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Abstract: The structures of condensed tannins isolated from two mangrove species, 
Kandelia candel and Rhizophora mangle, were characterized by 13C nuclear magnetic 
resonance (NMR) spectroscopy and matrix assisted laser desorption/ionization time-of-
flight mass spectrometry (MALDI-TOF MS) analyses. Results demonstrate that large 
heterogeneity occurs in degree of polymerization, pattern of hydroxylation, and 
substitution with monosaccharides in the structures of the condensed tannins. Condensed 
tannin oligomers from K. candel and R. mangle were shown to be heterogeneous mixtures 
consisting of procyanidin and prodelphinidin structural units with the former dominating. 
The MALDI-TOF mass spectra contained masses corresponding to a distinct oligomeric 
series of glycosylated heteropolyflavan units. In addition, condensed tannins from two 
mangrove plants were screened for their potential antioxidant activities using 1,1-diphenyl-
2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) model systems.  
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1. Introduction 

Condensed tannins comprise a group of polyhydroxyflavan-3-ol oligomers and polymers linked by 
carbon-carbon bonds between flavanol subunits [1]. The most common classes are the procyanidins, 
which are chains of catechin, epicatechin, and their gallic acid esters, and the prodelphinidins, which 
consist of gallocatechin, epigallocatechin, and their galloylated derivatives as the monomeric units [2]. 
The properties of condensed tannins depend on their structures in terms of monomer units, their mean 
degree of polymerization (DP) and the linkage-type between flavan-3-ol units with a considerable 
range of structural variation [3]. Condensed tannins have attracted great attention due to rapid growing 
evidence associating these compounds with a wide range of potential health benefits. Recently, it has 
been suggested that any potential health benefits attributed to these compounds may be affected by the 
degree of polymerization [4]. However, detailed information on the condensed tannin profiles present 
in most plants is currently lacking, especially with regard to the more complex oligomeric structures, 
and analysis of higher condensed tannins is not feasible, since the number of isomers increases with 
increasing degrees of polymerization. 

In mangrove species, condensed tannins are abundant components (as high as 20% dry weight) 
which prevent damage from herbivores [5,6], but they also show a diversity of other biological 
activities of historic and potential importance to humans [7]. In addition to application in leather 
tanning, mangrove extracts have been used for diverse medicinal purposes and have a variety of 
antibacterial, antiherpetic and antihelminthic activities [8,9]. The extracts of some mangrove species 
indicated significant antioxidant activity [10,11], and we supposed the active compounds responsible 
for antioxidant activity were tannins. The structures of the main monomers constituting the condensed 
tannins were identified, these being catechin, epicatechin, epigallocatechin, and epicatechin gallate 
[12]. However, different condensed tannins present different structures and different degrees of 
polymerization [13] and these are unknown in the case of mangrove condensed tannins. 

Because of the complex structural diversity and related physiochemical properties, condensed 
tannins were considered to be the final frontier of flavonoid research [14], and unexplored condensed 
tannins from mangrove plants may be potential resources for novel bioactive compounds. This study 
was designed to separate and characterize condensed tannins from two mangrove species (Kandelia 
candel and Rhizophora mangle), and to investigate their antioxidant activities. The isolated condensed 
tannins were subjected to 13C-NMR spectroscopy and matrix assisted laser desorption/ionization time-
of-flight mass spectrometry (MALDI-TOF MS), which allows the detection of molecules with high 
molecular masses (from several hundred to several thousand Daltons). Due to the gentle ionization, 
fragmentation of the macromolecule under research can be avoided. Meanwhile, the free radical 
scavenging capacities and ferric reducing power of condensed tannins from two mangrove species 
were also discussed. 

2. Results and Discussion 

2.1. Content of total phenolics and extractable condensed tannins 

Total phenolics contents in the leaves of K. candel and R. mangle were 130.32 ± 4.66 mg/g and 
182.62 ± 21.43 mg/g, respectively (Table 1). Extractable condensed tannin contents in the leaves of K. 
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candel and R. mangle were 106.35 ± 21.16 mg/g and 219.27 ± 63.11 mg/g, respectively. Polyphenols 
are the major plant compounds with antioxidant activity. The results strongly suggest that phenolics 
are important components in these plants, and some of their pharmacological effects could be 
attributed to the presence of these valuable constituents. 

Table 1. The contents of total phenolics (TP) and extractable condensed tannins (ECT) 
from K. candel and R. mangle. 

Samples TP (mg/g) a ECT (mg/g) b 
K. candel 130.32 ± 4.66b 106.35 ± 21.16b 
R. mangle 182.62 ± 21.43a 219.27 ± 63.11a 

 aTP were expressed as tannic acid as the standard; b ECT were expressed as purified mangrove 
condensed tannins as the standard. Data are presented as the mean ± standard deviation (n = 3). 
Means with different letters are significant differences at P < 0.05 levels. 

2.2. 13C-NMR analysis 

The condensed tannins were analyzed by 13C-NMR spectroscopy, and the signal assignment was 
performed according to the method by Czochanska et al. [15]. The 13C-NMR spectrum (Figure 1) of 
the K. candel condensed tannins in acetone-d6/D2O shows characteristic peaks consistent with those of 
condensed tannins with dominant procyanidin units and a minor amount of prodelphinidins. The 
structural diversity of the linkages (A and B type) and stereoisomers of catechin and epicatechin units 
is apparent from the spectrum. Specially, C5, C7, and C8a carbons of procyanidins appear at 150 to 
160 ppm. Peaks at 145.2 and 145.3 ppm belong to C3′ and C4′ of procyanidin units. The signals at 
114.8, 115.3 and 118.1 ppm are assignable to the C2′, C5′ and C6′ of procyanidin units. A small 
amount of prodelphinidins is also detected as its C4′ peak and appears at 131.2 ppm, overlapping with 
the chemical shifts of C1′. The cluster of peaks between 95 and 100 ppm is assigned to C8 and C6 of 
procyanidins, and the peaks between 104 and 108 ppm is assigned to C6′ and C2′ of prodelphinidins. 
The region between 70 and 90 ppm is sensitive to the stereochemistry of the C-ring. The ratio of the 
2,3-cis to 2,3-trans isomers could be determined through the distinct differences in their respective C2 
chemical shifts. C2 gives a resonance at 75.7 ppm for the cis form and 79 ppm for the trans form. 
From the peak areas, it is estimated that the cis isomer is dominant. C3 of both cis and trans isomers 
occurs at 71 ~ 72 ppm. The peak at 64 ppm is due to C3 of the terminal unit. The C4 atoms of the 
extension units showed a broad peak at 36 ppm, while the terminal C4 exhibits multiple lines at 29 and 
27 ppm [16]. In addition, the glycosides were also detected in the spectrum. The carbon signals at 
101.8 ppm (C’’1), 75～77 ppm (C’’2, C’’3 and C’’5), 71 ppm (C’’4), and 61 ppm (C’’6) were in 
agreement with those of the glycosides [17]. The sugar moiety was supported by the result of a sugar 
analysis of the acidic hydrolysis of mangrove condensed tannins. The carbon signal at 71.8 ppm (C3) 
suggested the glycose moiety to be connected to the C3 position. The 13C-NMR spectrum of 
condensed tannins from R. mangle was similar to that of K. candel. The typical signals due to 
procyanidin and prodelphinidin units with some glycosides were also found in R. mangle condensed 
tannins. 
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Figure 1. 13C-NMR spectra (150 MHz) of condensed tannins from K. candel and R. 
mangle; solvent, acetone-d6/D2O; room temperature. Identity of the structures: R1=H, 
epicatechin; and R1=OH, epigallocatechin. 

 

2.3. MALDI-TOF MS analysis 

Although the 13C-NMR spectra revealed the complex structural characteristics of the mangrove 
condensed tannins, quantitative data regarding the degree of polymerization cannot be reliably 
obtained. Further characterization was achieved by MALDI-TOF mass spectrometry. Figure 2 shows 
the MALDI-TOF mass spectra of the condensed tannins isolated from K. candel and R. mangle leaves, 
recorded as Cs+ adducts in the positive ion reflectron mode and showing a series of repeating 
procyanidin polymers. The polymeric character is reflected by the periodic peak series representing 
different chain lengths. The masses of the highest peaks among the polyflavonoid tannin polymers 
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from mangrove species with identical DP increased at the distance of 288 Da, corresponding to one 
catechin/epicatechin monomer (Table 2). Therefore, prolongation of condensed tannins is due to the 
addition of catechin/epicatechin monomers. Condensed tannins with a DP of 2 to 11  
(m/z 711.33～3304.45) were detected in K. candel, and condensed tannins with a DP of 3 to 16  
(m/z 999.34～4751.54) were detected in R. mangle. The spectra did not contain ions with 2 Da lower 
than that of the highest peaks among the polyflavan-3-ols polymers.  

Figure 2. MALDI-TOF positive reflectron mode mass spectra of the condensed tannins 
from K. candel and R. mangle. Inset is an enlarged spectrum of masses representing a 
procyanidin series with varying hydroxylation patterns. 

 
 

Table 2. Summary of peaks with the highest intensities in MALDI-TOF MS of the 
condensed tannins from K. candel and R. mangle. 

Polymer n1 n2 n3 K. candel R. mangle 
DP2 2 0 0 711.33  
DP3 3 0 0 999.35 999.34 

 3 0 1 1161.35  
 2 1 0 1015.37 1015.34 
 1 2 0 1031.38  

DP4 4 0 0 1287.43 1287.40 
 4 0 1 1449.44 1449.46 
 3 1 0 1303.42 1303.39 
 3 1 1  1465.62 
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Table 2. Cont. 

 2 2 0 1319.41 1319.40  
 2 2 1  1481.58  
 1 3 0  1335.49  
 0 4 0  1351.39  

DP5 5 0 0 1575.57  1575.51  
 5 0 1 1737.71  1737.66  
 4 1 0 1591.59  1591.51  
 4 1 1  1753.77 
 3 2 0 1607.56  1607.51  
 3 2 1  1769.46 
 2 3 0  1623.47  
 1 4 0  1639.48  
 0 5 0  1655.41  

DP6 6 0 0 1863.74  1863.70  
 6 0 1 2025.87  2026.83  
 5 1 0 1879.72 1879.70 
 5 1 1  2043.82 
 4 2 0 1895.74 1895.70  
 4 2 1  2058.75  
 3 3 0 1911.78 1911.61  
 2 4 0  1927.68 
 1 5 0  1943.63  

DP7 7 0 0 2151.97  2151.94  
 7 0 1 2314.98  2314.24  
 6 1 0 2167.97 2167.94  
 5 2 0 2183.99 2183.99  
 4 3 0  2199.95  
 3 4 0  2215.94  

DP8 8 0 0 2439.39  2440.30       
 8 0 1  2603.31  
 7 1 0 2456.38  2457.24  
 6 2 0  2473.26  

DP9 9 0 0 2727.79  2729.69  
 9 0 1   2892.88  
 8 1 0 2744.93 2745.69 
 8 1 1  3018.09  

DP10 10 0 0 3016.09  3017.09  
 10 0 1  3180.47 
 9 1 0  3033.95  
 8 2 0  3050.11  

DP11 11 0 0 3304.45 3307.23  
 11 0 1  3469.28 
 10 1 0  3323.31 

DP12 12 0 0  3596.28  
 12 0 1  3758.37  
 11 1 0  3611.74  

DP13 13 0 0  3884.89  
 12 1 0  3899.78 

DP14 14 0 0  4173.27  
DP15 15 0 0  4463.13  
DP16 16 0 0  4751.54  

n1: Number of catechin unit; n2: Number of gallocatechin unit; n3: Number of glycoside. 
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In addition to the predicted homopolyflavan-3-ol mass series mentioned above, each DP had a 
subset of masses 16, 32 and 48 Da higher (Figure 2 and Table 2). These masses can be explained by 
heteropolymers of repeating flavan-3-ol units containing an additional hydroxyl group (∆16 Da) at the 
position 5' of the B-ring. Given the absolute masses corresponding to each peak, it was further 
suggested that they contain procyanidins and prodelphinidins, as have already been indicated in the 
13C-NMR spectra. Each peak of the condensed tannins from studied mangrove species was always 
followed by mass signals at a distance of 162 Da corresponding to the addition of one glycoside group 
at the heterocyclic C-ring. Thus, peak signals corresponding to glycosylated derivatives of various 
procyanidin oligomers were easily attributed. No procyanidins with more than one glycoside group 
were detected. Therefore, MALDI-TOF mass spectrometry indicated the simultaneous occurrence of a 
mixture of procyanidin polymers and monoglycosylated derivatives of procyanidin polymers, showing 
that there was a mixture of glycosylated procyanidins and procyanidins occurring in condensed tannin 
oligomers from K. candel and R. mangle leaves (Figure 2). These were consistent with the evidence 
found in 13C-NMR spectra. A previous study has identified two flavan-3-ol glycosides from stems of 
the mangrove plant R. stylosa [18]. The MALDI-TOF mass spectrometry has demonstrated the 
potential to rapidly analyze flavonol glycosides in a complex extract. The series of compounds with  
2 Da multiples lower than those described peaks for heteropolyflavan-3-ols were not detected, so  
A-type interflavan ether linkage does not occur between adjacent flavan-3-ol subunits. The galloyl 
group which showed the mass signals at a distance of 152 Da was not detected in the mass spectra 
although it has been reported in another mangrove species R. apiculata [19]. For the first time, 
compositional analysis of condensed tannins from mangrove species using MALDI-TOF MS and  
13C-NMR have been successfully demonstrated.  

The characterization of the condensed tannins was limited with respect to the detection of high mass 
condensed tannins and by the fact that peak intensities were not related to their concentration in the 
sample. The quality of the spectrum depended upon parameters such as the tannin/matrix ratio, the 
target area of the laser, and the crystallization of the mixture on the target. Therefore, it was very 
difficult to obtain a reproducible spectrum. The main problem is to find a new technique that permits 
the complete characterization of condensed tannins up to 4,000 Da, which allows an equal sensitivity 
for both low and high mass polymers. 

2.4. Free radical scavenging activity 

The relatively stable organic radical DPPH has been widely used in the determination of antioxidant 
activity of single compounds as well as the different plant extracts [20–25]. The reduction capacity of 
DPPH was determined by the decrease in its absorbance at 517 nm, which is reduced by antioxidants 
[20]. The free radical scavenging activities of condensed tannins from K. candel and R. mangle along 
with the reference standards of ascorbic acid and BHA were determined by the DPPH assay. Because 
activities are expressed as the condensed tannins concentration required to achieving a 50% decrease 
in absorbance at 517 nm (IC50), the smaller condensed tannins concentration indicates the higher 
DPPH radical scavenging activity. Condensed tannins from two mangrove species all showed the 
significantly higher inhibition percent of DPPH radical compared to reference ascorbic acid and BHA. 
The IC50 values of condensed tannins from R. mangle and K. candel were 89.83 ± 4.91 µg/mL and 
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93.51 ± 4.44 µg/mL respectively (P > 0.05). It was reported that the glycoside moiety in condensed 
tannins structure can enhance the effectiveness of condensed tannins radical scavenging [18]. Figure 
3A shows the DPPH free radical scavenging activity of the studied condensed tannins and the 
references at different concentrations, and demonstrated that all of the tested antioxidants showed 
dose-dependent activity. The free radical scavenging activity increased with the increasing 
concentration of condensed tannins. 

2.5. Reducing antioxidant power 

The reduction capacity of a compound may serve as a significant indicator of its potential 
antioxidant activity [26]. A higher absorbance corresponds to a higher ferric reducing power. For each 
antioxidant, different concentrations (0.01-0.5 mg/mL) were prepared. All condensed tannins showed 
increased ferric reducing power with the increasing concentration (0-0.5 mg/mL) (Figure 3B). In 
accordance with the findings from the DPPH assay, the reducing power of the condensed tannins from 
R. mangle (12.98 ± 1.20 mmol AAE/g) was superior to that of K. candel (10.77 ± 0.37 mmol AAE/g), 
BHA (4.19 ± 0.11 mmol AAE/g) and (3.89 ± 0.12 mmol AAE/g). 

Figure 3. DPPH radical scavenging activity (A) and reducing power (B) of RMCT, KCCT 
and reference standards at different concentration. RMCT and KCCT were respective 
condensed tannins from R. mangle and K. candel. 
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3. Experimental 

3.1. Chemicals and plant materials 

All solvents used were of analytical reagent (AR) purity grade. Ascorbic acid (AA), butylated 
hydroxyanisole (BHA), tannic acid, catechin, TPTZ (2,4,6-tripyridyl-S-triazine) and DPPH (1,1-
diphenyl-2-picrylhydrazyl) were purchased from Sigma-Aldrich (USA). Sephadex LH-20 was 
purchased from Amersham (USA). The mangrove species K. candel and R. mangle were collected 
from a mangrove forest in the Dongzhai harbor (19°56′N, 110°34′E), Hainan, China. R. mangle was 
introduced from La Paz and Mazatlan City, Mexico in 1999 [27].  
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3.2. Extraction and purification of condensed tannins 

Leaf samples were taken to the laboratory immediately after collection and cleaned with distilled 
water. The condensed tannins were extracted and purified as described by Lin et al. [28]. The 
condensed tannins were freeze-dried and stored at −20 °C before analysis by 13C-NMR and MALDI-
TOF mass spectrometry. 

3.3. Determination of total phenolics and extractable condensed tannins 

Total phenolics and extractable condensed tannins of raw extracts of the leaves were determined. 
Total phenolics were measured with the Prussian Blue method [29], using tannic acid as the standard. 
Extractable condensed tannins were assayed by the butanol-HCl method [30], using purified 
condensed tannins from respective mangrove species as the standards. 

3.4. 13C-NMR analysis 

The 13C-NMR spectra of condensed tannins were recorded on Varian Metcury-600 spectrometer 
(USA) at 150 MHz. The samples for recording NMR spectra were prepared by dissolving the samples 
in acetone-d6/D2O mixture. 

3.5. MALDI-TOF MS analysis 

The MALDI-TOF mass spectra were recorded on a Bruker Reflex Ⅲ MALDI-TOF mass 
spectrometer (Germany). The irradiation source was a pulsed nitrogen laser with a wavelength of  
337 nm, and the duration of the laser pulse was 3 ns. The measurements were carried out using the 
following conditions: in the positive ion mode, an accelerating voltage of 20.0 kV and a reflectron 
voltage of 23.0 kV were used. Cesium chloride and 2,5-dihydroxybenzoic acid (DHB) as the matrix 
were used to enhance ion formation. Amberlite IRP-64 cation-exchange resin (Sigma-Aldrich), 
equilibrated in deionized water, was used to deionize the analyte/matrix solution thrice. An aqueous 
solution of cesium chloride (0.5 µL, 1 mg/mL) was added to the sample solution (1.5 µL, 10 mg/mL 
aqueous) followed by addition of an equal volume of DHB (10 mg/mL aqueous solution). The 
resulting solution (1.0 µL) was evaporated and introduced into the mass spectrometer [31]. 

3.6. DPPH radical scavenging activity 

To assess the scavenging ability on DPPH radicals, condensed tannins (0.1 mL, 15–250 µg/mL) in 
methanol were mixed with 3 mL of methanol solution containing DPPH radicals (0.004%, w/w). The 
mixture was shaken vigorously and left to stand for 30 min in the dark before measuring the 
absorbance at 517 nm against a blank [22]. Ascorbic acid and BHA were used as reference standards. 
Then the scavenging ability was calculated as:  

Scavenging ability (%) = [(∆A517 of control – ∆A517 of sample)/∆A517 of control] × 100 
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3.7. Reducing antioxidant power effects 

Reducing power antioxidant effects were determined following the method by Benzie and Strain 
[32]. Briefly, FRAP reagent (3 mL), prepared freshly, was mixed with test sample (0.1 mL), or 
methanol (for the reagent blank). The FRAP reagent contained 10 mM TPTZ solution (2.5 mL) in  
40 mM HCl plus 20 mM FeCl3 (2.5 mL) and 0.3 M acetate buffer, pH 3.6 (25 mL). The absorbance of 
reaction mixture was measured spectrophotometrically at 593 nm after incubation at 25 °C for 10 min. 
The FRAP values, expressed in mmol ascorbic acid equivalent (AAE)/g sample in dry weight were 
derived from a standard curve, and BHA and catechin were used as reference standards. 

3.8. Statistical analysis 

All measurements were replicated three times and a one-way ANOVA test was performed on the 
antioxidant activity results to investigate significant differences between two mangrove species. The 
method used to discriminate among the means was Duncan’s multiple range tests. The computer 
program employed was SPSS 11.0 for Windows. 

4. Conclusions 

Structures of condensed tannins from two mangrove species, R. mangle and K. candel characterized 
by 13C-NMR and MALDI-TOF MS analyses showed that the condensed tannins consisted of 
predominantly procyanidins with 2,3-cis stereochemistry. There are some of monoglycoside flavan-3-
ols polymers with polymerization degree up to 12 were detected in mass spectra of mangrove species. 
Condensed tannins extracted from two mangrove species showed very good DPPH radical scavenging 
activity and ferric reducing power.  
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