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Abstract: The CXCR2 receptors play a pivotal role in inflammatory disorders and CXCR2 
receptor antagonists can in principle be used in the treatment of inflammatory and related 
diseases. In this study, quantitative relationships between the structures of 130 antagonists 
of the CXCR2 receptors and their activities were investigated by the partial least squares 
(PLS) method. The genetic algorithm (GA) has been proposed for improvement of the 
performance of the PLS modeling by choosing the most relevant descriptors. The results of 
the factor analysis show that eight latent variables are able to describe about 86.77% of the 
variance in the experimental activity of the molecules in the training set. Power prediction 
of the QSAR models developed with SMLR, PLS and GA-PLS methods were evaluated 
using cross-validation, and validation through an external prediction set. The results 
showed satisfactory goodness-of-fit, robustness and perfect external predictive 
performance. A comparison between the different developed methods indicates that 
GA-PLS can be chosen as supreme model due to its better prediction ability than the other 
two methods. The applicability domain was used to define the area of reliable predictions. 
Furthermore, the in silico screening technique was applied to the proposed QSAR model 
and the structure and potency of new compounds were predicted. The developed models 
were found to be useful for the estimation of pIC50 of CXCR2 receptors for which no 
experimental data is available. 
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1. Introduction 

The chemokine CXCR2 receptor, a seven-transmembrane G-protein-coupled receptor, was cloned 
and identified in the early 1990s [1-3]. Chemokines play the key roles in inflammation, wound healing, 
hematopoiesis and metastasis. The chemokines comprise a large protein family that can be divided into 
subfamilies on the bases of structural motifs. Chemokines mediate their biological effects via interaction 
with a large family of 7-transmembrane G Protein-coupled receptors. These receptors are divided into 
four subgroups: CC, C, CX3C and CXC chemokine ligands (where X represents an amino acid) 
depending upon the position of the N-terminal cysteine residues within the protein. The chemokine 
receptors CXCR2/CXCR1 were cloned and identified and are activated by IL-8 (CXCL8) [4,5]. 
Interleukin 8 (IL-8, CXCL8) and growth related oncogene α (GRO-α) are members of the CXC 
chemokine subfamily and have a role in the activation and recruitment of the neutrophils to the sites of 
the inflammation mediated through the CXCR2 receptor. When CXCL8 interacts with the CXCR2 and 
CXCR1 on the neutrophils, an intercellular response occurs, including calcium flux, degranulation and 
subsequently chemotaxis. Elevated levels of CXCL8 have been observed in the diseases such as arthritis 
and chronic obstructive pulmonary disease (COPD) [6]. In the light of these findings, small molecule 
antagonists of the CXCR2 receptor are attractive biological targets for molecular drug discovery [7]. 

During the past decades, different approaches have been used for the development of QSAR 
models. The major differences between these approaches are in the structural parameters (descriptors) 
used to characterize molecules and/or in the mathematical methods used to establish a correlation 
between the descriptor values and the biological activities. One of the most successful approaches for 
the prediction of the chemical properties based on the molecular structural information is modeling of 
quantitative structure-activity/property relationships (QSAR/QSPR). The main goal of QSAR/QSPR is 
to predict complex physical, chemical and biological properties of the compounds from molecular 
structures [8,9]. The close relationship which exists between bulk properties of the compounds and 
their molecular structures allows one to provide a clear connection between the macroscopic and the 
microscopic properties of matter. QSAR methodologies have the potential of decreasing substantially 
the time and effort required for the discovery of the new medicines or improvement of the efficiency 
of the current one. The success of the QSAR approach can be explained by the insights offered for the 
structural determination of chemical properties, and the possibility of estimating the properties of the 
new chemical compounds without any need for them to be synthesized and tested. However, the 
success of any QSAR model depends on the accuracy of input data, selection of the appropriate 
descriptors, statistical tools, and most importantly validation of the developed model [10-13]. A major 
step in constructing the QSAR models is to find a set of molecular descriptors that represents variation 
in the structural properties of the molecules. 

QSAR analysis employs statistical methods to drive quantitative mathematical relationships 
between chemical structure and biological activity. Thus, the use of the QSAR for the development of 
a theoretical model for calculation of the IC50 (the half maximal inhibitory concentration) of a diverse 
set of compounds seems to be interesting.  
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The strategy used in the QSAR models includes the following steps; (1) selection of a data set; 
(2) generation of the data molecular structures; (3) optimization of the geometry of the molecular 
structures by appropriate method; (4) generation of various structural descriptors; (5) application of 
variable selection or/and data reduction methods on the calculated descriptors; (6) regression analysis; 
and finally (7) evaluation of the validity and predictability of the developed QSAR models. 

In the past, QSAR models have been built in the general field of chemokine antagonists including 
CCR1 [14], CCR5 [15,16], CXCR3 [17], CXCR4 [18] and one group of CXCR2 [19,20]. In this work, 
linear methods such as SMLR, PLS and GA-PLS are used to find quantitative relationships between 
the structures of several classes of CXCR2 antagonists and their biological activities, and the results 
obtained by these methods are compared. Furthermore, in silico screening is adopted to the QSAR 
model in order to predict the structure of new potentially active compounds. 

2. Data and Methods 

2.1. Data Set 

The biological and chemical data of 130 CXCR2 antagonists, taken from literatures were selected 
for QSAR study [19,21-23]. The data set were heterogeneous, and involved several main classes of 
CXCR2 antagonists including; N,N’-diphenylureas, nicotinamide N-oxides, quinoxalines, 
triazolethiols, acylsulfonamide carboxylic acid bioisosteres, N-linked sulfonylurea, and furyl-3,4-
diamino-3-cyclobut-3-ene-1,2-dione. The general structure and biological activities of the CXCR2 
antagonists are provided in Tables 1–7. 

Table 1. Structures and biological activities of the acylsulfonamide derivatives. 
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1–10    11–16    17–25 

Compound R1 R2 R3 R4 IC50 for CXCR2 (µM) pIC50 
1 Me CN H H 0.07 7.14 
2 Me Br H H 0.17 6.77 
3 Et CN H H 0.06 7.19 
4 n-Pr CN H H 1.30 5.89 
5 Bn CN H H 1.40 5.85 
6 i-Pr CN H H 0.22 6.66 
7 Ph CN H H 0.26 6.58 
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Table 1. Cont. 

8 CF3 CN H H 0.09 7.06 
9 Me CN OMe H 0.16 6.80 
10 Me CN Me H 0.02 7.72 
11 Me Br - - 0.25 6.60 
12 Me CN - - 0.64 6.19 
13 Ph Br - - 0.12 6.92 
14 Ph CN - - 0.14 6.85 
15 o-Cl-Phenyl CN - - 0.40 6.40 
16 p-F-Phenyl CN - - 0.52 6.28 
17 Me Me H - 0.05 7.30 
18 Me H H - 0.12 6.92 
19 H H H - 0.07 7.18 
20 Et Et H - 1.10 5.96 
21 n-Butyl H H - 1.10 5.96 
22 Ph H H - 0.88 6.05 
23 -CH2CH2OMe H H - 0.26 6.58 
24 Me Me OMe - 0.06 7.24 
25 Me Me Me - 0.02 7.62 

Table 2. Structures and biological activities of the furyl and hetrocyclic-3,4-diamino-3-
cyclobut-3-ene-1,2-dione derivatives. 
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Compound R IC50 CXCR2 (nM) pIC50 
26 5-H 0.005 8.3 
27 5-Me 0.006 8.24 
28 5-Et 0.004 8.39 
29 5-Br 0.005 8.33 
30 5-Cl 0.005 8.32 
31 5-CF3 0.017 7.76 
32 5-CF2H 0.007 8.17 
33 5-CH2OH 0.003 8.55 
34 5-CH2N(Me)2 0.094 7.03 
35 5-CON(Me)2 0.171 6.77 
36 5-(20Cl)Ph 0.049 7.31 
37 5-(2-CF3)Ph 0.15 6.82 
38 5-(3-Cl)Ph 0.058 7.24 
39 5-(3-CF3)Ph 0.087 7.06 
40 4-Cl 0.0045 8.35 
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Table 2. Cont. 

41 4-Br 0.005 8.30 
42 4-(4-Pyridyl) 0.009 8.02 
43 4-(3-Thienyl) 0.008 8.09 
44 4-(3,5-Dimethyl-4-

isoxazoyl) 
0.008 8.12 

45 2,3-Benzofuran 0.003 8.46 
46 3-Br 0.016 7.78 
47 O
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8.6 8.06 
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C l  
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58 
N  

50 7.30 

Table 3. Structures and biological activities of the N,N’-diphenylureas derivatives. 
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Compound R1 R2 R3 R4 R5 R6 IC50 for CXCR2 
(nM) 

pIC50 

59 OH H Cl H Br H 906 6.04 
60 OH Cl Cl H Br H 63 7.20 
61 OH CONH2 Cl H Br H 10 8.00 
62 OH CH2NH2 Cl H Br H 114 6.94 
63 OH SO2NH2 Cl H Br H 7 8.15 
64 OH SO2NMe2 Cl H Br H 12 7.92 
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Table 3. Cont. 

65 OH H CN H Br H 25 7.60 
66 OH Br CN H Br H 6 8.22 
67 OH Cl CN H Br H 22 7.66 
68 OH CN Cl H Br H 57 7.24 
69 OH H NO2 H Br H 22 7.66 
70 OH H NO2 H H H 320 6.49 
71 OH NO2 H H H H 860 6.07 
72 OH H H NO2 H H 10900 4.96 
73 OH H CN H H H 200 6.70 
74 OH SO2NH2 Cl H Cl Cl 9.3 8.03 

75 –N=N–
NH– 

 CN H Br H 39 7.49 

Table 4. Structures and biological activities of the nikotinamide N-oxides derivatives. 
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Compound R IC50 for CXCR2 (nM) pIC50 
76 -SO2C2H5 130 6.87 
77 -SO2CH(CH3)2 400 6.40 
78 

SO2

 
460 6.34 

79 -SO2C6H5 90 7.05 
80 

COOH

SO2

 

32 7.49 

81 -SO2CH2C6H5 280 6.55 
82 Cl 1000 6.00 

Table 5. Structures and biological activities of the triazolethiol derivatives. 
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Table 5. Cont. 

Compound R1 R2 IC50 for CXCR2 (nM) pIC50 
83 C6H5CH2 C6H5 2400 5.62 
84 3-OHC6H4CH2 C6H5 4400 5.36 
85 C6H5CH2 4-Pyridinyl 7700 5.11 
86 C6H5CH2 2-Furanyl 4200 5.38 
87 C6H5CH2 4-CNC6H4 3500 5.46 
88 C6H5CH2 3-CF3C6H4 3500 5.46 
89 C6H5CH2 4-CF3C6H4 2800 5.55 
90 C6H5CH2 4-CH3OC6H4 2300 5.64 
91 C6H5CH2 3,5-diClC6H3 2000 5.70 
92 C6H5CH2 2-Thienyl 2000 5.70 
93 C6H5CH2 2-CH3C6H4 1400 5.85 
94 C6H5CH2 2-CH3OC6H4 1400 5.85 
95 C6H5CH2 3-ClC6H4 1000 6.00 
96 C6H5CH2 2-FC6H4 890 6.05 
97 C6H5CH2 4-ClC6H4 830 6.08 
98 C6H5CH2 3,4-diClC6H3 800 6.10 
99 C6H5CH2 2,5-diClC6H3 670 6.17 
100 C6H5CH2 2-ClC6H4 450 6.35 
101 C6H5CH2 2,4-diClC6H3 410 6.39 
102 C6H5CH2 2-BrC6H4 350 6.46 
103 C6H5CH2 2,3-diClC6H3 350 6.46 
104 4- CH3OC6H4CH2 2,4-diClC6H3 10000 5.00 
105 3-CH3OC6H4CH2 2,4-diClC6H3 4200 5.38 
106 3-CH3C6H4CH2 2,4-diClC6H3 730 6.14 
107 4-Cl C6H4CH2 2,4-diClC6H3 300 6.52 
108 3-C6H5O C6H4CH2 2,4-diClC6H3 170 6.77 
109 3-Cl C6H4CH2 2,4-diClC6H3 92 7.04 
110 3-Cl C6H4CH2 2-ClC6H4 28 7.55 

Table 6. Structures and biological activities of the bicyclic CXCR2 antagonists. 
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Table 6. Cont. 
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Table 6. Cont. 
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Table 7. Structures and biological activities of the bicyclic CXCR2 antagonists. 
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In order to guarantee that training and prediction sets cover the total space occupied by the original 
data set, it was divided into two parts of training and predication set according to the Kennard-Stones 
algorithm [24]. The Kennard-Stones algorithm is known as one of the best ways of building training 
and prediction sets [25,26] and recently, it has been used in many QSAR studies [27,28]. Thus, the 
training set, which contains 108 compounds with pIC50s in the range of 4.96–9.00 was used for 
building up the QSAR model, whereas the prediction set containing 22 compounds (out of 130 
compounds, i.e., about 20% of the total number of compounds) with pIC50s in the range of 5.70–8.70 
was used for evaluation of the model’s predictive ability. The distribution of pIC50 values of 130 
essential CXCR2 antagonist receptors are demonstrated in Figure 1. As shown, these pIC50 values 
cover a wide range from 4.96 to 9.00. 
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Figure 1. Distribution of pIC50 values for the whole data set. 

 

Furthermore, in order to detect the homogeneities in the data set and to recognize the potential 
outliers in all of the molecules under study, the principal components analysis (PCA) [29] was 
performed with the calculated structural descriptors on the selected data set. Figure 2 shows that with 
the two more significant PCs which explain 68.47% of the variation in the data set (59.86% by PC1 
and 8.61% by PC2), the distribution of molecules over the region is homogeneous. Thus, the score plot 
is a reliable representation of the spatial distribution of the points for the data set. 

Figure 2. Score-Score plote. 

 

2.2. Computer Hardware and Software 

A Dell Personal Computer equipped with the Windows® Vista operating system was used. 
HyperChem Release 7 software (Hypercube, Inc. Gainesville, Florida, USA 2002) was used to draw 
the molecular structures. Dragon software (Todeschini and Consonni, 2003 [30]) was employed for 
calculation of molecular structural descriptors. The selection of significant descriptors, which 
constructs a relationship between the biological activity of the data and its molecular structures, is an 
important step in QSAR modeling. For this purpose, the stepwise multiple linear regression method 
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and genetic algorithm procedure were used to select the significant descriptors. The modeling was 
carried out using PLS Toolbox 3.5 (Eigen vector Research, Inc., Manson, WA, USA) as implemented 
in MATLAB. Other calculations were performed using MATLAB (version 7.5, Mathworks, Inc. 
Natick, MA, USA 2007) environment.  

2.3. Structural Descriptors 

The theoretical molecular descriptors were derived from the chemical structure of the compounds. 
The 3D-structures of all the compounds were drawn using the HyperChem software. The resulting 
geometries were further refined by means of the semiempirical AM1 method and the molecular 
structures were optimized using the Polak-Rebiere algorithm until the root mean square gradient 
reached 0.1 kJ (mol Å). Then they were transferred into the Dragon program package (version 3) [30] 
to obtain the different molecular descriptors including constitutional, topological descriptors, RDF, 
3D-Morse, and Geometrical descriptors [31]. Finally, the constant or near constant descriptors were 
omitted i.e., one of the any two descriptors with an inter-correlation greater than 0.95 was removed to 
reduce the redundant and useless information. 

2.4. Model Validation 

Evaluation of a model’s stability and predictive ability is another key step in QSAR modeling. 
Different statistical parameters have been used for the evaluation of the suitability of the developed 
models for prediction of the activity of the studied compounds [32] this include cross validation 
coefficient (Q2 or R2

cv), relative error percent of prediction sets (REPPred), the root mean square error of 
prediction (RMSEP), root mean square error of cross-validation (RMSECV), validation through an 
external prediction set and Y-randomization. However, it should be noted that a high Q2 does not 
necessarily mean a high predictability of the developed model [31]. In other word, the high value of Q2 
is a necessary condition, but not sufficient for a developed model to have high predictability.  

In order to assess the predictive ability and to check the statistical significance of the developed 
models, the proposed models were applied to predict the values of pIC50 of an external set that was not 
used in the development of the model. The predictive powers of the developed regression models on 
the training set were evaluated by predicted values of the prediction set. These parameters are listed in 
Table 8 and show the good statistical qualities and low precision errors of the assessments. 

Table 8. Statistical parameters obtained by applying the PLS, GA-PLS and SMLR. 

Parameter PLS GA-PLS SMLR 
RMSEP 0.50 0.51 0.56 
AREPred. 5.98 5.53 1.3 
R2

 0.748 0.779 0.78 
R2

Training Set 0.727 0.88 0.68 
Q2 0.68 0.713 0.66 
SEP 0.50 0.51 0.53 
R2 − Ro

2/R2 −0.291 −0.254 −0.254 
K 1.019 1.035 0.962 
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The REP is calculated according to the following equation: 
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where ŷi, yi, y and n are the predicted value, the experimental value, the mean of the experimental 
value in the prediction set and the number of samples, respectively. 

The root mean square error cross validation (RMSECV) is a frequently used measure of the 
differences between the predicted values by a model or an estimator and the actually observed values 
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where ŷi, yi and n are the prediction value, the measured value and the number of measurements, 
respectively. The RMSECV is a measure of a model's ability to predict new samples. The RMSECV is 
calculated via a leave one out cross-validation, where each sample is left out of the model formulation 
and then is predicted. The RMSEP is defined as a measure of the average difference between the 
predicated and experimental values at the predication stage. The RMSEP is calculated by applying Eq. 
(2) to the predication set.  
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where ŷi and yi are the predicted value, the experimental value (over the prediction set), respectively, 
and try is the averaged value of the dependent variable for the training set. Tropsha used the following 
criteria for the external validation on the prediction set: 

Q2 > 0.5 

R2 > 0.6 

0.85 < k < 1.15 or 0.85 < k’ < 1.15 
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In these equations, R2 is the correlation coefficient of regression between the experimental values and 
the prediction activities of the compounds on the training and prediction sets. R2

o, R’2
o, are mathematically 

defined as the regression of the experimental activities against predicted activities and regression of the 
predicted activities against experimental activities, respectively; where as, k and k’ are the slopes of these 
equations [33]. When these criteria are satisfied, it can be said that the model is predictive. 

Furthermore, in order to assess the robustness of the model, the Y-randomization test was applied. 
The dependent variable vector (inhibitory activity) was randomly shuffled and a new QSAR model 
was developed using the original independent variable matrix. As was expected the new QSAR models 
(after several repetitions) have low R2 and Q2 values; the results are shown in Table 9. 

Table 9. R2 and Q2 values after several Y-randomization tests. 

Iteration PLS GA-PLS 
R2 Q2 R2 Q2 

1 0.0047 −0.949 0.010 −0.577 
2 0.005 −0.423 0.010 −0.919 
3 0.039 −0.467 0.036 −0.417 
4 0.12 −0.198 0.019 −0.506 
5 0.005 −0.955 0.006 −0.878 
6 0.005 −0.955 0.153 −0.063 
7 0.006 −0.967 0.084 −0.245 
8 0.186 −1.601 0.001 −0.699 
9 0.002 −0.753 0.073 −1.21 
10 0.171 −1.57 0.147 −0.41 

3. Results and Discussion 

The predictive ability of QSAR/QSPR models is affected by two factors: the descriptors, which 
must carry enough of the molecular structure information for the interpretation of the activity/property; 
and the employed modeling method. However, with too many descriptors, there is the possibility of 
over fitting of the statistical methods. Thus, in QSAR/QSPR studies the identification and selection of 
descriptors which provide maximum information in activity variations and have minimum co-linearity 
is important. On the other hand, the use of PLS usually results in well fitted stable models which have 
high predictive ability, but the estimation is not always very accurate and stable over the time. 
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Therefore, a genetic algorithm (GA) [34] with a PLS regression improves the model accuracy in the 
selection of proper descriptors. 

3.1. Stepwise Multiple Linear Regression (MLR) 

On the basis of Kennard-Stones algorithm, 108 compounds out of 130 were selected as the training 
set and the remaining 22 were selected as the test set. Stepwise regression was used on the training data 
set to select the significant descriptors and it was found that between 733 calculated descriptors the 
MATS5v (Moran autocorrelation-lag5/weighted by atomic van der Waals volumes), GATS8P (Moran 
autocorrelation-lag8/weighted by atomic polarizabilites), MATS2m (Moran autocorrelation-
lag2/weighted by atomic masses) and BEHp2 (highest eigenvalue n. 2 of burden matrix/weighted by 
atomic polarizabilites) construct the best model and there was no significant correlation between these 
descriptors (Table 10). So, they were selected for the further study. The selected physicochemical 
descriptors serve as the first guideline for the design of novel and the potent antagonists of CXCR2. The 
selected parameters used for development of the QSAR model are listed in Table 11. The model was 
produced by applying the multiple linear regression (MLR) technique on a database containing the training 
set. The relative importance and contribution of each descriptor in the model was determined by the 
calculation of the value of the mean effect (MF) [35] for each descriptor using the following equation: 
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where MFj represents the mean effect for the descriptor j, βj is the coefficient of the descriptor j, dij is 
the value of the interested descriptors for each molecule and m is the number of descriptors in the 
model. The MF value shows the relative importance of each descriptor in compare to the other 
descriptors. The MF of the descriptor MATS5v, GATS8p, MATS2m and BEHp2 are also shown in 
Table 11 and indicate that among the selected descriptors, the most important one is MATS2m (Moran 
autocorrelation-lag2/weighted by atomic masses) as it has the highest mean effect value and has the 
largest effect on the pIC50 of the compound. The effect of MATS5v, GATS8p, MATS2m and BEHp2 for 
the QSAR study of CXCR2 receptors and the standardized regression coefficient on the significance of an 
individual descriptor in the model is shown in Figure 3 and indicates that, the greater the absolute value of 
a coefficient, the greater the weight of the variable in the model. 

Table 10. Correlation matrix for MLR model. 

 pIC50 MATS5v GATS8p MATS2m BEHp2 
pIC50 1     
MATS5v −0.26863 1    
GATS8P −0.16055 −0.00856 1   
MATS2m 0.001149 −0.08958 −0.0286 1  
BEHp2 0.214723 −0.04342 −05904 0.000615 1 
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Table 11. Details of the constructed MLR model. 

Descriptora Coefficient MFb

MATS5v −8.9918 (±8.729) −0.254 
GATS8P −5.409 (±0.463) −0.063 
MATS2m −1.337 (±0.349) 1.484 

BEHp2 31.527 (±7.936) −0.166 
Constant −3.539 (±1.156)  

a The name and chemical meanings of descriptors are explained in the text; b MF 
refer to the mean effect value. 

Figure 3. Standardized coefficients versus descriptors in MLR model. 

 

Using the descriptors selected by the stepwise regression method, a new MLR equation was 
developed on the basis of the training set:  

pIC50 = −8.92 − 5.41MATS5v − 1.34GATS8p + 31.53MATS2m − 3.54BEHp2 
n = 122, R2 = 0.78, Q2 = 0.66, F = 51.2 

where n and F are the compound’s number and the F-ratio, respectively. 
In the further study, the constructed model from the training set was used to evaluate the predictive 

ability of the produced model by predicting the pIC50 values in the prediction set. The results are given 
in Table 12 and Figure 4. 

Table 12. Comparison of Experimental and predicted values of pIC50 for test set by 
SMLR, PLS and GA-PLS models. 

No. pIC50 
(Exp.)

PLS GA-PLS SMLR 
pIC50 
(Pred.) 

Residual pIC50 
(Pred.)

Residual pIC50 

(Pred.) 
Residual 

10 7.24 7.34 0.10 6.79 −0.45 7.42 0.18 
12 6.50 6.32 −0.17 6.71 0.22 6.35 −0.14 
17 7.50 7.44 −0.06 7.82 0.32 7.26 −0.24 
2 7.20 7.80 0.60 8.31 1.11 7.67 0.47 
21 6.34 6.64 0.30 6.67 0.33 6.68 0.35 
25 6.00 6.51 0.51 6.52 0.52 6.10 0.10 



Molecules 2011, 16  
 

1944

Table 12. Cont. 

25a 8.70 7.81 −0.89 8.72 0.02 7.85 −0.84 
37b 6.58 6.46 −0.13 6.57 −0.01 6.16 −0.43 
40 5.70 5.73 0.03 6.00 0.30 5.28 −0.42 
43 6.00 5.52 −0.48 5.78 −0.22 5.65 −0.35 
45b 5.96 5.22 −0.73 5.60 −0.36 6.55 0.59 
47 6.14 6.80 0.62 6.70 0.52 5.60 −0.57 
51 6.45 6.58 0.12 6.30 −0.15 6.10 −0.35 
53b 6.85 6.45 −0.41 6.61 −0.24 6.30 −0.56 
58c 8.39 7.60 −0.79 7.31 −1.08 7.67 −0.71 
6 7.92 8.50 0.58 7.64 −0.28 8.21 0.29 

Figure 4. Predicted pIC50 values by (a) MLR; (b) PLS and (c) GA-PLS modeling vs. 
experimental pIC50 values. 
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Figure 4. Cont. 
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3.2. Interpretation of the Selected Descriptors 

The binding of a ligand to a target depends on the shape of the ligand and on a variety of factors 
such as molecular electrostatic potential, polarizability, hydrophobicity, and lipophobicity. Therefore, 
in a QSAR study the strategy for encoding molecular information, either explicitly or implicitly, 
should account for these physicochemical effects. Furthermore, since the data sets usually include 
molecules of different size with different numbers of atoms, the structural encoding schemes must 
allow comparison between such molecules. The descriptors, MATS5v, GATS8p and MATS2m are 
Autocorrelation of Topological Structure. The 2D-autocorrelation descriptors explain how the values 
of certain functions, at intervals equal to the lag, are correlated. The 2D autocorrelation descriptors 
represent the topological structure of the compounds, but are more complex in nature when compared 
to the classical topological descriptors. The computation of these descriptors involves the summations 
of different autocorrelation functions corresponding to different structural lags and leads to different 
autocorrelation vectors corresponding to the lengths of the sub-structural fragments. Basically, the pool 
of 2D autocorrelation descriptors defines a wide 2D space. On behalf of a greater applicability, 
physicochemical properties (atomic masses, atomic van der Waals volumes, atomic Sanderson 
electronegativities, and atomic polarizabilities) were inserted as weighting components. As a result, 
these descriptors address the topology of the structure or parts thereof in association with a specific 
physicochemical property. Bearing in mind this aspect, the interpretation of 2D autocorrelation 
descriptors was uneasy.  

BCTU descriptors were designed to encode atomic properties relevant to intermolecular 
interactions. The three standard BCUT descriptor types–atomic charge, polarizability and hydrogen 
bonding properties—that are relevant to intermolecular interactions are supported. The BCUT 
(Burden-CAS-University of Texas eigenvalues) descriptors are the eigenvalues of a modified 
connectivity matrix known as the Burden matrix [17]. The BCUT metrics are extensions of parameters 
originally developed by Burden. The Burden parameters are based on a combination of the atomic 
number for each atom and a description of the nominal bond-type for adjacent and nonadjacent atoms. 
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Among the eigenvalues obtained from B matrix, the highest eigenvalues have been demonstrated to 
reflect the relevant aspects of molecular structure, and are therefore useful for similarity searching. By 
B eigenvalue decomposition, one can find the best structure for the molecules, e.g., number of atoms, 
number of bonds and the electronic distributions of the whole molecule. With respect to this concept, 
B eigenvalues may play a good role in the prediction in addition to BEHp2. 

3.3. Partial Least Squares (PLS) 

The general purpose of the linear regression method is to quantify the relationship between several 
independent or predictive variables and a dependent variable. Independent or predictive variables 
could be various physicochemical descriptors of the molecules, their principle components or latent 
variables. The partial least squares (PLS) method is used to establish relationships between the 
dependent variables of the Y matrix and the descriptors of the X matrix (as independent variables also 
called “latent” variables) [34]. The procedure performs a principle component analysis on the 
independent variables matrix and simultaneously maximizing the correlation with the dependent 
variables matrix. The number of appropriate latent variables (LVs) for describing the best developed 
model was found out by evaluating the root mean square error cross-validation (RMSECV) while the 
number of latent variables was changed. 

As it is shown in Figure 5 the RMSECV is minimized when the value of LVs is 7 and it is 
increased significantly when the numbers of LVs are greater than 11. Thus, the optimum LVs for the 
training set of PLS method was chosen to be 7. The developed PLS regression model with 7 LVs 
shows a high correlation between the experimental and predicted values of pIC50 in training set 
(R2 = 0.74 and RMSECV = 0.6). 

Figure 5. The RMSECV versus number of LVs. 
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Figure 5. Cont. 
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Finally, for the evaluation of the predictive ability of the developed model, the Q2 value and the 
external validation method were performed. A high Q2 and R2 values (Q2 > 0.5) were considered as a 
proof of high predictive ability of the model. The external validation method was performed by 
dividing the original data set randomly into two parts, training and prediction set, and the values of 
pIC50 of molecules in the prediction set were predicted by the developed model. The results of the 
calculated R2, Q2, REP%, RMSECV and etc. for prediction set are reported in Table 2. 

It should be noted that even when there is no correlation between the LOO- cross-validated R2 (Q2) 
and regression coefficient R2 for a predictive set with known values of biological activities, the 
validated model can be used for predicting activities/ properties of new chemicals [33,36]. 
Furthermore, As the results reveal, the PLS method is an efficient approach in monitoring many 
complex processes and is capable of strongly reducing cross-correlated data set with high dimension to 
a smaller and interpretable set of principle components or latent variables.  

3.4. Partial Least Squares combined with Genetic Algorithm (GA-PLS) 

As mentioned before, one of the problems in choosing the set of molecular descriptors is the co-
linearity within them. To overcome this problem some workers tried to combine the genetic algorithms 
(GA) with PLS [37-39]. GA-PLS consists of three basic steps. (1) Creation of an initial population of 
chromosomes in which each chromosome is a binary bit string by which the existence of a variable is 
represented; (2) Evaluation of fitness of each chromosome in the population by the internal predictivity 
of PLS. Thus, the squared predictive correlation coefficient (Q2) by the leave-one-out procedure in 
cross-validation is used as the internal predictivity [40]; (3) Reproduction of the population of 
chromosomes in the next generation. The operations of selection, cross-over and mutation of 
chromosomes, are made in this step. Then, steps 2 and 3 are continued until the number of the 
repetitions has reached the designated number of generations. The effective factors in the GA such as 
repetition rate, rate of mutation, number of chromosomes and generation are optimized. 
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Rogers and Hopfinger first applied GA-PLS method in QSAR analysis and stated that it is very 
effective and superior to PLS method. In this paper, to find the more convenient set of descriptors, a 
GA-PLS analysis was performed [41-43]. 

All descriptors were preprocessed by auto scaling before performing the GA-PLS was performed. The 
GA was optimized by variation and selection of the fitness values. The fitness function is defined as:  
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where iŷ  is the predicted value of a sample i, n is the number of samples, k = n − 1 is the number of 
samples used in cross-validation. The definitions and types of selected descriptors are given in Table 13. 
The QSAR model was derived by the doing the GA analysis with partial least squares (PLS)-regression 
method for the population size of 64 and mutation rate of 0.003. Other parameters are summarized in 
Table 14. Results of R2, REP%, RMSEP and Q2 for prediction set of GA-PLS study are also reported 
in Table 2 and as it is shown the results of this analysis are similar to those obtained by PLS method 
but the Q2 and R2 value of the GA-PLS were improved in compare to the MLR and PLS methods. 
However, the interpretations of the chemical properties of these descriptors are difficult as their 
definition is based on mathematics. The details are described in the handbook and literature of Dragon 
software [30]. Further more, although these results show that the GA method is a satisfactory 
correspondence for variable selection, but more experiments are needed to generalize the superiority of 
GA-PLS over other techniques. 

Table 13. Physcicochemical, topological and structural descriptor. 

ID Definition Group 

1 RBN, RBF Constitutional

2

D/D, J, MAXDN, MAXDP, X5, X0v, X1v, X3v, X4Av, X5Av, X0sol, X0sol, 
X1sol, X2sol, X3sol, X4sol, X5sol, S0K, S1K, IDDE, IVDE, SIC0, CIC0, 
IC1, SIC1, CIC1,IC2, BIC4, BIC5, D/Dr05, D/dr06, T(N..O), T(N..S), 
T(O..O)

Topological

3
BEHm1, BEHm2, BEHm3, BEHm4, BEHm5, BEHm6, BEHv6, BEHv7, 
BEHe3, BEHe4, BELe5, BELe6

BUCUT

4 GGI2,GGI3,GGI10, JGI1
Galvez topol. Charge 
indices

5 ATS8m, ATS8v, MATS5e, MTAS6e, GATS4e, GATS5e 2D Autocorrelations
6 qnmax, Qpos Charge descriptors
7 FDI, PJI3, DISPv, QYYv Geometrical

8
RDF06u, RDF065u, RDF120u, RDF125u, RDF130u, RDF135u, RDF030m, 
RDF035m, RDF080m, RDF085m, RDF120m, RDF125m, RDF105v, 
RDF110v

RDF

9

Mor17u, Mor18u, Mor29u, Mor30u, Mor08m, Mor09m, Mor14m, Mor15m, 
Mor22m, Mor23m, Mor24m, Mor25m, Mor30m, Mor31m, Mor17v, Mor18v, 
Mor19v, Mor20v, Mor21v, Mor22v, Mor27v, Mor28v, Mor18e, Mor28e, 
Mor11p, Mor12p

3D-MoRSE
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Table 13. Cont. 

10 E2u, E3u, E3e, G1p, G2p, E1p, L2s, L3s, G1s, G2s, Au, Am WHIM

11

HIC, HGM, H3u, H4u, H3m, H4m, H7m, H8m, HATS2m, HATS3m, 
HATS1e, HATS2e, HATS7p, HATS8p, RARS, REIG, R5u, R6u, R3u+, 
R4u+, RTu+, R2m, RTm, R1m+, R8m+, RTm+, R1v, R2v, RTv, R1v+, R2e, 
R3e, RTp,R1p+

GETAWAY

12 MR, PSA, MLOGP Properties
* Description of descriptors refers to [30]. 

Table 14. Parameters of genetic algorithm GA. 

Cross validation Random subset 
Number of subset 4 
Window width 2 
Initial term % 20% 
Maximum generation 100 
Convergence (%) 80 
Cross-over Double 

3.5. In Silico Screening 

The in silico screening procedure is a useful tool for predicting and identifying new biologically 
active compounds with improved characteristics prior to their actual synthesis [44,45]. Thus, the in 
silico procedure can be applied as a physico-chemical filter to reduce the number of compounds to be 
tested experimentally for hit/lead generation. In other words, the in silico procedure minimizes the 
time and cost associated with identifying new leads. A virtual screening was performed by insertion, 
deletion and substitution of different substitutes on the original molecules [46,47] and the effects of the 
structural modifications on the biological activity were investigated. Then, the domain of application 
of QSAR model was defined to use the model for screening new compounds. The applicability domain 
(AD) of QSAR model was used to verify the prediction reliability, to identify the problematic 
compounds and to predict the compounds with acceptable activity that falls within this domain. 
Several methods have been used for determination of the AD of QSAR models [48], but the most 
common one is described by Gramatica [49] which used the leverage values for each compound. The 
leverage approach allows the determination of the position of new chemical in the QSAR model; i.e., 
whether a new chemical will lie within the structural model domain or outside of it. Furthermore, the 
leverage approach along with the Williams plot is used to determine the applicability domain in all 
QSAR models.  

To construct the William plot, the leverage hi for each chemical compound, in which QSAR model 
was used to predict its activity, was calculated according to the following equation: 

i
TT

ii xXXxh )(=  

where xi is the descriptor vector of the considered compound and X is the descriptor matrix derived 
from the training set descriptor values and the warning leverage (h*) was determined as [48]: 

n
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where n is the number of training compounds, p is the number of predictor variables. The defined 
applicability domain (AD) was then visualized via a Williams plot, the plot of the standardized 
residuals versus the leverage values (h). A compound with hi > h* seriously influences the regression 
performance and may be excluded from the applicability domain, but it doesn't appear to be an outlier 
because its standardized residual may be small. Moreover, a value of 3 for standardized residuals is 
commonly used as a cut-off value for accepting predictions, because points that lie within ±3 
standardized residual from the mean cover 99% of the normally distributed data [50]. Thus, the leverage 
and the standardized residual were combined for the characterization of the applicability domain.  

The Williams plot for the QSAR is illustrated in Figure 6. The warning leverage (h*), was found to be 
0.25 for the developed QSAR model. The chemicals that had a standardized residual more than three times 
of the standard deviation units were considered to be outliers while chemicals with a leverage value higher 
than h* were considered to be influential or high leverage chemicals. Based on the leverages (h > 0.25), the 
one compound were found to be outside of the defined AD (Figure 6) of the QSAR model, so, it was 
identified as structurally influential chemical based on its large leverage value (h > h*). 

Figure 6. Williams plot of standardized residual versus leverage. 

 

Next, the in silico screening was applied to the design of new structures with potential CXCR2 
inhibitors according to the developed QSAR model and was validated by the developed GA-PLS 
model. For this purpose, compound 66 of the N,N'-diphenylurea derivatives listed in Tables 1–7 
(IC50 = 8.22) was selected as a template due to its good inhibition. The molecule was modified in such 
a way that its synthesis was experimentally possible. Then, the in silico screen was applied by 
substituting different groups in the X and Y positions of the ring; the results of this investigation are 
given in Table 15. The model tolerated various N,N’-diphenylurea substituents since all of the studied 
derivatives were within the applicability domain. Among different molecules designed, the compound 
10c showed the best activity (pIC50 = 8.50). Thus, in order to clarify the relation between the activities 
of the compounds with different functional group, this compound was selected for further structural 
modification. So, in the next step the oxygen of the amide group of compound 10c was substituted by 
different function groups, the results are demonstrated in Table 16. As it is shown, the model tolerate 
all the compound designed on the bases of molecule 10c, and the best predicted activity was found for 
the compound 9d (where X = S). Thus, it is demonstrating that using a simple QSAR model, it is 
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possible to simultaneously identify compounds with improved activity and to determine the structural 
modifications that don’t fall within the applicability domain. Finally, this result confirms the reliability 
of the models and it shows that with the construction of the QSAR model and use of in silico screening 
it is possible to identify new synthetic targets for drug discovery. 

Table 15. Structural modification of CXCR2 receptor antagonists and predicted activities. 

Br

OH

N

NC

N

O

Y

X  

ID X Y 
GA-PLS 
(pIC50 

predicted) 

Leverage-
limit 

1c H Br 7.10 0.07 
2c H Cl 5.63 0.05 
3c H NO2 6.17 0.05 
4c H OMe 6.01 0.04 
5c H Me 5.50 0.03 
6c H Et 5.50 0.04 
7c Br NO2 5.48 0.04 
8c Br Me 7.20 0.05 
9c Br OMe 6.67 0.04 
10c Br Et 8.50 0.06 
11c H H 6.49 0.04 

Table 16. Structural modification of CXCR2 receptor antagonists and predicted activities. 

Br

OH

N

NC

N

X

Br

OMe

 

ID X 
GA-PLS 
(pIC50 

predicted) 

Leverage-
limit 

10c O 8.50 0.04 
2d NH 7.74 0.07 
3d NMe 8.82 0.05 
4d NOH 7.91 0.07 
5d NOMe 8.42 0.06 
6d NNH2 7.99 0.06 
7d NNHMe 8.39 0.05 
8d NNMe2 8.10 0.08 
9d S 8.98 0.05 
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4. Conclusions 

In this study, three different modeling methods, SMLR, PLS and GA-PLS were used in the 
construction of a QSAR model for CXCR2 antagonists and the resulting models were compared. It 
was shown that performing GA prior to the calibration, yields a regression model with improved 
predictive power. The accuracy and predictability of the proposed models were illustrated by various 
criteria, including cross-validation, relative error percent of prediction sets (REPPred), the root mean 
square error of prediction (RMSEP), root mean square error of cross-validation (RMSECV), validation 
through and Y-randomization. It was also shown that the proposed method is a useful aid for reduction 
of the time and cost of synthesis and activity determination of CXCR2 receptor antagonists. 
Furthermore, the results confirm that among the construction models used, the GA-PLS is superior for 
prediction of the IC50 of CXCR2 antagonists. Our future work will focus on validation for putative 
CXCR2 antagonists for virtual screening.  

Refreneces 

1. Holmes, W.E.; Lee, J.; Kuang, W.J.; Rice, G.C.; Wood, W.I. Structure and functional expression 
of a human interleukin-8 receptor. Science 1991, 253, 1278-1280. 

2. Murphy, P.M.; Tiffany, H.L. Cloning of complementary DNA encoding a functional human 
interleukin-8 receptor. Science 1991, 253, 1280-1283. 

3. Murphy, P.M.; Baggiolini, M.; Charo, I.F.; Hebert, C.A.; Horuk, R.; Matsushima, K.; Miller, 
L.H.; Oppenheim, J.J.; Power, C.A. International Union of Pharmacology. XXII. Nomenclature 
for Chemokine Receptors. Pharmacol. Rev. 2000, 52, 145-176. 

4. Loetscher, P.; Seitz, M.; Clark-Lewis, I.; Baggiolini, M.; Moser, B. Both interleukin-8 receptors 
independently mediate chemotaxis: Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in 
response to IL-8, GROα and NAP-2. FEBS Lett. 1994, 341, 187-192. 

5. Ahuja, S.K.; Lee, J.C.;Murphy, P.M. The CXC chemokines growth-regulated oncogene (GRO) α, 
GROβ, GROγ, neutrophil-activating peptide-2, and epithelial cell-derived neutrophil-activating 
peptide-78 are potent agonists for the type B, but not the type A, human Interleukin-8 Receptor. 
J. Biol. Chem. 1996, 271, 20545-20550. 

6. Bizzarri, C.; Allegretti, M.; Bitondo, R. Di; Cervellera, M. N.; Collota, F.; Bertini, R. Pharmacological 
inhibition of Interleukin-8 (CXCL8) as a new approach for the prevention and treatment of several 
human diseases. Curr. Med. Chem. Anti-inflamm. Anti-Allergy Agents 2003, 2, 67-79. 

7. Busch-Petersen, J. Small molecule antagonists of the CXCR2 and CXCR1 chemokine receptors as 
therapeutic agents for the treatment of inflammatory diseases. Curr. Med. Chem. 2006, 6, 1345-1352.  

8. Ribeiro, F.A.L.; Ferreira, M.M.C. QSPR models of boiling point, octanol-water partition 
coefficient and retention time index of polycyclic aromatic hydrocarbons. J. Mol. Struct. 
Theochem. 2003, 663, 109-126. 

9. Molfetta, F.A.; Bruni, A.T.; Rosseli, F.P.; Silva, A.B.F. A partial least squares and principal 
component regression study of quinone compounds with trypanocidal activity. Struct. Chem. 
2007, 18, 49-57. 

10. Tong, W.; Hong, H.; Xie, Q.; Shi, L.; Fang, H.; Perkins, R. Assessing QSAR limitations-A 
regulatory perspective. Curr. Comput. Aided Drug Des. 2005, 1, 195-205. 



Molecules 2011, 16  
 

1953

11. He, L.; Jurs, P.C. Assessing the reliability of a QSAR model’s predictions. J. Mol. Graphics 
Model. 2005, 23, 503-523. 

12. Ghafourian, T.; Cronin, M.T.D. The impact of variable selection on the modelling of 
oestrogenicity. SAR QSAR Environ. Res. 2005, 16, 171-190. 

13. Tropsha, A.; Gramatica, P.; Gombar,V.K. The importance of being earnest: Validation is the 
absolute essential for successful application and interpretation of QSPR models. QSAR Comb. Sci. 
2003, 22, 69-77. 

14. Shahlaei, M.; Fassihi, A.; Saghaie, L. Application of PC-ANN and PC-LS-SVM in QSAR of 
CCR1 antagonist compounds: A comparative study. Eur. J. Med. Chem. 2010, 45, 1572-1582. 

15. Aher, Y.D.; Agrawal, A.; Bharatam, P.V.; Garg, P. 3D-QSAR studies of substituted 
1-(3,3-diphenylpropyl)-piperidinyl amides and ureas as CCR5 receptor antagonists. J. Mol. 
Model. 2007, 13, 519-529. 

16. Afantitis, A.; Melagraki, G.; Sarimveis, H.; Koutentis, P.A.; Markopoulosd, J.; Igglessi-
Markopoulou, O. Investigation of substituent effect of 1-(3,3-diphenylpropyl)-piperidinyl 
phenylacetamides on CCR5 binding affinity using QSAR and virtual screening techniques. 
J. Comput. Aided Mol. Des. 2006, 20, 83-95. 

17. Afantitis, A.; Melagraki, G.; Sarimveis, H.; Igglessi-Markopoulou, O.; Kollias, G. A novel 
QSAR model for predicting the inhibition of CXCR3 receptor by 4-N-aryl-[1,4] diazepane ureas. 
Eur. J. Med. Chem. 2009, 44, 877-884. 

18. Bhonsle, J.B.; Wang, Z.X.; Tamamura, H.; Fujii, N.; Peiper, S.C.; Trent, J.O. A simple, 
automated Quasi-4D-QSAR, Quasi-multi way PLS approach to develop highly predictive QSAR 
models for highly flexible CXCR4 inhibitor cyclic pentapeptide ligands using scripted common 
molecular modeling tools. QSAR Comb. Sci. 2005, 24, 620–630. 

19. Khelebnikov, A.I.; Schepetkin, I.A.; Quinn, M.T. Quantitative structure activity relationships for 
small non- peptide antagonistsof CXCR2: Indirect 3D approach using the frontal polygon method. 
Bioorg. Med. Chem. Lett. 2006, 14, 352-365. 

20. Ghasemi, J.B.; Zohrabi, P.; Khajehsharifi, H. Quantitative structure-activity relationship study of 
nonpeptide antagonists of CXCR2 using stepwise multiple linear regression analysis. Monatsh. 
Chem. 2010, 141, 111-118. 

21. Yu, Y.; Dwyer, M.P.; Chao, J.; Aki, C.; Chao, J.; Purakkattle, B.; Rindgen, D.; Bond, R.; Mayer-
Ezel, R.; kway, J.; et al. Synthesis and structure-activity relationships of heteroaryl substituted-
3,4-diamino-3-cyclobut-3-ene-1,2-dione CXCR2/CXCR1 receptor antagonists. Bioorg. Med. 
Chem. Lett. 2008, 18, 1318-1322. 

22. Winters, M.P.; Crysler, C.; Subasinghe, N.; Ryan, D.; Leong, L.; Zhao, S.; Donatelli, R.; Yurkow, 
E.; Mazzulla, M.; Boczon, L.; et al. Carboxylic acid bioisosteres acylsulfonamides, 
acylsulfamides, and sulfonylureas as novel antagonists of the CXCR2 receptor. Bioorg. Med. 
Chem. Lett. 2008, 18, 1926-1930. 

23. Walters, I.; Austin, C.; Austin, R.; Bonnert, R.; Cage, P.; Christie, M.; Ebden, M.; Gardiner, S.; 
Grahames, C.; Hill, S.; et al. Evaluation of a series of bicyclic CXCR2 antagonists. Bioorg. Med. 
Chem. Lett. 2008, 18, 798-803. 

24. Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics 1969, 11, 137-148. 



Molecules 2011, 16  
 

1954

25. Melagraki, G.; Afantitis, A.; Makridima, K.; Sarimveis, H.; Igglessi-Markopoulou, O. Prediction of 
toxicity using a novel RBF neural network training methodology. J. Mol. Model. 2006, 12, 297–305. 

26. Wu, W.; Walczak, B.; Massart, D.L.; Heuerding, S.; Erni, F.; Last, I.R.; Prebble, K.A.; Artificial 
neural networks in classification of NIR spectral data: design of the training set. Chemometr. 
Intell. Lab. Syst. 1996, 33, 35-46. 

27. Ghosh, P.; Ghosh, M.; Bagchi, M.C. On an aspect of calculated molecular descriptors in QSAR 
studies of quinolone antibacterials. Mol. Divers. 2006, 10, 415-427. 

28. Chakraborti, A.K.; Gopalakrishnan, B.; Sobhia, M.E.; Malde, A. 3D-QSAR studies of indole 
derivatives as phosphodiesterase IV inhibitors. Eur. J. Med. Chem. 2003, 38, 975-982.  

29. Agrawal, V.K.; Sohgaura, R.; Khadikar, P.V.; QSAR studies on biological activity of piritrexim 
analogues against pc DHFR. Bioorg. Med. Chem. 2002, 10, 2919-2926. 

30. Todeschini, R.; Milano Chemometrics, QSPR Group, http://michem.disat.unimib.it/chm/. 
31. Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiely-VCH: Weinheim, 

Germany, 2000. 
32. Wold, S.; Eriksson, L. In Chemometric Methods in Molecular Design; van de Waterbeemd, H., 

Ed.; VCH: Weinheim, Germany, 1995; pp. 312-317. 
33. Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269-276. 
34. Leardi, R.; Boggia, R.; Terrile, M. Genetic algorithms as a strategy for feature selection. 

J. Chemometr. 1992, 6, 267-281. 
35. Jalali, H.M.; Konuze, E. Use of quantitative structure property relationships in predicting the 

Kraft point of anionic surfactants. Int. Electron. J. Mol. Des. 2002, 1, 410-417. 
36. Acevedo-Martínez, J.; Escalona-Arranz, J.C.; Villar-Rojas, A.; Téllez-Palmero, F.; Pérez-Rosés, 

R.; González L.; Carrasco-Velar, R. Quantitative study of the structure-retention index 
relationship in the imine family. J. Chromatogr. A 2006, 1102, 238-244. 

37.  Hou, T.J.; Wang, J.M.; Liao, N.; Xu, X.J. Application of Genetic algorithms on the structure-
activity relationship analysis of some cinnamaides. J. Chem. Inf. Comput. Sci. 1999, 39, 775-781. 

38. Hasegawa, K. GA strategy for variable selection in QSAR studies: application of GA-Based 
region selection to a 3D-QSAR study of acetylcholinesterase inhibitors. J. Chem. Inf. Comput. 
Sci. 1999, 39, 112-120. 

39. Goicoechea, H.C.; Olivieri, A.C. Wavelength selection for multivariate calibration using a genetic 
algorithm: A novel initialization strategy. J. Chem. Inf. Comput. Sci. 2001, 42, 1146-1153. 

40. van de Waterbeemd, H. Chemometric Methods in Molecular Design, Methods and Principles in 
Medicinal Chemistry; Verlag Chemie: Weinheim, Germany, 1995; Volume 2. 

41. Rogers, D.; Hopfinger, A.J. Application of genetic function approximation to quantitative 
structure-activity relationships and quantitative structure-property relationships. J. Chem. Inf. 
Comput. Sci. 1994, 34, 854-866. 

42. Hasegawa, K.; Kimura, T.; Funatsu, K. GA strategy for variable selection in QSAR studies: 
Enhancement of comparative molecular binding energy analysis by GA-based PLS method. 
Quant. Struct. Act. Relat. 1999, 18, 262-272. 

43. Sagradoa, S.; Cronin, M.T.D. Application of the modelling power approach to variable subset 
selection for GA-PLS QSAR models. Anal. Chim. Acta 2008, 609, 169-174. 



Molecules 2011, 16  
 

1955

44. Tropsha, A.; Golbraikh, A. Predictive QSAR modeling workflow model applicability domains 
and virtual screening. Curr. Pharm. Des. 2007, 13, 3494-3504. 

45. Muegge, I.; Oloff, S. Advances in virtual screening. Drug Discov. Today Technol. 2006, 3, 405-411. 
46. Melagraki, G.; Afantitis, A.; Sarimveis, H.; Koutentis, P.A.; Markopoulos, J.; Igglessi-

Markopoulou, O. Optimization of biaryl piperidine and 4-amino-2-biarylurea MCH1 receptor 
antagonists using QSAR modeling, classification techniques and virtual screening. J. Comput. 
Aided Mol. Des. 2007, 21, 251–267. 

47. Melagraki, G.; Afantitis, A.; Sarimveis, H.; Koutentis, P. A.; Kollias, G. A.; Igglessi-
Markopoulou, O. Predictive QSAR workflow for the in silico identification and screening of 
novel HDAC inhibitors. Mol. Divers. 2009, 13, 301-311. 

48. Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M. Methods for reliability 
and uncertainty assessment and for applicability evaluations of classification- and regression-
based QSARs. Environ. Health Perspect. 2003, 111, 1361-1375. 

49. Gramatica, P. Principles of QSAR models validation: internal and external. QSAR Comb. Sci. 
2007, 26, 694-701. 

50. Jaworska, J.S.; Nikolova, J.N.; Aldenberg, T. QSAR applicability domain estimation by projection of 
the training set in descriptor space: a review. ATLA Altern. Lab. Anim. 2005, 33, 445-459. 

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/3.0/). 


