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Abstract: In order to prevent restenosis after angioplasty or stenting, one of the most 

popular targets is suppression of the abnormal growth and excess migration of vascular 

smooth muscle cells (VSMCs) with drugs. However, the drugs also adversely affect 

vascular endothelial cells (VECs), leading to the induction of late thrombosis. We have 

investigated the effect of epigallocatechin-3-gallate (EGCG) on the proliferation and 

migration of VECs and VSMCs. Both cells showed dose-dependent decrease of viability in 

response to EGCG while they have different IC50 values of EGCG (VECs, 150 M and 

VSMCs, 1050 M). Incubating both cells with EGCG resulted in significant reduction in 

cell proliferation irrespective of cell type. The proliferation of VECs were greater affected 

than that of VSMCs at the same concentrations of EGCG. EGCG exerted differential 

migration-inhibitory activity in VECs vs. VSMCs. The migration of VECs was not 

attenuated by 200 M EGCG, but that of VSMCs was significantly inhibited at the same 

concentration of EGCG. It is suggested that that EGCG can be effectively used as an 
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efficient drug for vascular diseases or stents due to its selective activity, completely 

suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs 

migration in blood vessels. 

Keywords: eigallocatechin-3-gallate; vascular endothelial cells; vascular smooth muscle 

cells; proliferation; migration 

 

1. Introduction 

Intimal hyperplasia leading to restenosis is the major process that limits the success of 

cardiovascular intervention. Neointimal hyperplasia in response to arterial injury is a complex process, 

classically believed to be the consequence of vascular smooth muscle cell (VSMC) proliferation and 

migration, and the synthesis of extracellular matrix [1]. The neointimal lesion induced by vascular 

injury evolves as a result of the synergistic interplay between the endothelial cell (EC) layer, platelets 

and VSMCs [2]. Direct injury to vascular cells is an important stimulus for the production of 

autocrine-paracrine growth factors, such as PDGF-AA, TGF-1, basic fibroblast growth factor and 

insulin-like growth factor I, that promote the proliferation of VSMCs, whereas blood-borne factors 

(e.g., PDGF-BB and thrombin) appear to be more important in promoting the migration of VSMCs 

into the subintimal space [3-5]. There have been reported various therapeutic methods including 

chemotherapy, brachytherapy and gene therapy in order to suppress intimal hyperplasia [6-8]. 

However, some treatments were effective in in vitro or animal studies, whereas other studies have 

found little or no benefit in clinical applications [9]. 

Polyphenols with strong antioxidant properties, derived from diverse dietary foods or beverages 

such as tea, grape, turmeric, etc, have shown cancer chemopreventive and chemotherapeutic effects in 

many cell culture systems and animal tumor bioassays [10-12]. Among various nutraceutical 

ingredients, epigallocatechin-3-gallate (EGCG), the most abundant and most active catechin derivative 

in green tea, predominantly accounts for the biological effects of green tea [10]. Epidemiological and 

experimental studies have established a positive correlation between the consumption of green tea and 

protection against atherosclerosis and cardiovascular diseases [13]. The underlying mechanisms of 

action involve vascular and myocardial effects of tea constituents [14]. Mechanisms that have been 

suggested as being involved in the antiatherosclerotic effects of green tea consumption primarily entail 

antioxidative, anti-inflammatory, antiproliferative and antithrombotic properties, as well as beneficial 

effects on endothelial function [13-15]. Many in vitro and in vivo studies have shown that green tea 

polyphenolic compounds (GTPCs) has potent antioxidative, radical-scavenging metal ions-chelating, 

and redox-sensitive transcription factors-inhibiting properties, which may partially account for their 

antiatherogenic effects [15-17]. 

In the present study, we investigated the effect of EGCG on the cellular behaviors of vascular cells, 

ECs and SMCs although they were originated from different species, i.e. human and rat, respectively. 

Our data exhibit that the proliferation of both cells is dose-dependently decreased in response to 

increasing concentrations of EGCG, while the migration responses to EGCG are completely different 
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between VECs and VSMCs. This differential effect of EGCG may be exploited to develop strategies 

for the prevention of neointima formation and subsequent restenosis by EGCG. 

2. Results and Discussion 

2.1. Immunocytochemical Characterization of VSMCs 

Figure 1(a) shows VSMCs growing out of the tunica media of rat inferior vena cava. The cells were 

cultured for 5 d after isolation and became confluent after further 2 d of cultivation. While the 

confluent cells were sub-cultured, the tissue explants were removed by washing with PBS. Through 

several passages, the remaining cells were further sub-cultured [Figure 1(b)]. The initial shape of the 

isolated cells was fibroblast-like, but at over 90% confluent condition, the cell shape became more 

spindle-like, showing that they were in the process of differentiation to SMCs [18]. At passage 5, the 

primarily cultured cells were immunostained for -smooth muscle actin (SMA), well-known marker 

for SMCs differentiated from myofibroblasts, together with nucleus counterstaining by propidium 

iodide (PI). In Figure 1(c), FITC-conjugated SMA was intensively observed in the cells, suggesting 

that the cells had been differentiated into SMCs [18]. 

Figure 1. Optical microscopic photographs of primarily cultured VSMCs, (a) growing out 

of smooth muscle tissue explant of rat inferior vena cava (at 5 d after isolation) and (b) 

cultured for 4 d at passage 4. (c) Fluorescence microscopic photograph of VSMCs cultured 

for 2 d at passage 5, immunostained with FITC–SMA (green) and counterstained with PI 

(red) for nuclei. The micrographs (×200) shown in this figure are representative of six 

independent experiments, showing similar results. 

 

2.2. Cytotoxicity Profiles of EGCG to VECs and VSMCs 

As shown in Figure 2(a), the relative viability of VECs treated with increasing concentrations (0 ~ 

1,000 M) of EGCG was decreased in a dose-dependent manner (from 31.3 M EGCG). On the 

contrary, the cytotoxicity profile (0 ~ 5,000 M EGCG) of VSMCs was quite different from that of 

VECs. They were still viable even at over 300 M EGCG and exhibited an abrupt decrease in the cell 
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viability from 625 M (Figure 2B). It was also revealed and the IC50 values of EGCG to VECs and 

VSMCs were determined as approximately 150 M and 1,050 M, respectively [Figure 2(c)]. 

Figure 2. Cytotoxicity profiles of EGCG against cultured VECs (a) and VSMCs (b). 

Cytotoxicity was measured by CCK-8 assay, as described in Experimental section. (c) IC50 

values of EGCG to VECs and VSMCs were determined from their respective cytotoxicity 

profiles. 

 

2.3. Effects of EGCG on Proliferation of VECs and VSMCs 

To investigate whether EGCG renders the proliferation of FBS-stimulated both types of vascular 

cells attenuated or not, their proliferation patterns in response to EGCG were examined. Incubating the 

cells with EGCG resulted in significant (p < 0.05) reduction in cell growth irrespective of cell type 

[Figure 3(a)]. The proliferation of VECs were greater affected than that of VSMCs at the same 

concentrations of EGCG, suggesting that EGCG exerts potent antiproliferative activity attributed to its 

molecular structure with para hydroxyl and galloyl groups responsible for antioxidant effects (Figure 

3B) [19]. Our previous study related to the antioxidative activity of GTPCs had already demonstrated 

that oxidative stress induced by reactive oxygen species was effectively prevented by GTPC treatment 

in human microvascular ECs [20]. A previous study regarding cancer therapy reported that EGCG had 

selective anti-angiogenic effects on tumor-associated ECs and endothelial progenitor cells [21]. 

VSMC proliferation and neointima formation are important events in the pathophysiological course 

of atherosclerosis and restenosis after balloon angioplasty. After endothelial cell activation, locally 

produced growth factors and cytokines mediate an inflammatory response within the vessel wall, 

which involves monocyte recruitment, stimulation of macrophage proliferation, migration of VSMCs 

from the medial layer of the vessel and finally deposition of collagen and other extracellular matrix 

proteins leading to the formation of a fibrous cap [22]. EGCG has been shown to have protective 

effects on the cardiovascular system, including anti-atherosclerotic and anti-hypercholesterolemic 
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effects [23]. A number of studies have reported that EGCG inhibit VSMC proliferation and 

hypertrophy and block the stimulation by serum or growth factors [24,25]. In VSMCs, EGCG has been 

shown to inhibit the angiotensin II-induced phosphorylation of ERK 1/2, JNK 1/2, or p38 MAPK [26] 

and to reduce increases in cytosolic free Ca2+ concentration induced by angiotensin II [27]. 

Figure 3. (a) Effects of EGCG on proliferation of VECs and VSMCs. (b) Chemical 

structures of EGCG, the main polyphenolic constituents of green tea. 

 

2.4. Differential Effects of EGCG on Migration of VECs vs. VSMCs 

In vitro migration assays revealed that although VECs were exposed to EGCG with sufficient 

concentration and duration (200 M and up to 36 hr), the recovery of the scraped area was almost 

completed by the migrating cells covering the denuded space at 36 hr regardless of EGCG treatment 

[Figure 4(a)]. The initial denuded area of non-treated cells was 0.864 ± 0.115 mm2, and about 5 % of 

the area remained uncovered after 36 hr of incubation with 35.7 ± 5.9 m/hr of the average migration 

speed [Figures 4(b) and 4(c)]. In the case of EGCG-treated VECs, the denuded area closure showed 

appreciably similar pattern to that of non-treated cells except for slightly reduced migration speed at 24 

hr. The denuded area was gradually reduced with the progress of the incubation period to about 7% of 

initial area showing 33.0 ± 7.3 m/hr of the average migration speed. 

On the contrary, the migration pattern of VSMCs in response to 200 M EGCG was quite different 

from that of VECs. The denuded area in EGCG-treated cells showed appreciably delayed closure and 

still remained unpopulated through 12 to 36 hr, even though cells at the edge of the scrape showed 

forward movement [Figure 5(a)]. The first evidence of cell ingrowth in EGCG-treated VSMCs did not 

appear until around 12 hr and scrape recovery was not complete until sometime between 24 hr and  
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36 hr after EGCG treatment. Non-treated VSMCs normally migrated into the scraped space after 36 hr 

of denuding leaving uncovered area of about 16% with 37.0 ± 5.5 m/hr of the average migration 

speed [Figures 5(b) and 4(c)]. 

Figure 4. Effect of EGCG on migration of VECs. (a) Microscopic photographs (×40) of 

cells migrating into denuded areas (representative of six independent experiments, showing 

similar results). Uncovered area (b) and migration speed (c) were calculated by image 

processing software. The data are reported as means ± SD (n = 6) and analyzed by a Tukey 

HSD test. The values marked with an asterisk are significantly different from 0 hr  

(* p < 0.05). 

 

 

Since the doubling time for these VSMCs with FBS stimulation was about 36 ~ 40 hr (our 

unpublished observation), the recovery in non-treated cells at 36 hr implied that the cells had 

extensively migrated from the edge of the scrape into the denuded space prior to the onset of cell 
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proliferation. However EGCG-treated cells did not show any migration prior to the onset of cell 

proliferation and ingrowth was delayed even after the onset of cell proliferation due to EGCG. The 

EGCG-treated cells covered only 26% of the initial scraped area even after 36 hr. There was 

significant (p < 0.05) difference in the uncovered area and migration speed between the non-treated 

and EGCG-treated cells at 24 hr and 36 hr. 

Figure 5. Effect of EGCG on migration of VSMCs. (a) Microscopic photographs (×40) of 

cells migrating into denuded areas (representative of six independent experiments, showing 

similar results). Uncovered area (b) and migration speed (c) were calculated by image 

processing software. The data are reported as means ± SD (n = 6) and analyzed by a Tukey 

HSD test. The values marked with an asterisk are significantly different from 0 hr or 

average speed (* p < 0.05). The values marked with a sharp are significantly different 

between non-treated and EGCG-treated at the same time (# p < 0.05). 

 

 



Molecules 2010, 15              

 

 

8495

The proliferation of VECs showed a dose-dependent inhibition in response to EGCG like VSMCs, 

while VECs migration did not. These peculiar phenomena of VECs to EGCG could not be clearly 

elucidated here. However, it seems to be in part explained by the evidence that the type of matrix 

metalloproteinases (MMPs) directly involved in cell migration was completely different between 

VECs and VSMCs although cell cycle progress closely related to cell proliferation was negatively 

affected by EGCG in both cells [28]. MMP-2 and MMP-9 play key roles in migration and matrix 

invasion of VSMCs as gelatinase A and gelatinase B, respectively [29]. MMP-1 is closely involved in 

VECs migration as a collagenase [30]. In the case of MMP-13, it is mainly related to macrophage 

stimulation in vulnerable human atheromatous plaques by increasing collagenolysis as interstitial 

collagenases-1 and -3 [31]. 

3. Experimental 

3.1. Cell Cultures 

Animal care followed the criteria of the Animal Care Committee of Yonsei University College of 

Medicine for the care and use of laboratory animals in research. All experiments related to surgical 

procedures and treatments were performed in accordance with the guidelines of the Animal 

Experiment Committee of Yonsei University College of Medicine. VSMCs were isolated by limited 

enzymatic digestion from the tunica media of inferior vena cava of male young adult (9 ~ 10 wk old) 

Sprague-Dawley rats (280 ~ 300 g in weight, Samtako Inc., Gyeonggi-do, Korea) as previously 

reported [32,33]. The primarily cultured VSMCs were maintained in a complete RPMI 1640 medium 

containing 11.1 mM D-glucose (Sigma–Aldrich Co., St. Louis, MO, USA), supplemented with 10% 

fetal bovine serum (FBS, Sigma–Aldrich) and 1% antibiotic antimycotic solution (including 10,000 

units penicillin, 10 mg streptomycin and 25 g amphotericin B per ml, Sigma–Aldrich) at 37 °C and 

5% CO2 in a humid environment. Studies were performed with the cells between third to fifth passage. 

VECs were purchased from Lonza (human umbilical vein ECs, Walkersville, MD, USA) and 

cultured in endothelial cell basal medium-2 containing 11.1 mM D-glucose (Lonza) supplemented with 

2% FBS (Lonza), EC growth supplements (Lonza; hEGF, hydrocortisone, hEGF, VEGF, hFGFB, R3-

IGF-1 and ascorbic acid) and 1% antibiotic antimycotic solution (Sigma–Aldrich) at 37 °C in a 

humidified atmosphere of 5% CO2 in air as previously reported [34]. Studies were performed with the 

cells between passages 3 to 5. 

3.2. Morphological and Immunocytochemical Analyses of Primarily Cultured VSMCs 

On day 5 after seeding the minced smooth muscle tissue explant onto a culture flask and on day 4 

after the forth passage, the morphologies of the primarily cultured cells were respectively observed 

using a phase-contrast microscope (TE 300, Nikon, Osaka, Japan). Prior to seeding VSMCs into well 

plates, the cells at the fifth passage were characterized by a standard immunostaining method where 

mouse monoclonal anti--SMA antibody conjugated with FITC isomer I (Sigma–Aldrich) and PI 

(Sigma–Aldrich) for nucleus counterstaining were combined with fluorescence microscopy (Biozero – 

8000, Keyence, Osaka, Japan) as previously described [32,33]. 
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3.3. Cytotoxicity of EGCG to VECs and VSMCs 

The number of viable cells was quantified indirectly using a highly water soluble tetrazolium salt 

[WST-8, 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, mono-

sodium salt] (Dojindo Lab., Kumamoto, Japan), reduced to formazan dye by mitochondrial 

dehydrogenases. Thus, WST-8 assay was used to estimate the cytotoxicity of EGCG to VECs and 

VSMCs. Each cell culture with 2  104 cells/well as an initial seeding number was treated with 

increasing concentrations of EGCG and then incubated with WST-8 for the last 4 hr of the culture 

period (24 hr) at 37 °C in the dark. In order to avoid a direct reaction between EGCG and WST-8, the 

culture was thoroughly washed followed by the medium exchange before adding WST-8. Parallel sets 

of wells containing freshly cultured, non-treated cells were regarded as the controls. Absorbance was 

determined at 450 nm using an ELISA reader (Spectra Max 340, Molecular Device Inc., CA, USA). 

The relative cell viability (% of control) was expressed as the percentage of the optical densities in 

EGCG-treated wells to the optical density in a non-treated well. From the cytotoxicity profile, IC50 

value (M) was defined as the concentration of EGCG in culture media which decreases cell viability 

down to 50%. 

3.4. EGCG Treatments 

EGCG (Teavigo™, ≥98% purity) was purchased from DSM Nutritional Products (Basel, 

Switzerland). In order to examine the effects of EGCG on the proliferation of VECs and VSMCs, both 

cells were seeded into well plates and then incubated in the presence of increasing concentrations (0 ~ 

400 M) of EGCG in their respective complete medium for 24 hr. Upon determining the differential 

effects of EGCG on the migration of VECs vs. VSMCs, each cell was treated with 200 M EGCG in 

each complete medium for up to 36 hr. 

3.5. Cell Proliferation Assay 

Cell proliferation was found to be directly proportional to the metabolic reaction products obtained 

in WST-8. As describe above, the proliferation of VECs and VSMCs exposed to increasing 

concentrations of EGCG were determined by WST-8 assay. Both cells were treated with EGCG and 

then incubated with WST-8 for 4 hr followed by measuring absorbance at 450 nm. 

3.6. Cell Migration Assay 

As described in our previous studies [35,36], in vitro migration assays were performed. In brief, 

VECs or VSMCs (1  105 cells/mL) were seeded in 4-well chambered cover-glass slide and grown to 

confluence overnight. Mono-layers were scraped (denuded) using a 1 mL plastic micropipette tip, and 

200 M EGCG was treated to the confluent cell layers. EGCG-treated or non-treated cells were 

incubated in a self-designed CO2 mini-incubator placed on the stage of an inverted system microscope 

(IX70, Olympus Optical Co., Osaka, Japan) and then visualized for cells migrating into denuded space 

by a CCD camera (Olympus Optical Co.) attached to the microscope. Migration of cells into denuded 

areas was monitored for up to 36 hr. The average area covered by migrated cells and the migration 
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speed of an individual cell were calculated by using image processing software (MATLAB V5.3, 

Mathwork Inc., Natic, MA, USA). 

3.7. Statistical Analysis 

All variables were tested in three independent cultures for each experiment, and each experiment 

was repeated twice (n = 6). The results are reported as a mean ± standard deviation (SD) compared 

with the non-treated controls. A one-way analysis of variance (ANOVA), which was followed by a 

Tukey HSD test for the multiple comparisons, was used to detect the effects of EGCG on VECs and 

VSMCs. A p value < 0.05 was considered statistically significant. 

4. Conclusions 

In conclusion, both vascular cells were significantly affected by EGCG of which the higher 

concentrations (over 200 M) inhibited the more cell proliferation. However, EGCG exerted 

differential migration-inhibitory activity in VECs vs. VSMCs. EGCG-mediated inhibition of migration 

was found to occur at much higher dose of EGCG in VECs as compared to VSMCs. Although this 

kind of peculiar response of VECs to EGCG could not be obviously explained at present, it would be 

suggested that EGCG might be exploited as an efficient drug for a stent due to its selective activity, 

completely suppressing the proliferation and migration of VSMCs, but not adversely affecting VECs 

migration in blood vessels. 
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