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Abstract: After Mallory described in 1964 the use of iodine as catalyst for the 

photochemical cyclisation of stilbenes, this reaction has proven its effectiveness in the 

synthesis of phenanthrenes, other PAHs and phenacenes with a surprisingly large selection 

of substituents. The “early age” of the reaction was reviewed by Mallory in 1984in a huge 

chapter in the Organic Reactions series, but the development has continued. Alternative 

conditions accommodate more sensitive substituents, and isomers can be favoured by 

sacrificial substituents. Herein the further developments and applications of this reaction 

after 1984 are discussed and summarized.  
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1. Introduction  

The oxidative photocyclizations of stilbenes was discovered earlier during studies of the 

photochemical isomerization of stilbenes [1,2], but the reaction did not become feasible as a synthetic 

tool until Mallory discovered in 1964 that iodine could catalyze the reaction [3,4]. That allowed for 

more concentrated solutions and fewer side reactions. The reaction was thoroughly reviewed by 

Mallory in a large chapter in Organic Reactions in 1984 [5]. Other reviews [6–10] discuss various 

aspects and applications of the reaction. This review will focus on the reaction as a useful tool in 

synthesis, covering developments reported since 1984. 
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2. Oxidative Photocyclization 

The reaction pathway of what should be called the Mallory-reaction is pictured in Scheme 1. 

Photochemical isomerization of the double bond in stilbene has been extensively studied [8,11]. From 

a synthetic point of view the cis/trans-isomerization occurs rapidly under the reaction conditions in 

such a way that different compositions of cis- and trans-stilbenes still give the same products. Thus, 

the stilbenes can be used as isomeric mixtures in the photocyclization, although only the cis-isomer is 

capable of the further cyclization. The formed dihydrophenanthrene is unstable and will, unless 

trapped, relax back to the stilbene. There are also examples of hydrogen-shifts at this stage under non-

oxidative conditions [5]. The dihydrophenanthrene can be trapped by oxidation to form a 

phenanthrene, or by elimination given a suitable substituent in the ortho-position on one of the 

aromatics. 

Scheme 1. Reaction pathways for the photocyclization of stilbenes. 
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In more concentrated solutions the stilbenes can form dimers in a [2+2] cycloaddition as 

well [5,8,12]. Mallory discovered that this oxidative trapping occurs much faster when traces of iodine 

were used together with O2 [3], but increased concentrations of iodine did not affect the reaction rate. 

It has been proposed [5] that iodine is photochemically cleaved into radicals that react in a chain 

reaction:  

I2 + hν I + IInitiation:

Propagation: I+PH2 PH + HI

PH + I2 P + HI + I

PH2 + I2 P + 2 HI  
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The hydrogen iodide is then oxidized back to iodine by oxygen. The reaction was compatible with 

fluoro, chloro, bromo, methoxy, methyl, trifluoromethyl, phenyl and carboxyl, but not nitro, acetyl or 

dimethylamino substituents. Iodo substituents were lost during the reaction. Concentrations were 

usually 0.01 mole/liter of stilbene [4]. Higher concentrations lead to more [2+2] cycloaddition between 

two stilbenes. The concentration of iodine can influence both product yields and product selectivity. A 

full equivalent of iodine per cyclization can prevent elimination of methanol [13] (Scheme 2). 

Scheme 2. More iodine can prevent eliminative cyclization [13]. 
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On the other hand, the increased iodine concentration leads to formation of more hydrogen iodide 

that can saturate the starting stilbene and also contribute to other side reactions [14]. Other oxidants 

besides iodine have also been used, as reviewed by Laarhoven [10], but do not appear to have been 

preferred for carrying out syntheses. Representative examples of the Mallory-reaction published after 

1984 are shown in Appendix I. 

3. Katz’s Conditions 

Although increased amounts of iodine result in better yields in some systems, the increased 

concentration of hydrogen iodide causes side-reactions that limit the yields. Katz’s group officially 

introduced new conditions in 1991 [14] to solve this problem by scavenging the formed hydrogen 

iodide with methyloxirane to prevent the side-reactions (they published the first reactions with 

methyloxirane as a scavenger in 1986 [15,16]). As a consequence the iodide could not be reoxidized 

by oxygen, so one equivalent of iodine was needed and the reaction could then be performed under an 
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inert atmosphere preventing side reactions with oxygen. The combination of hydrogen iodide and light 

can reduce the double bond in stilbene to a saturated bond [14]. It was observed from the 

beginning [3,4] that catalytic amounts of iodine gave purer products and higher yields for many 

systems. It is not oxygen itself that is the destructive agent, but rather substances formed from oxygen 

during the photocyclization [14]. Table 1 compares the yields between the use of catalytic amounts of 

iodine and the Katz-conditions. 

Table 1. Comparison between catalytic iodine/oxygen and Katz’s conditions. Most 

examples are from ref [14]. 

Starting material Product Cat. I2 Katz’s conditions 

Me

Me

 
Me

Me

 

 

51%  

(8 h) 

 

95%  

(8 h) 

  

 

61%  

(4 h) 

 

100%  

(1 h) 

OMe MeO

 

OMe

MeO

 

 

<8%  

(3.5 h) 

 

61%  

(13 h) 

Br

 

Br  

 

66%  

(1.2 h) 

 

87%  

(1.2 h) 

OMe

Br

OMe

Br

 

OMeOMe

Br Br

 

 

<4%  

(4.5 h) 

 

71%  

(4.5 h) 

F

F

 

F

F

 

64% 

Ref [17]  

71%  

Ref [18] 

 

Less reactive molecules that remain unreactive in other photochemical conditions sometimes react 

under Katz-conditions [19], as shown in Scheme 3, below.  
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Scheme 3. Photochemical cyclization of a less reactive molecule. 
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The conditions are compatible with a wide range of functionality, as illustrated in Scheme 4. The 

high concentration of iodine allows for a higher concentration of starting materials in the reaction 

without formation of dimers as a side-reaction. This is illustrated in some patents [20–22] describing a 

photocyclization with 5 g starting material per liter of solvent. Also in our experience this is about the 

concentration limit to avoid significant side reactions under Katz-conditions [23]. Reaction times 

depend on concentrations, but Katz’s conditions are often faster than using catalytic amounts of 

iodine [24]. Recently, potassium carbonate has also been introduced as a HI-scavenger to prevent ring 

opening of the alkyl chains [25] (Scheme 5). Further examples of reactions with Katz-conditions are 

given in Appendix II. 

Scheme 4. Example of highly functionalized molecule that is compatible with the Mallory 

condition under Katz’s conditions [26]. 
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Scheme 5. Potassium carbonate as HI-scavenger [25]. 
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4. Elimination Photocyclizations 

The original I2/O2-conditions sometimes give significant amounts of byproducts from elimination of 

o-methoxy-groups on the stilbenes [27]. Finnie [28] avoided the problem of elimination of methanol 

by putting methoxy-groups at both ortho-positions (Scheme 6). 
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Scheme 6. Elimination of either orto-methoxy-group gave the same product. 
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However, with less symmetrical starting materials this is not a viable approach. Katz-conditions will 

usually reduce the problem of this kind of elimination. 

Mallory [29] tested acidic conditions to promote elimination of methanol to control the selectivity. 

The reactions needed much longer reaction times. Some selectivity towards elimination was achieved 

with catalytic amounts of sulfuric acid, at the cost of lower yields than with oxidative conditions on the 

same stilbenes. The reactions were not inverted in all cases, but a good selective synthesis of 2-methyl-

phenanthrene and 4-methylphenanthrene was obtained (Scheme 7). Oxidative cyclization of meta-

methylstilbene gives a 1:1 mixture of these regioisomers that are difficult to separate. However, 

attempts to control the cyclization into the unfavored benzo[a]anthracene failed.  

It is also possible to put a good leaving group like tosyl at the bridge-double bond to promote 

cyclization under basic conditions [30]. Although this gave very good yields, it does not help to control 

the selectivity of the cyclization. 

Scheme 7. Eliminative photocyclization used to avoid the selectivity-problem with 

substituents in meta-position on the stilbene [29]. 

MeO

Me hν

cat. H2SO4, t-BuOH Me

74 %  

Table 2. Comparison of product formation between oxidative and basic elimination conditions [31]. 

R1 R2

X

hν

R1 R2

X

R2

R1+

 

X R1 R2 Conditions a b Product ratio 
Cl CH3  H Oxidative 95 0 >20 
   Basic  8 31 4.0 
Br CH3 H Oxidative 65 0 >20 
    Basic 16 20 1.3 
Br OCH3 H Oxidative 71 7 10 
   Basic 10 41 4.1 
Br OCH2O  Oxidative 63 12 5.3 
   Basic 0 57 >20 

 

Dehydrobromination under basic conditions has been extensively studied, but it also has its 

limitations. Olsen [31] did a comparison between oxidative photocyclizations (2 equivalents of iodine) 

and elimination photocyclizations with NaOMe in methanol. Some of the results are summarized in 
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Table 2. The yields of oxidative conditions were consistently higher, but some debrominations were 

observed as secondary reactions occurring after the cyclization. The basic conditions did change the 

selectivity, but to a lesser degree than desired. As can be seen in the last example, basic conditions can 

give very good selectivity, but only when the system is already inclined to react that way. Some more 

examples of eliminative photocyclizations are summarized in Appendix 3. However, this approach has 

generally been of limited use. 

5. Reactivity Parameters 

The Mallory-reaction is somewhat sensitive to steric effects of the substituents, as shown in Scheme 

8, although the product distribution does not deviate much from a statistical distribution. 

Scheme 8. Oxidative photocyclization with two meta-substituents. The product 

composition deviates only a bit from a statistical distribution and towards less steric 

hindrance [32].  
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Obtained: a:b:c = 16:55:29

67%

a:b:c = 25:50:25Statistical ratio:  
 

In contrast, the aromatic ring-structure regioselectivity of the Mallory-reaction is very strong. 

Usually only one ring-structure is formed, even when the formation of several structures look 

plausible. The reaction favors ring-structures that are curled towards helicene structures as the two 

examples in Scheme 9 show. 

Laarhoven [6,10] has evaluated reactivity parameters like free valence numbers [35] (∑F*
rs) and 

localization energies (∑L*
rs) for a large number of examples. He found a good correlation between 

these two parameters, but found free valence numbers more convenient as only one calculation is 

needed to evaluate all cyclization modes of a particular compound. ∑F*
rs is the sum of the free valence 

numbers of atoms r and s involved in the cyclization in the exited state (Fr = √3-∑P in which P is the 

bond order). 

Three rules [6] for cyclization were determined: 

(i) Photocyclizations do not occur when ∑F*
rs<1.0. 

(ii) When two or more cyclizations are possible in a particular compound, only one product arises 

if ∆(∑F*
rs) > 0.1; more products are formed if the differences are smaller. 
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(iii) The second rule holds when only planar or non-planar products (penta- or higher helicenes) can 

arise. When planar as well as non-planar products can be formed, the planar aromatic in general 

is the main product, provided that for its formation ∑F*
rs > 1.0 

Scheme 9. Oxidative photocyclization often gives one main regioisomer. A) Ref. [33], B) Ref. [34]. 
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Photocyclization of 1,4-distyrylbenzene [6] is a good example (Scheme 10). Another example 

applies to 1,3-distyrylbenzene [8]. The best discussion with several reaction examples with calculated 

reactivity parameters is given in a review by Laarhoven [10]. These rules should be a useful planning 

tool for synthesis, but no examples have been found where these rules have actually been applied in 

the such planning. One reason might be that the theory and calculations of these reaction parameters 

are not very accessible for the typical synthesis chemist with a limited background in theoretical 

chemistry. 

Scheme 10. Calculation of ∑F*
rs for the reaction indicates that methyl-substituted 

distyrylbenzene can undergo photocyclization, but not the unsubstituted compound. 

Experiments are in accordance with this [6,36]. 

R

R

hν

Me

Me

R= H (ΣF*=0.954) no reaction

R= Me (ΣF*=1.077) 23%  

6. Controlling Product Formation with Blocking Groups 

Helicenes are borderline molecules in Laarhoven’s cyclization rules. When they become larger than 

five benzene rings they become non-planar, and thus no longer favored products. Formation of planar 

S-shaped molecules becomes the main side reaction or even the main reaction. This led Katz’s group 

to develop the bromo-group as a directing substituent [15,16,37]. The bromo-group also blocks its 

neighbor position in the cyclization (Scheme 11): 
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Scheme 11. Br is used as a blocking group. 
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Without the bromo-group the reaction gives 1:1 [7]helicene and the S-shaped benzo[a]naphto[1,2-

k]tetraphene [15]. Without blocking groups the yield of [6]helicenes also becomes low [38]. The 

bromo-group can even protect neighbouring methoxy-groups from elimination-cyclization. Without 

the bromo-groups in the example below a mixture of the desired product and products resulting from 

elimination reactions occurred [37] (Scheme 12): 

Scheme 12. Br also protects neighbouring methoxy-groups from elimination-cyclization. 
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It has proven more difficult to use blockers to change the regioselectivity into anthracene-like 

moieties. Amin [39] experienced low yields and further oxidation of the bromo-group into quinones 

while trying to force the reaction away from benzo[c]phenanthrene and towards benzo[a]anthracene. 

Harvey tested different blocking groups and concluded that the chloro-group works better [40]. There 

is still a price to pay for working against the natural pathway as illustrated in Scheme 13. In PAH-

synthesis the Mallory-reaction encounters competition from other methods for several ring-

systems [41,42].  

The overlapping helicenes are chiral, and have very large specific rotation ([α]D
25 = 3640° for 

[6]helicene [44]). This allowed for a study of the small enantioselectivities induced by chiral solvents 

during the Mallory-reaction [44]. 

Inflexible chiral groups on the substrate for a double Mallory-reaction gave a [7]helicene with better 

enantiomeric excess than the starting material (Scheme 14) [16]. The use of more flexible chiral 

auxiliaries like menthol on a carboxylic acid substituent gave lower diastereoselectivities in the 

formation of [5]- and [6]helicenes [45]. 
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Scheme 13. Examples from ref. [43]. In A) the reaction follows the natural cyclization path 

but the chloro-group prevents the 50:50 product mixture from meta-methyl. In B) the 

chloro-groups blocks the preferred cyclization path and forces the product formation. 
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Scheme 14. Synthesis of a chiral helicene-system obtained with a double Mallory-reaction 

with Br as a blocking group. The two chiral groups get placed on the outside of the 

helicene to avoid unnecessary bending of the aromatic system [16]. 
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The reaction has lately also made its way into material science [46,47]. It is appropriate to end this 

review with a series of papers by Mallory [48–50], the latest 37 years after the publication of the use of 

iodine as a catalyst [3]. Here [48] steric hindrance allows formation of carbon-ribbons (phenacenes) 

(Scheme 15): 
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Scheme 15. Photochemical synthesis of phenacenes. 
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Appendix 1. Oxidative photocyclization, original conditions. 

Staring material Conditions Products Reference 

Me

 

0.3 eq. I2, 

Cyclohexane, 

hν = ? 
Me

 71% 

 [51] 
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Me

MeMe

Me

 

0.5 eq. I2, 

Cyclohexane, 

hν = 24 h 

(42 mmol/L) 

Me

MeMe

Me

 62% 

 [52] 

OMe

OMe

OMe

MeO

 

Cat. I2, 

Ethanol, 

hν = 8 h 

OMe

OMe

OMe

MeO

54% 

 [53] 

OC6H13

Me

OC6H13  

0.67 eq. I2, 

Cyclohexane, 

hν = 47 h 
OC6H13

Me

OC6H13 75% 

 [54] 

Me

CO2Me  

0.3 eq. I2, 

Cyclohexane, 

hν = ? 
Me

CO2Me 75% 

 [51] 

MeO2C CO2Me  

Cat. I2, 

Toluene, 

hν = 24 h 
MeO2C CO2Me  52% 

 [55] 

EtO2C CO2Et  

0.5 eq. I2, Toluene, 

hν = 3 days 

EtO2C CO2Et  49% 

 [56] 

CO2Me

MeO OMe  

Cat. I2, 

Methanol, 

hν = 30 h 

CO2Me

MeO OMe 85% 

 [57] 

CO2Me

MeO OMe  

1 eq. I2, Diethylether/ 

DCM, 

hν = ? 

CO2Me

MeO OMe 85% 

 [58] 

Me

Me

Me

OMe

OMe  

Cat. I2, Cyclohexane, 

hν = 7 h 

Me

Me

Me

OMe

OMe 72% 

 [59] 

Me

Me

Me

OMe

OMe

OAc

 

Cat. I2, Cyclohexane, 

hν = 2 h 

Me

Me

Me

OMe

OMe

OAc

72% 

 [59] 
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MeO

MeO MeO OMe

CO2Me

 

Cat. I2, Diethylether, 

hν = 3 h MeO

MeO MeO OMe

CO2Me

 
54% 

 [60] 

MeO

MeO MeO OMe

CONH2

 

Cat. I2, Diethylether, 

hν = 3 h MeO

MeO MeO OMe

CONH2

 
40% 

 [60] 

HN CO2Et

 

Cat. I2, Diethylether/ 

DCM, 

hν = 2 h 

HN CO2Et

80% 

 [57] 

N

O

Me

MeO

iPrO

MeO OMe

 

Cat. I2, Diethylether/ 

DCM, 

hν = 5 h 

N

O

Me

MeO

iPrO

MeO OMe

41% 

 [61] 

HN

O

Me
 

Cat. I2, Diethylether,  

hν = 2 h 
HN

O

Me
 65% 

 [62] 

MeO

OMe  

Cat. I2, Cyclohexane,  

hν = 3 h 

MeO

OMe  60% 

 [63] 

N

N
N

N

 

Cat. I2,  

DCM/ 

Cyclohexane,  

hν = 1 h 

N

N
N

N

97% 

 [64] 

Me Me

 

0.25 eq. I2, Biacetyl,  

Toluene,  

hν = 40 min. 

Me Me

43% 

 [65] 
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O

CO2Me

CO2Me

F F

FF

 

Cat. I2, Cyclohexane,  

hν = ? 

O

CO2Me

CO2Me

F F

FF

72% 

 [66] 

BrBr

 

Cat. I2, Cyclohexane, 

hν = ? 

Br Br

20% 

 [67] 

 

Cat. I2,  

Toluene,  

hν = 12 h 

16% 

 [68] 

MeO OMe

OMe

CO2Me

The 

free acid did not react. 

Cat. I2,  

Benzene,  

hν = 24 h 

MeO OMe

OMe

CO2Me

78% 

 [69] 

MeO OMe

OMe

CN

 

Cat. I2,  

Benzene,  

hν = 2 days 

MeO OMe

OMe

CN

78% 

 [69] 

ClCl

NHN

 

Cat. I2,  

Methanol,  

hν = 21 h 

ClCl

NHN

 95% 

 [70] 
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O O  

2 eq. I2,  

Benzene,  

hν = 8 h 

O O 53% 

 [71] 

O

O

Br  

Cat. I2,  

Benzene,  

hν = 24 h 

O

O

Br  57% 

 [72] 

O O  

0.5 eq. I2, Benzene,  

hν = 15 h 

O O  82% 

 [73] 

O O

Cl

 

0.5 eq. I2, Benzene,  

hν = 36 h 

O O

Cl

58% 

 [73] 

HN

O

 

Cat. I2,  

Benzene,  

hν = 4 h 

HN

O

67 % 

 [74] 

MeO

 

Cat. I2,  

Benzene,  

hν = 12 h 

OMe

37% 

 [47] 

F

F

Me

 

Cat. I2, Cyclohexane,  

hν = ? 

F F

Me

48% 

 [75] 

 

 

 



Molecules 2010, 15              

 

 

4354

Appendix 1. Cont. 

F

CN

 

Cat. I2, Cyclohexane,  

hν = ? 

F

CN

92% 

 [75] 

CO2Et

 

Cat. I2, Cyclohexane,  

hν = 40 h 

CO2Et

73% 

 [76] 

Me

Me

 

Cat. I2,  

Benzene,  

hν = 7 days 

Me

Me

16% 

 [77] 

O O

O

O

O

O

 

Cat. I2,  

Acetone,  

hν = 16 h 

O

O

O

O

O

O 26% 

 [78] 

Br Me

 

1 eq.I2, 

Toluene/Hexanes, hν = 

60 h 

Br Me

67% 

 [48] 

Appendix 2. Oxidative photocyclization, Katz’s conditions. 

Staring material Conditions Products Reference 

MeO

Br  

I2, 

Methyloxirane, 

Toluene,  

hν = 1.5 h 

MeO

Br  67% 

 [38] 

O O

 

I2, 

Methyloxirane, 

Toluene,  

hν= 4 h 
O O

91% 

 [32] 
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OH

OMeOMeMeO

MeO

 

I2, 

Methyloxirane, 

Benzene,  

hν = 3 h 

MeO

MeO OMe OMe

OH

68% 

 [79] 

Me

OC6H13C6H13O

C6H13O Br

 

I2, 

Methyloxirane, 

Cyclohexane, 

hν = 4 h 

Br

Me
C6H13O

C6H13O

C6H13O 57% 

 [24] 

Me

OC12H25C12H25O

C12H25O Br

 

I2, 

Methyloxirane, 

Cyclohexane, 

hν = 12 h 

Br

Me
C12H25O

C12H25O

C12H25O 50% 

 [80] 

Br Br

 

I2, 

Methyloxirane, 

Toluene,  

hν = ? 

Br Br

 
50% 

 [81] 

OMe OMe  

I2, 

Methyloxirane, 

Toluene,  

hν = ? 
MeO OMe  

42% 

 [82] 

Me

 

I2, 

Methyloxirane, 

Benzene,  

hν = 40 h 

Me

54% 

 [83] 

Br

Cl

 

I2, 

Methyloxirane, 

Light 

petroleum,  

hν = 2 h 
Br

Cl

 80% 

 [84] 
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OMe

 

I2, 

Epoxybutane, 

Toluene,  

hν = 1.5 h 

OMe

59% 

 [23] 

Me

OMe

OMe

 

I2, 

Epoxybutane, 

Benzene,  

hν = 2 h 
Me

OMe

OMe

92% 

 [85] 

Me

OC10H21

OC10H21

OC10H21

Br

 

I2, 

Methyloxirane, 

Cyclohexane, 

hν = 50 h 

Me

OC10H21

OC10H21

OC10H21

Br

72% 

 [86] 

CO2Me

OMe

OMe  

I2, 

Epoxybutane, 

Benzene,  

hν = 8 h 

CO2Me

OMe

OMe  90% 

 [87] 

 

I2, 

Methyloxirane, 

Benzene,  

hν = 5 h 
 62% 

 [88] 

t-Bu

t-Bu  

I2, 

Methyloxirane, 

Benzene,  

hν = 6 h 

t-Bu

t-Bu  76% 

 [89] 

 

I2, 

Epoxybutane, 

Diethylether/ 

Cyclohexane, 

hν = 8 h 
95% 

 [90] 
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OC12H25

C12H25O

OC12H25

OC12H25

OC12H25

OC12H25OC12H25

C12H25O

 

I2, 

Methyloxirane, 

Benzene,  

hν = 12 h 

OC12H25

C12H25O

OC12H25

OC12H25

OC12H25

OC12H25OC12H25

C12H25O

 
70% 

 [46] 

Appendix 3. Elimination photocyclizations. 

Staring material Conditions Products Reference 

OMe

Me
 

Cat. H2SO4,  

t-BuOH/ 

Benzene,  

hν = 175 h 
Me  53% 

 [29] 

OMe

 

Cat. H2SO4,  

t-BuOH/ 

Benzene, hν = 

26 h 
 87% 

 [29] 

OMe

Ts

MeO  

5 eq. DBU, 

THF,  

hν = 11 h 
OMeMeO  100% 

 [30] 

N
Me

CO2Me

Ts

N
MOM

CO2Me  

5 eq. DBU, 

THF,  

hν = 6.5 h 

N

N
Me

MOM

CO2Me
CO2Me  95% 

 [30] 

Br

MeO

OMe

OAc

 

t-BuOK,  

t-BuOH/ 

Toluene,  

hν = 6 h 

MeO

OMe

OAc

60% 

 [31] 

MeO

MeO

N
COOEt

Me

Br

OMe

OMe  

t-BuOK,  

t-BuOH/ 

Toluene,  

hν = 8 h 

MeO

MeO

MeO

OMe

N
COOEt

Me

45% 

 [91] 
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HO

MeO N
CO2Et

OR

Br

OMe

R= Bn: No reaction; R=H: Reacts  

t-BuOK,  

t-BuOH/ 

Toluene,  

hν = 10 h 

HO

MeO N
CO2Et

OH

OMe

 41% 

 [92] 

O

O N

Br
HO

H3CO

CO2Et

 

t-BuOK,  

t-BuOH/ 

Toluene,  

hν = 15 min. (?) 

O

O N

HO

H3CO

CO2Et

54% 

 [93] 
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