
polypropylene tubes were filled with 10 mg of MIP8 or NIP8. Next, the different aqueous 
homoveratric acid standard solutions (5 mL, 0.019, 0.024, 0.03, 0.06, 0.12, 0.24, 0.6, and 1.2 mmol/L) 
were added to each tube. Then the polymers were treated in the same way as described above.  

The dynamic binding experiments were performed to evaluate the binding ability of selected MIPs 
and NIPs particles. Polypropylene SPE columns of 1 mL were filled with 25 mg of MIP1–MIP8 or 
NIP1–NIP8 particles and secured by glass-fiber frits. The particles were conditioned with water  
(2 mL) and then they were loaded (until further adsorption on the polymer particles was not observed) 
with successive portions (1 mL each) of 0.35 mmol/L standard solution of homoveratric acid in water 
(additionally, for MIP8 and NIP8, 24 μmol/L solution was analyzed). The aliquots of supernatant (0.1, 
0.4 or 0.7 mL) were used to analyze the unbound amount of homoveratric acid by UV-Vis 
spectroscopy. The bound amount of homoveratric acid was calculated by subtracting the unbound 
amount from the initial amount of homoveratric acid.  

The non-competitive binding experiments were carried out for the most promising polymer MIP8 
to determine its selectivity and the intermolecular interactions in the polymer matrix. Polypropylene 
SPE columns of 1 mL capacity were filled with 25 mg of MIP8 particles and secured by glass-fiber 
frits. Then the particles were treated according to the dynamic procedure as described above. The 
standard solutions of the analytes (concentration 0.35 mmol/L), viz. benzoic acid, 3,4-dimethoxy-
benzoic acid, veratrole, benzylamine, 2-phenylethylamine, 1,2-dihydroxybenzene, DOPAC, 
homovanillic acid, (D/L)-vanilmandelic acid, 3-methoxytyramine, dopamine, D/L-norepinephrine, L-
epinephrine, and serotonin were used in the loading step. All experiments were performed in triplicate. 

Solid phase extraction experiments were carried out on Macheney-Nagel SPE manifold. 
Polypropylene 1 mL SPE columns (Chromabond, Germany) secured by glass-fiber frits were filled 
with 25 mg of MIP8. The following SPE protocol steps were applied on each column: conditioning 
(water, 2 mL), loading (ten portions of 2 mL of aqueous standard solution of homoveratric acid of  
75 μmol/L), washing (water, 1 mL), eluting (methanol, two portions of 2 mL). The flow rate of each 
SPE step was 1 mL/min. The conditioning, loading, and washing fractions were treated according to 
the dynamic binding procedure described above. The elution fractions were collected and aliquots of 
0.7 mL were used to analyze the amount of homoveratric acid eluted from MIP8 cartridges by UV-Vis 
spectroscopy. Triplicate cartridges of MIP8 were used for each extraction. 

Two artificial urines, AU1 [30] and AU2 [31], were prepared according to established formulas 
with minor modifications. The composition of AU1 was: urea, 416 μmol/mL, creatinine,  
17.70 μmol/mL, NaCl, 154 μmol/mL, NH4Cl, 48 μmol/mL, Na2SO4, 21.10 μmol/mL, KH2PO4,  
17.60 μmol/mL, and the composition of AU2 was: NaCl, 105.50 μmol/mL, KCl, 63.70 μmol/mL, 
NH4Cl, 36.30 μmol/mL, MgSO4, 3.85 μmol/mL, Na2SO4, 16.95 μmol/mL, KH2PO4, 32.20 μmol/mL. 
Aliquots of each artificial urine (0.2 mL) and of stock solution of homoveratric acid (75 μL) were 
transferred to a 10.0 mL volumetric flask and diluted to volume with ultra-pure water. Solid phase 
extractions experiments were carried out according to procedure described above. 
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4. Conclusions  

The presented molecular imprinting procedure allowed us to obtain a homoveratric acid-imprinted 
polymer which exhibits highly selective binding towards homoveratric acid. The hydrogen-bonding 
interactions between carboxylic acid and methoxy groups in the template and amino groups in the 
binding sites of polymer are responsible for a molecular recognition process. Theoretical computations 
operformed on the prepolymerization complexes allowed a deeper analysis of the experimental results. 
The polymer which was prepared from allylamine as the functional monomer, ethylene glycol 
dimethacrylate as the cross linker, and N,N-dimethylformamide as the porogen shows the highest 
imprinting factor of 3.43. Scatchard analysis revealed the presence of both specific and non-specific 
adsorption sites in the polymer matrix. The thus obtained polymer could be useful for the separation of 
homoveratric acid in SPE mode.  
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