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Abstract: Natural products have widespread biological activities, including inhibition of 
mitochondrial enzyme systems. Some of these activities, for example cytotoxicity, may be 
the result of alteration of cellular bioenergetics. Based on previous computer-aided drug 
design (CADD) studies and considering reported data on structure-activity relationships 
(SAR), an assumption regarding the mechanism of action of natural products against 
parasitic infections involves the NADH-oxidase inhibition. In this study, chemometric 
tools, such as: Principal Component Analysis (PCA), Consensus PCA (CPCA), and partial 
least squares regression (PLS), were applied to a set of forty natural compounds, acting as 
NADH-oxidase inhibitors. The calculations were performed using the VolSurf+ program. 
The formalisms employed generated good exploratory and predictive results. The 
independent variables or descriptors having a hydrophobic profile were strongly correlated 
to the biological data. 
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1. Introduction  

The use of drug substances derived from plants, associated to their derivatives and synthetic 
compounds deduced from natural product precursors, represent a major part of today's pharmaceutical 
market. Natural products provide opportunities in drug discovery, leading to a detailed understanding 
of biological pathways and revealing the functions of involved enzymes or receptors.  The inhibition of  
NADH-oxidase and others mitochondrial enzyme systems may be an underlying mechanism for 
cytotoxicity and other biological effects of natural products [1-5]. 

Flavonoid compounds and analogues are naturally present in vegetables, fruits, and beverages and 
they are considered important components of the daily Western diet. They are also common 
constituents of medicinal plants, and the therapeutic effects of many traditional medicines have been 
attributed to these phytochemicals. These compounds exert distinct biological effects, particularly, 
acting as antioxidants and prophylactic agents against several diseases, including Chagas’ disease [1-5]. 

Chagas' disease (also called American trypanosomiasis) is a human tropical parasitic disease which 
occurs in the Americas, particularly in South America (Figure 1) [6]. The big social problem caused by 
this infection, in addition to the restricted number of drugs available and their serious side effects, as 
well as the emergence of new drug resistant forms, support the research for new antiprotozoal drugs.  

 
Figure 1. Geographic distribution of Chagas’ disease. 

 
 

In several structure-activity studies, flavonoids have been tested considering their ability to inhibit 
key enzymes in T. cruzi mitochondrial respiratory pathway. The regions highlighted in the structure 
(see Figure 2) are: C2,3-double bond, C4-keto group and 3’,4’,5’-trihydroxy-B-ring, which are 
significant chemical features for those natural products are able to present a strong inhibition of 
NADH-oxidase [1-4], a potential key enzyme of mitochondrial respiratory pathway in T. cruzi. 

Based on previous computer-aided drug design (CADD) studies [7,8] and regarding reported data 
on structure-activity relationships (SAR), an assumption concerning the action mechanism of natural 
products in parasitic infections was formulated, and it probably involves the T. cruzi NADH-oxidase 
inhibition. CADD methodologies associated to chemometric tools might be helpful to choose the most 
promising drug candidates.  
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Figure 2. Chemical structure of flavones. 

 

Consensus PCA (CPCA) [9], Principal Component Analysis (PCA) and Partial Least Squares (PLS) 
regression are chemometric tools used for extracting and rationalizing the information from any 
multivariate description of a biological system. CPCA and PCA are part of an exploratory data 
analysis where graphical techniques provide a maximization of insights into a data set, pointing out 
important variables, detecting outliers and anomalies, and developing parsimonious models [10-14]. 

In this study, it was investigated a set of forty natural compounds, including flavonoids, flavonols, 
chalcones, diterpenes, isoflavones, and catechin, which are inhibitors of the T. cruzi NADH-oxidase. 
Molecular properties from 3D molecular fields of interaction energies (GRID approach) as well as the 
correlation of 3D molecular structures with physicochemical and pharmacokinetic properties were 
calculated. Chemometric tools as CPCA, PCA, and PLS regression were used to treat the resulting 
data, employing the program VolSurf+ [10-14]. 

2. Results and Discussion 

2.1. CPCA 

A preliminary exploratory analysis, CPCA, considering 128 independent variables or descriptors 
was developed. The preprocessing was performed (autoscaling), and 13 blocks of descriptors were 
calculated. Regarding Table 2, PC1 and PC2 explained a cumulative of 71.23% of total variance from 
the original data. The block formed by H2O (W1-W8, CW1-CW8, IW1-IW4) and DRY (D1-D8, CD1-
CD8, ID1-ID4) descriptors had higher weights as presented in Figure 3. 

Figure 3. Plot of block weights considering PC or factor 1 and 2. 
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Table 2. Variance explained by CPCA. 

PC % explained variance from original data 
1 38.99 
2 32.24 
3 7.53 
4 3.87 
5 2.52 

 
2.2. PCA 

The PCA results were obtained regarding the interaction of 3D structures and a GRID force field, 
using the H2O and DRY probes. Forty molecular descriptors were calculated. The data were 
autoscaled (preprocess). Observing Table 3, PC1 and PC2 explained 76.55% of total variance from the 
original data. The scores plot showed a good discrimination between active (A), medium (M) and 
inactive (I) class of compounds, as presented in Figure 4. 
 

Figure 4. Scores plot from PCA, where active compounds, compounds having medium 
activity, and inactive compounds are represented as A, M, and I, respectively. 

 

Table 3. Variance explained by PCA. 

PC % explained variance from original data 
1 43.72 
2 32.83 
3 10.02 
4 5.95 
5 2.07 
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2.3. PLS 

The training set is composed by thirty compounds and the test set is constituted of ten compounds 
(see Table 1), rationally selected as previously reported in Golbraikh et al. [28]. The autoscaling 
preprocess was also applied to the PLS discriminant analysis. The PLS analysis using the VolSurf 
descriptors as the X-block data and the NADH-oxidase inhibition values as dependent variables or Y-
block generated significant statistical measures (leave-one-out cross-validation correlation coefficient, 
qcv

2 = 0.899; and regression correlation coefficient, r2 = 0.931) when interactions fields were calculated 
using water and hydrophobic probes (see Figure 5). The maximum q2 value (0.899) was obtained using 
three latent variables (LV). Figure 5 shows that models containing four LVs presented an increment in 
r2 value, but the q2 value began to decrease. The model generated with three LVs explained 86.61% of 
total variance from the original data (see Table 4). 

Figure 5. Plot of r2 and q2 versus the number of latent variables (LV) considering the PLS models. 

 

Table 4. Variance explained PLS models.  

LV % explained variance from original data 
1 32.08 
2 36.99 
3 17.54 
4 3.34 

 
The PLS t1-t2 scores plot of the resulting model is shown in Figure 6. Regarding the figure, the 

selected model provides a good discrimination between active and inactive class of compounds. The 
PLS coefficients found for the calculated VolSurf descriptors considering the global model (training 
and test sets combined) are presented in Figure 7. The coefficients plot indicates that variables 
presenting a hydrophobic profile, such as W1-8, CD1-8, CW1-8, D1-8, IW1-4, and ID1-4, have higher 
influence in the T. cruzi NADH-oxidase inhibition. 
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Figure 6. Discriminant PLS t1-t2 scores plot for the global model (A = active; I = inactive). 

 

Figure 7. Coefficients plot generated from the selected PLS model. 

 
 
The external predictability (r2

ext = 0.703) was calculated using a test set containing ten compounds 
(7, 12, 14, 15, 19, 24, 30, 35, 36 – see Table 1). The active and inactive compounds were also perfectly 
distinguished. 

 
2.4. Discussion  

 
The claim used was an assumption regarding the mechanism of action of natural products against 

parasitic infections was formulated and involves the NADH-oxidase inhibition, a new hypothesis. The 
VolSurf descriptors were obtained from the interaction with water and hydrophobic probes calculated 
for all the molecules [10,12]. 

Regarding the CPCA formalism, a hundred and twenty-eight independent variables were taken into 
account and no biological data was given as input to the model. The orthogonal properties of CPCA 
algorithm were explored. The use of CPCA in decentralized process monitoring and diagnosis is 
derived in terms from the regular PCA scores and residuals. Two significant principal components 
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(PCs) were found by a cross-validation technique, explaining about 75% of the total variance from 
original data (Table 2).  

In CPCA we observed the super block-weights and, the importance of the each block has an 
influence in the calculations by comparing several blocks of descriptor variables measured on the same 
objects. Thirteen blocks of descriptors were calculated and their weights were plotted considering two 
factors: PC1 and PC2. Summarizing the observations in Figure 3, the DRY and H2O blocks presented 
significant weights in relation to PC2 and PC1. As already mentioned, the CPCA algorithm is basically 
equivalent to the regular PCA, but new definitions of block and variable of larger contributions were 
investigated in PCA and PLS. 

The next step was the PCA method, where the 3D interaction energies calculated employing DRY 
and H2O probes in a GRID force field were considered, The PCA method was also applied to refine 
the data. The total number of descriptors calculated was forty. The findings generated by PCA were 
quite significant. PC1 and PC2 capture about 75% of the total variance from original data, using the 
leave-one-out (LOO) cross-validation technique (Table 3). There was a good classification between 
active and inactive compounds (see Figure 4). Defined clusters of active and inactive compounds were 
observed when the DRY end H2O VolSurf descriptors were used. This result indicates a strong 
predictability for the model.  

Then, the PLS regression were applied to construct models considering a training set of thirty 
compounds. A test set of ten compounds was used for external validation procedure. The test set 
compounds were randomly selected, but rationality was used to be certain that the set was 
representative regarding global activity and structural diversity (Table 1). The best model provided by 
PLS regression presented three LVs, r2 = 0.931, and q2

LOO = 0.899, reinforcing the quality of the 
generated physicochemical VolSurf descriptors and biological data used in this study. It was observed 
an increment of statistical indices up to three LVs. After that, even though the r2 value was increased, 
the q2 value began to decrease (Figure 5). The model selected indicated a good discrimination between 
the active and inactive compounds (Figure 6).  

The PLS scores plot demonstrates a quite good discrimination between highly and weakly active 
compounds in accordance to the significant statistical quality of the derived PLS model. In addition, 
that plot shows a very strong prediction power regarding the seven of the ten molecules from test set. 
The external predictability (r2

ext = 0.703) was calculated using a set of 10 compounds, which were not 
considered in the model construction. 

The VolSurf descriptors having a relevant impact in inhibiting NADH-oxidase are highlighted in 
the PLS coefficients plot (Figure 7). According to the loadings plot, those descriptors are the 
following:  W1-8, CD1-8, CW1-8, D1-8, IW1-4, and ID1-4. 

The variable W1-8 describes the molecular envelope which is accessible to and attractively 
interacts with water molecules. The volume of this envelope varies with the level of interaction 
energies. Hydrophilic descriptors computed from molecular fields of -0.2 to -1.0 kcal/mol account for 
polarizability and dispersion forces; descriptors from molecular fields of -1.0 to -6.0 kcal/mol account 
for polar and H-bond donor-acceptor regions [10]. 

CD1-8 represents the ratio of the hydrophobic surface over the total molecular surface. It is the 
hydrophobic surface per surface unit [10]. CW1-8 represents the ratio of the hydrophilic surface over 
the total molecular surface. In other words, it is the hydrophilic surface per surface unit. D1-8 uses a 
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probe called DRY to generate 3D lipophilic fields. In analogy to hydrophilic regions, hydrophobic 
regions may be defined as the molecular envelope generating attractive hydrophobic interactions [10].  

IW1-4 and ID1-4 express the unbalance between the centre of mass of a molecule and the 
barycentre of its hydrophilic or hydrophobic regions [10]. When referring to hydrophilic regions, 
integy moments (IW1-IW4) are vectors pointing from the centre of mass to the centre of the 
hydrophilic regions: high integy moments indicate a clear concentration of hydrated regions in only 
one part of the molecular surface, small indicate that the polar moieties are either close to the centre of 
mass or they balance at opposite ends of the molecule, so that their resulting baricentre is close to the 
centre of the molecule. When referring to hydrophobic regions, integy moments measure the unbalance 
between the centre of mass of a molecule and the baricentre of the hydrophobic regions [10]. 

A hydrophobic tendency in the most active compounds was observed, mainly because the positive 
correlation coefficients of D3 and D8 descriptors, whereas the hydrophilic profile of W1-8 contributes 
negatively to the biological activity. However, hydrophilic surfaces seem to be also favorable.  

Considering the positive coefficients found for the capacity factor variables (CW - H2O and CD – 
DRY), some areas strongly hydrophilic, as well as hydrophobic, are desirable to increase the inhibitory 
ability of the ligands.  

It is important that the molecular surface should not be homogeneous. The ratio between the 
hydrophilic and hydrophobic surfaces, and the total molecular surface gives a positive and high value 
of the capacity factor variable (C). If the unbalance among the hydrophilic/hydrophobic areas in 
relation to the total surface increases, the contribution of the descriptor will be more positive to the 
activity. Observing the corresponding coefficients in the second PLS dimension plot, it was possible to 
deduce that ligands having a hydrophobic profile present a greater influence in inhibition of  
NADH-oxidase. 

 
3. Experimental Section 

 
In this study a set of forty natural compounds, including: flavonoids, flavonols, chalcones, 

diterpenes, isoflavones, and catechin, acting as NADH-oxidase inhibitors (Table 1), were selected 
from refs [1-5]. Biological activities were measured as the concentration required for 50% inhibition of 
NAOH-oxidase from beef heart [15]. The 50% inhibitory concentration of the investigated compounds 
were converted to molar units and then expressed in negative logarithmic units, pIC50 (-log IC50). The 
pIC50 values are given in Table 4 and comprise the set of dependent variables in this study. The range 
in activity for the analogues in Table 1 is about 6 (4.72–10.82) pIC50 units. In PLS, the models were 
constructed considering a training set of thirty compounds and a test set containing 10 compounds  
(see Table 1). 

We studied the homology of NADH- oxidase between the beef heart protein and microorganisms. 
This mitochondrial enzyme is in cytochrome bc1. The cytochrome bc1 complex is an oligomeric 
membrane protein complex which transfers electrons from a relatively low-potential quinol to a c-type 
cytochrome with a high degree of homology (≈ 85%) of the bc1 subunits [16]. 

Compound 35 is rotenone, considered a potent inhibitor. Rotenone is used in solution as a pesticide 
and insecticide, or in emulsified liquid form as a pesticide. It works by interfering with the electron 
transport chain in mitochondria, inhibits the transfer of electrons from iron-sulfur centers in complex I 
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to ubiquinone. It inhibits the NADH-oxidase interfering in the electron transportation throughout the 
respiratory path at mitochondria. However, in this work, it was classified as having a medium activity 
when compared to all flavonoids and other analogues, which are more potent as  
NADH-oxidase inhibitors. 

The three-dimensional structures of each forty analogues in their neutral forms were constructed 
using the HyperChem 6.0 software [17]. The following crystallized structures were retrieved from 
Protein Data Bank (PDB) and their ligands were used as starting geometries for building up the 3D 
models of the investigated set: 1fm8 (2.30 Å resolution) [18], 2brt (2.20 Å resolution) [19], 1gp5  
(2.20 Å resolution) [20], 1eyq (1.85 Å resolution) [21], 1fm7 (2.30 Å resolution) [18], and 1jep (2.10 Å 
resolution) [20]. Each ligand model was energy-minimized employing the HyperChem 6.0 MM+ force 
field without any restriction [22,23], and partial atomic charges were assigned using the AM1 [24] 
semiempirical method, also implemented in the HyperChem program.  

The structures modeled as described above were used as the initial structures to calculate the 
molecular descriptors employing the VolSurf+ program [25]. PCA, CPCA and PLS methodologies 
were applied to the investigated set using the VolSurf+ software [26,27]. 

Table 1. Structures and biological activities of the forty investigated compounds. a 
Name 
[Id] 

Biological activity 
pIC50  

Chemical structure 

5 – Hydroxyflavone 
[1] 9.373 

O

OOH  

7,8 – Dihydroxyflavone 
[2] 9.562 

O

O

OH

OH

7 – Hydroxyflavone 
[3] 8.853 

O

O

OH

Apigenin 
[4] 9.043 

O

O

OH

OH

OH

Baicalein 
[5] 10.113 

O

OOH

OH

OH
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Table 1. Cont. 

Butein 
[6] 10.741 

OH

OH

OH

OH

OH

O

OH

 

(2R,3S) - Catechin 
[7] 8.741 OOH

OH

OH

OH

OH  

 (2S,3R) - Catechin 
[8] 8.741 OOH

OH

OH

OH

OH

Cyanidin 
[9] 9.301 O  

OH

OH

OH

OH

OH H  

Crysin 
[10] 9.603 

O

OOH

OH

 

Delphidin 
[11] 9.001 O  

OH

OH

OH

OH

OH H

OH

Eupatorin 
[12] 10.372 

O

O

OH

OH

O
CH3

O
CH3

O

CH3

Fisetin 
[13] 10.821 O

O

OH

OH

OH

OH

 

Flavone 
[14] 9.623 

O

O  

Flavanone 
[15] 9.513 

O

O

H
H

H
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Table 1. Cont. 

Fustin 
[16] 9.901 O

O

OH

OH

OH

OH

 

Galangin 
[17] 8.721 

O

O

OH

OH

OH  

Genistein 
[18] 9.443 

O

OOH

OH

OH  

Kaempferol 
[19] 8.721 

O

O

OH

OH

OH

OH  

Luteolin 
[20] 10.321 O

O

OH

OH

OH

OH

 

Morin 
[21] 9.371 

O

O

OH

OH

OH

OH

OH

 

Myrecitin 
[22] 10.461 O

O

OH

OH

OH

OH

OH

OH

 

Norwogonin 
[23] 9.472 

O

O

OH

OH

OH  

Quercetagin 
[24] 9.751 O

O

OH

OH

OH

OH

OH

OH

Quercetin 
[25] 9.841 O

O

OH

OH

OH

OH

OH  

Rhamnetin 
[26] 7.382 O

O

OH

OH

OH

OH

O

CH3
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Table 1. Cont. 

Robinetin 
[27] 7.722 O

O

OH

OH

OH

OH
OH

 

Rutin 
[28] 8.723 O

O

OH

OH

OH

OH

Rut

 

Taxifolin 
[29] 9.761 O

O

OH

OH

OH

OH

OH

OH

 

Tigliane 1 
[30] 5.604 O

H

H

H

H

H

OCOCHMe2

OOCHMe2

OH

 

Tigliane 2 
[31] 4.724 O

H

H

H

H

OAc

OCOCHMe2

OOCHMe2

OH

 

Tigliane 3 
[32] 4.724 O

H

H

OAc

H

OCOCHMe2

OOCHMe2

OH

H

 

Tigliane 4 
[33] 4.884 O

H

H

OH

H

OCOCHMe2

OOCHMe2

OH

OAc

 

Tigliane 5 
[34] 5.114  O

H

H

OH

H

OCOCHMe2

OOCHMe2

OH

H

 

Rotenone 
[35] 8.294 

O
O

O

H

O

CH3O

CH3O

H

H

CH2

CH2
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Table 1. Cont. 

Jatrophane 1b 
[36] 5.205 O

H
OMB

OAc

OAc

OH

OH

OiB
OMB

 

Jatrophane 2 b 
[37] 5.295  O

H
OH

OAc

OAc

OMB

OH

OiBOMB

 

Jatrophane 3 b 
[38] 5.155 O

H
OH

OAc

OMB

OH

OAc
OMB

OBz

 

Jatrophane 4 b 
[39] 4.865 O

H
OMB

OAc

OAc

OH

OH

OAc
OiB

 

Jatrophane 5 b 
[40] 4.965 O

H
OMB

OAc

OAc

OH

OH

OAc
OMB

 
a The NADH oxidase assay were monitored by a modified manometric procedure at 30 ºC for 
flavonoids and analogues and 22 ºC for diterpenes for their ability to inhibit beef heart 
mitochondrial NADH-oxidase activity. The test set comprises the compounds 7, 12, 14, 15, 19, 24, 
30, 35, 36. The other 30 compounds constitute the training set; b Ac = acetate, MB = 2-
methylbutyrate, iB = isobutyrate , Bz = benzoate. 

4. Conclusions 
 
The chemometric tools applied in this study generated good exploratory and predictive results. The 

significant results from CPCA, PCA prediction and PLS discriminant models can be helpful for 
designing new antichagasic agents acting as NADH-oxidase inhibitors. The VolSurf descriptors 
showed that the presence and the unbalance of the hydrophilic profile in relation to the total molecular 
surface, and also a hydrophobic profile, are strongly correlated to the biological data. 
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