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Abstract: Luteolin (3′,4′,5,7-tetrahydroxylflavone) is a plant flavonoid and  
pharmacologically active agent that has been isolated from several plant species. In the 
present study, the effect of luteolin from the flowers of Lonicera japonica on phorbol  
12-myristate 13-acetate (PMA) plus A23187-induced mast cell activation was examined. 
Luteolin significantly inhibited the induction of inflammatory cytokines such as tumor 
necrosis factor (TNF)-α, interleukin (IL)-8, IL-6 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) by PMA plus A23187. Moreover, luteolin attenuated 
cyclooxygenase (COX)-2 expression and intracellular Ca2+ levels. In activated HMC-1 
cells, the phosphorylation of extra-signal response kinase (ERK 1/2) and c-jun N-terminal 
Kinase (JNK 1/2), but not p38 mitogen-activated protein kinase (p38 MAPK) were 
decreased by treatment of the cells with luteolin. Luteolin inhibited PMA plus A23187-
induced nuclear factor (NF)-κB activation, IκB degradation, and luciferase activity. 
Furthermore, luteolin suppressed the expression of TNF-α, IL-8, IL-6, GM-CSF, and 
COX-2 through a decrease in the intracellular Ca2+ levels, and also showed a suppression 
of the ERK 1/2, JNK 1/2, and NF-κB activation. These results indicated that luteolin from 
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the flowers of Lonicera japonica exerted a regulatory effect on mast cell-mediated 
inflammatory diseases, such as RA, allergy disease and IBD. 

Keywords: Lonicera japonica; pro-inflammatory cytokine; intracellular Ca2+; NF-κB; 
MAPKs 

 

1. Introduction  

Mast cells are one of the major effecter cells in the immune response system. Activated mast cells 
release pro-inflammatory cytokines, such as TNF-α, IL-6, IL-8, IL-13, GM-CSF, and inflammatory 
mediators including histamine, leukotrienes, serotonin, prostaglandin (PG)E2 as well as PGD2 [1–3]. 
Cytokines, such as IL-6, TNF-α, IL-8 and GM-CSF, are released in a coordinated network and play an 
important role in chronic inflammation. As such, the pattern of cytokine expression largely determines 
the nature and persistence of the inflammatory response [4]. TNF-α is preformed and stored in 
granules of mast cells or newly synthesized following mast cell activation; it is a multifunctional 
cytokine and an important mediator of the immune and inflammatory response. TNF-α is an autocrine 
stimulator as well as a potent inducer of other inflammatory cytokines, including IL-1β, IL-6, IL-8 and 
GM-CSF [5,6]. IL-6 is a pro-inflammatory cytokine and a potent mediator of inflammatory processes 
[7]. GM-CSF also plays an important role in the development and perpetuation of inflammation [8]. A 
previous study reported that histamine induced GM-CSF production in human bronchial epithelial 
cells [9]. Cytokines produce their cellular effects by activation of various transcription factors such as 
AP-1 and NF-κB. Furthermore, the expression of many of these cytokines and their receptors are 
upregulated by these transcription factors.  

Ca2+ acts as a second messenger during cell activation. An increase in the levels of intracellular 
Ca2+ has been proposed to act as an essential trigger for mast cell activation [10,11]. It has also been 
reported that the release of intracellular Ca2+ from internal stores is required for MAPK activation [12]. 
Recently, studies showed the involvement of MAPK and NF-κB activation by Ca2+, with increased 
Ca2+ levels inducing the release of biological mediators including TNF-α, IL-6 and IL-8 [13,14]. 
Moreover, NF-κB activation was reported to be required for the expression of many inflammatory 
proteins such as GM-CSF, TNF-α, IL-6, COX-2 and inducible nitric oxide synthase (iNOS) [15]. 
Therefore, inhibition of NF-κB could reduce the expression of inflammatory genes and is a mechanism 
by which anti-inflammatory agents might elicit their anti-inflammatory effects [16]. 

Lonicera japonica Thunb.(Caprifoliaceae) is known in traditional Korean medicine as an anti-
inflammatory treatment. It has a strong scent typical of an aromatic medicinal plant, and its flowers are 
used to treat skin inflammations and wounds. Lonicera japonica was found to have anti-tumor effects 
in human lung carcinoma cells [17], and anti-allergic effects [18]. Flavonoids such as luteolin are 
ubiquitous plant secondary metabolites and have a variety of biological effects, including anti-
inflammatory and anti-allergic properties; some of these compounds are also known to inhibit the 
release of histamine from mast cells [19]. Luteolin was shown to inhibit pro-inflammatory cytokine 
production in vitro [20], and suppresses inflammation-associated gene expression by blocking the NF-
κB and AP-1 activation pathway [21]. These reports suggest that the anti-inflammatory effect of 
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luteolin isolated from the flowers of Lonicera japonica may be through potent inhibition of mast cell 
activation. However, no preexisting study has been reported on mast cell-mediated anti-inflammatory 
activity of luteolin isolated from the flowers of Lonicera japonica. Thus, as a part of our ongoing 
screening program to evaluate the anti-inflammatory potential of natural compounds, we investigated 
the in vitro anti-inflammatory activity of Lonicera japonica through activity-guided fractionation. 
Subsequently, the effects of luteolin isolated from the flowers of Lonicera japonica were evaluated on 
PMA plus A23187-induced pro-inflammatory mediators by inhibiting MAPKs and IκBα/NF-κB signal 
pathways in HMC-1 cells.  
 
2. Results and Discussion  

 
Many recent studies on plant-derived anti-inflammatory compounds have investigated the potential 

inhibitory effects of natural products using in vivo and in vitro systems. Luteolin, as a plant flavonoid, 
is an active oriental medicine ingredient that has been isolated from several plant species and used 
since ancient times to cure diseases such as inflammation, allergy and cancer. However, no report has 
been issued on the anti-inflammatory effects of luteolin isolated from the flowers of Lonicera japonica 
or on the mode of action of its active constituents. 

In the present study, luteolin isolated from the flowers of Lonicera japonica was investigated for 
mast cell-mediated anti-inflammatory effects. To evaluate the potential effects of luteolin on the 
production of pro-inflammatory cytokines, we pretreated the cells with luteolin (10 and 50 μM) before 
stimulation with PMA (50 nM) and A23187 (1 μM) for 8 h, and further analysis using ELISA. As 
shown in Figure 1, the levels of TNF-α, IL-8, IL-6 and GM-CSF were considerably increased after 
stimulation with PMA plus A23187 in HMC-1. Pretreatment of cells with luteolin (10 and 50 μM) 
significantly inhibited the increase of these protein levels in a concentration-dependent manner. The 
maximal inhibition of TNF-α, IL-8, IL-6 and GM-CSF production by luteolin (50 μM) was 
approximately 87%, 86%, 78%, and 46%, respectively. Moreover, we examined the cytotoxicity of 
luteolin on HMC-1 cells using the MTT assay. Luteolin did not exhibit any cytotoxic effects up to  
100 μM (data not shown).  

Next, the pro-inflammatory cytokine gene expression was then analyzed using RT-PCR and real-
time RT-PCR (Figure 2). Enhanced TNF-α, IL-8, IL-6 and GM-CSF mRNA expression induced by 
PMA plus A23187 was inhibited by pretreatment of cells with luteolin at a concentration of 50 μM. 
Pretreatment with 10 μM of luteolin only slightly decreased the gene expression of TNF-α and IL-6, 
but not the other cytokines. 

In a recent study, it was demonstrated that COX-2 played important roles in mast cell-mediated 
inflammation [22]. So, to determine the effect of luteolin on COX-2 protein and COX-2 mRNA 
expression induced by PMA plus A23187, we performed Western blot and RT-PCR analysis. The cells 
were pretreated with luteolin (10 and 50 μM) for 1 h and then treated with PMA plus A23187 for 10 h. 
As shown in Figure 3, luteolin inhibited the PMA plus A23187-induced expression of COX-2 protein 
and mRNA levels. 
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Figure 1. Effect of luteolin on production of pro-inflammatory cytokines in PMA plus 
A23187-induced HMC-1 cells. 
 

 
HMC-1 cells were pretreated with luteolin (10 and 50 μM) for 1 h prior to PMA+A23187 
stimulation. The levels of TNF-α, IL-8, IL-6, and GM-CSF were determined by ELISA. Each bar 
represents the mean ± S.E.M. of three independent experiments. * p < 0.05, ** p < 0.001 compared 
to PMA+A23187-stimulated values. 

 
Figure 2. Effect of luteolin on gene expression of pro-inflammatory cytokines in PMA 
plus A23187-induced HMC-1 cells. 
 

 
Cells were pretreated with luteolin (10 and 50 μM) for 1 h prior to PMA (50 nM) + A23187 (1 μM) 
stimulation for 6 h. The mRNA expression level of TNF-α, IL-6 and IL-8 were determined by RT-
PCR (A) and real-time RT-PCR (B). Each bar represents the means ± S.E.M. of three independent 
experiments. * p < 0.05, compared with PMA + A23187-stimulated values. 
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Figure 3. Effect of luteolin on COX-2 protein and mRNA expression in PMA plus 
A23187-induced HMC-1 cells.  

 
(A) Cells were pretreated with luteolin for 1 h prior to PMA (50 nM) + A23187 (1 μM) stimulation 
for 24 h, and then expression of the COX-2 protein was analyzed by Western blot analysis. (B) 
Cells were pretreated with luteolin for 1 h prior to PMA (50 nM) + A23187 (1 μM) stimulation for 
10 h, and then expression of COX-2 mRNA was analyzed by RT-PCR. Values are presented as 
means ± S.E.M. of three independent experiments. * p < 0.05 compared to PMA + A23187-
stimulated values, as analyzed by an image analyzer. 

 
Calcium acts as a secondary messenger during cell activation [10]. An increase in the intracellular 

Ca2+ levels has been proposed to be an essential trigger for mast cell activation [23]. An increased 
intracellular Ca2+ level induces the release of biological mediators including TNF-α, IL-8 and IL-6 
[24]. It has also been reported that the release of intracellular Ca2+ from internal stores is required for 
MAPK activation [12]. A depletion of intracellular Ca2+ inhibited pro-inflammatory cytokine 
expression via NF-κB signaling pathway in RBL-2H3 cells [14]. From the results of the present study, 
we suggest that the inhibitory effects of luteolin on the expression of TNF-α, IL-8, IL-6 and GM-CSF 
levels is mediated by the reduction of intracellular Ca2+ in HMC-1 cells. We also investigated the 
effect of luteolin on the intracellular levels of Ca2+, using confocal laser microscopy to detect the 
fluorescence signal coming from individual cells. The PMA plus A23187 treatment considerably 
increased the intracellular Ca2+ levels, but pretreatment of the cells with luteolin (50 μM) inhibited this 
increase in intracellular Ca2+ levels (Figure 4). 

In an attempt to evaluate the mechanisms underlying the effects of luteolin, we examined the 
potential effects of luteolin on activation of MAPKs. The stimulation of HMC-1 cells with PMA plus 
A23187 resulted in an increased phosphorylation of all three types of MAPKs, p38, JNK, and ERK, 
after 15–30 min (data not shown). As shown in Figure 5, luteolin attenuated PMA plus A23187-
induced phosphorylation of ERK 1/2 and JNK 1/2, but did not affect the phosphorylation of p38 
MAPK (data not shown). The present study showed that luteolin inhibited the phosphorylation of ERK 
and JNK but not of p38 MAPK (Figure 5). Furthermore, luteolin demonstrated a greater level of 
inhibition of ERK and JNK-phosphorylation than the ERK 1/2 inhibitor (PD98059) and JNK 1/2 
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inhibitor (SP600125). These data suggested that luteolin inhibited pro-inflammatory cytokine 
production and intracellular Ca2+ release via inhibition of ERK and JNK activation.  

Figure 4. Effect of luteolin on intracellular calcium levels. 

 
Cells were pretreated with luteolin for 1 h before the stimulation with PMA (50 nM) + A23187  
(1 μM). (A) The fluorescent image (1-3) was analyzed by confocal microscopy (4-6). Confocal 
images of HMC-1 cells were stained with fluo-3/AM. (B) The intensity of intracellular calcium was 
measured in three independent experiments. ** p < 0.001 compared to PMA + A23187-stimulated 
values. 

Figure 5. Effect of luteolin on activation of MAPKs. 

 
After pretreatment with luteolin for 1 h, HMC-1 cells were stimulated by PMA (50 nM) and 
A23187 (1 μM) 30 min for MAPK activation. Phosphorylation of ERK1/2 (A) and JNK 1/2 (B) 
were analyzed by Western blot. The ERK inhibitor (PD 98059, 20 μM) and JNK inhibitor 
(SP600125, 10 μM) were used as a positive control. Values are presented as means ± S.E.M. of 
three independent experiments. ** p < 0.001, * p < 0.05 compared to PMA + A23187-stimulated 
values, as analyzed by an image analyzer. 
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To evaluate the mechanism by which luteolin affected the gene expression of pro-inflammatory 
cytokines, we examined the effects of luteolin on NF-κB activation. The expression of the pro-
inflammatory cytokines tested in this study is known to be regulated by a transcription factor, NF-κB 
[25]. Stimulation of HMC-1 cells with PMA plus A23187 induced the degradation of IκBα and 
promoted the nuclear translocation of p65 NF-κB after 2 h of incubation (Figure 6A). Luteolin 
inhibited the PMA plus A23187-induced degradation of IκBα as well as the nuclear translocation of 
p65 NF-κB.  

In order to confirm these results, we examined the possible effects of luteolin on the NF-κB 
dependent gene reporter assay (Figure 6B). We transiently transfected HMC-1 cells with the pNF-κB 
luciferase reporter vector and pRL-TK vector and incubated the transfected cells with PMA plus 
A23187 in the presence or absence of luteolin. As shown in Figure 6B, the PMA plus A23187 
treatment increased the reporter gene expression but this increased activity was significantly decreased 
by treatment with luteolin (50 μM). The PDTC (NF-κB inhibitor) used as a positive control. This 
implies that luteolin might inhibit COX-2 expression through suppression of NF-κB activation in 
HMC-1. 

Figure 6. Effect of luteolin on the activation of NF-κB in HMC-1 cells. 

 
Cells were pretreated with luteolin for 1 h prior to PMA (50 nM) and A23187 (1 μM) stimulation. 
(A) IκB degradation and NF-κB translocation were assayed by Western blot (n-NF-κB, nucleus 
NF-κB; c-NF-κB, cytoplasmic NF-κB). (B) For NF-κB luciferase assay, cells were transiently 
transfected with the NF-κB luciferase reporter construct or pRL-TK control vector. NF-κB-
dependent transcriptional activity was determined by luciferase activity assay. The NF-κB inhibitor 
(PDTC, 5 μM) was used as a positive control. * p < 0.05 compared to PMA + A23187-stimulated 
values, as analyzed by an image analyzer. 

 
Mast cells contain potent mediators, including histamine, heparin, proteinases, leukotrienes, and 

multifunctional cytokines; these molecules potentially contribute to the inflammatory processes and 
also play an important role [26]. Mast cell-derived pro-inflammatory cytokines, particularly TNF-α, 
IL-8, IL-6 and GM-CSF have a critical biological role in allergic inflammation. In this study, we 
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demonstrated that luteolin suppressed the expression of TNF-α, IL-8, IL-6 and GM-CSF in PMA plus 
A23187-induced HMC-1 cells. These data indicated the anti-inflammatory effect of luteolin as a potent 
inhibitor of mast cell activation. Also, we tested the effects of luteolin on COX-2 expression and 
MAPK phosphorylation together with intracellular Ca2+ release in HMC-1 cells. The results indicated 
that luteolin reduced pro-inflammatory cytokine production, COX-2 expression and intracellular Ca2+ 
release via the inhibition of MAPK activation. 

Recently, a number of published studies have indicated the interference of luteolin with NF-κB 
[21]. Because this transcription factor is strongly linked to inflammatory and immune responses, we 
postulate that luteolin mediates its effects at least partly through suppression of NF-κB activation. 
Although NF-κB activation is regulated by MAPKs through multiple mechanisms, accumulating 
evidence indicates that NF-κB activation is modulated by MAPKs that induce site-specific 
phosphorylation of an inhibitory protein called IκB. Activation of NF-κB is dependent on the 
degradation of IκBα, an endogenous inhibitor that binds to NF-κB in the cytoplasm [27]. So, the role 
of NF-κB activation is important for the regulation of cytokine production in inflammatory condition. 
Expression of the TNF-α, IL-6, IL-8 and GM-CSF genes are dependent on the activation of 
transcription factor NF-κB in mast cells. This implies that luteolin might inhibit the expression of 
inflammatory mediators through the suppression of NF-κB activation and IκB degradation in HMC-1. 
Luteolin was shown to decrease the degradation of IκBα and nuclear translocation of p65 NF-κB in 
PMA plus A23187-stimulated mast cells. This demonstrated that luteolin inhibited the PMA and 
A23187-induced TNF-α, IL-6, IL-8, GM-CSF and COX-2 expression through a decrease in the 
intracellular levels of Ca2+, ERK 1/2, JNK 1/2, as well as activation of NF-κB. 
 
3. Experimental 
 
3.1. Reagents 

PMA, the calcium ionophore A23187 (calcymycin; C29H37N3O6), PD98059, SP600125, SB203580 
and 3-[4,5-dimetylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) were purchased from the 
Sigma Chemical Co. (St. Louis, MO, USA). Iscove's modified Dulbecco's medium (IMDM) was 
obtained from Gibco BRL (Grand Island, NY, USA); anti-human TNF-α, IL-6, IL-8, and GM-CSF 
antibodies, the biotinylated anti-human TNF-α, IL-6, IL-8, and GM-CSF antibodies, and recombinant 
human TNF-α, IL-6, IL-8, and GM-CSF were purchased from BD PharMingen (San Diego, CA, 
USA); the NF-κB, and IκB antibodies from Santa Cruz Biotechnology (Santa Cruz, CA, USA); 
Lipofectamine™ 2000 was obtained from Invitrogen (Carlsbad, CA, USA), the NF-κB Luciferase 
Reporter vector from Panomics Inc; and the Dual-Luciferase® Reporter Assay System from Promega 
(Madison, WI, USA). SYBR Premix Ex TaqTM was purchased from Takara Bio (Shiga, Japan). 

3.2. Plant materials 

The flowers of Lonicera japonica purchased from the Daehak Hanyak kuk Oriental drug store 
(Iksan, Korea), were authenticated by Dr. D.Y. Kwon. A voucher specimen (No.08-030) was deposited 
in the Laboratory of Herbology, College of Pharmacy, Wonkwang University, Iksan, Korea.  
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3.3. Isolation of luteolin 

The MeOH extracts were partitioned with organic solvents of different polarities to yield n-hexane, 
EtOAc, n-BuOH and H2O fractions, in sequence. The EtOAc fraction of each plant was subjected to 
silica gel chromatography with CH2Cl2-MeOH (lower layers, by volume, 30:1→1:1, 100% MeOH, 
gradient) as the solvents to yield the Lonicera japonica luteolin. The structure of the compound was 
determined by its physico-chemical and spectral data (LC-MS, 1D and 2D NMR) which were in 
agreement with those reported in the literature [28, 29]. 

3.4. Cell culture 

The HMC-1 cells were grown in IMDM and supplemented with 100 U/mL of penicillin, 100 μg/mL 
of streptomycin, and 10% fetal bovine serum (FBS) at 37 °C in 5% CO2 with 95% humidity. The 
HMC-1 cells were treated with luteolin (10 μM to 50 μM) for 1 h. The cells were then stimulated with 
50 nM of PMA plus 1 μM of A23187 and incubated at 37 °C for the indicated time periods. 

3.5. MTT assay 

For the MTT colorimetric assay of cell survival, we used a method described by Kang et al. [30]. 
Cell aliquots were seeded (3 × 105) in microplate wells and incubated with 20 μL of an MTT solution 
(5 mg/mL) for 4 h at 37 °C under 5% CO2 and 95% air. This was followed by the addition of 250 μL 
of DMSO to extract the MTT formazan. An automatic microplate reader was used to read the 
absorbance of each well at 540 nm. 

3.6. Cytokine assay 

The HMC-1 cells were pretreated with various concentrations of luteolin (10 to 50 μM) for 1 h 
before PMA plus A23187-stimulation. We then used the enzyme-linked immunosorbent assay 
(ELISA) method to assay the culture supernatants for the TNF-α, IL-8, IL-6 and GM-CSF protein 
levels. To measure the cytokines, we used a modified ELISA method by Kang et al. [31].  

3.7. RNA isolation, reverse transcription (RT) analysis 

Using a GeneAllR RiboEx RNA extraction kit (GeneAll Biotechnology, Republic of Korea), we 
isolated total RNA from HMC-1 cells in accordance with the manufacturer's specifications. The 
concentration of total RNA in the final eluate was determined by spectrophotometry. The total RNA 
(2.0 μg) was heated at 65 °C for 10 min and then cooled on ice. A cDNA synthesis kit (iNtRON 
Biotech, Republic of Korea) was used for 90 min at 37 °C to reverse-transcribe each sample to cDNA. 
Primer sequences for TNF-α, IL-6, IL-8, GM-CSF, COX-2 and β-actin were used for PCR analysis as 
described previously [32]. The PCR products increased as the concentration of RNA increased. 
Finally, the products were electrophoretically resolved on a 2.0% agarose gel and visualized by 
staining with ethidium bromide. 
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3.8. Real-time RT-PCR 

The levels of TNF-α, IL-6, IL-8, GM-CSF and β-actin mRNA were measured with the real-time 
reverse transcription (RT)-PCR method using SYBR green. Total RNA was extracted from the cells 
with an RNeasy® Mini kit (Qiagen Inc., Valencia, CA, USA). Aliquots (1 μg) of total RNA were used 
for RT, using a PrimeScriptTM RT reagent kit (Takara Bio, Shiga, Japan) and a Smart cycler® II 
System Takara Bio, Shiga, Japan). The RT reaction was performed in total volume was 20 μL using a 
SYBR Premix Ex TaqTM (Takara Bio); 2 μL of cDNA sample was used as a template. Their 
sequences are shown in Table 1. Cycling was started with an activation step at 95 °C for 10 s, and 
amplification program was repeated 45 times (denaturation, 95 °C for 5 s; annealing/extension, 60 °C 
for 20 s) with fluorescence measurement at 72 °C. 

The fluorescence of the SYBR green dye was determined as a function of the PCR cycle number. In 
order to confirm amplification specificity, the PCR products from each primer pair were subjected to a 
melting curve analysis. The ΔCT values (Ct= cycle threshold value) for the housekeeping gene  
(β-actin) and the target gene (TNF-α, IL-6, IL-8 and GM-CSF) were calculated by subtracting the 
experiment group (PMA+A23187+luteolin) from the control (nonstimulated value). The relative 
expression of the target gene was calculated on the basis of 2-∆ (∆Ct). The ∆ (∆Ct) values were 
calculated by subtracting the drug treated (PMA+ A23187+ luteolin) ∆Ct from the control (PMA+ 
A23187) ∆Ct. The primer sequences for target genes are described in Table 1. 

Table 1. Sequences of oligonucleotide primers designed for real-time PCR. 

 Forward (5’–3’ orientation) Reverse (5’–3’ orientation) Accession no. 
hTNF-α GACAAGCCTGTAGCCCATGTTGTA CAGCCTTGGCCCTTGAAGA NM_ 000594.2 

hIL-6 AAGCCAGAGCTGTGCAGATGAGTA TGTCCTGCAGCCACTGGTTC NM _000600.1 
hIL-8 

 
ACACTGCGCCAACACAGAAATTA  TTTGCTTGAAGTTTCACTGGCATC NM_ 00584.2 

hGM-
CSF 

ACCATGATGGCCAGCCACTAC GTGATAATCTGGGTTGCACAGGAA NM_000758 

β-actin ATTGCCGACAGGATGCAGAAG ATGGAGCCACCGATCCACA NM_ 0016142 
The primers pairs were designed using Primer Express® software. 

 
3.9. Fluorescent measurements of the intracellular Ca2+ level 

The intracellular Ca2+ values were obtained from a single cell using Fluo-3/AM, the fluorescent 
Ca2+-sensitive indicator. The cells were incubated with 4 μM Fluo-3/AM at 37 °C for 30 min, and then 
washed with PBS. After addition of the culture medium, the temperature was maintained at 37 °C for 
10 min, and then the cells were viewed using confocal laser scanning microscope (Olympus, Japan). 
The Fluo-3 loaded cells were illuminated with the 488 nm line of an argon laser and the emitted 
fluorescence was collected through a 20× water-immersion objective and by setting the confocal 
pinhole to 2 μM. The intensity of fluorescence was detected using one of two photomultipliers. To 
obtain a good spatial image, three successive frames were collected for each cell. The intracellular 
Ca2+ level was evaluated by its fluorescent intensity [33]. 
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3.10. Preparation of cytoplasmic and nuclear extracts 

Nuclear and cytoplasmic extracts were prepared as described elsewhere [30]. Briefly, after 
activating the cells for the time periods indicated, 5 × 106 cells were washed with ice-cold PBS and 
centrifuged at 15,000 × g for 1 min. The cells were then resuspended in 40 μL of a cold hypotonic 
buffer (10 mM Hepes/KOH, 2 mM MgCl2, 0.1 mM EDTA, 10 mM KCl, 1 mM DTT, and 0.5 mM 
PMSF, pH 7.9). The cells were allowed to swell on ice for 15 min after which they were lysed gently 
with 2.5 μL of 10% Nonidet P (NP)-40. The lysate was centrifuged at 15,000 × g for 3 min at 4 °C. 
The supernatant was collected and used as the cytoplasmic extract. The nuclear pellets were gently 
resuspended in 40 μL of cold saline buffer (50 mM HEPES/KOH, 50 mM KCl, 300 mM NaCl,  
0.1 mM EDTA, 10% glycerol, 1 mM DTT, and 0.5 mM PMSF, pH 7.9) and left for 20 min on ice. 
After centrifuging at 15,000 × g for 15 min at 4 °C aliquots of the supernatent containing nuclear 
proteins were frozen in liquid nitrogen and stored at − 70 °C until further analysis. The bicinchoninic 
acid protein assay (Sigma, St. Louis, MO, USA) was used for protein quantitation. 

3.11. Western blot analysis 

HMC-1 cells (5 × 106 cells/well) were stimulated with PMA (50 nM) plus A23187 (1 μM). Cell 
lysates were then prepared in a sample buffer containing sodium dodecyl sulfate (SDS). The samples 
were heated at 95 °C for 5 min and briefly cooled on ice. Following a centrifugation step at 15,000 × g 
for 5 min, the proteins in the cell lysates were separated by 10% SDS-polyacrylamide gel 
electrophoresis (SDS-PAGE) and transferred to a nitrocellulose membrane. The membrane was then 
blocked with 5% skim milk in PBS-Tween-20 for 1 h at room temperature and then incubated with 
anti-NF-κB, and IκB. After washing the blot in PBS-Tween-20 three times, the blot was incubated 
with a secondary antibody for 1 h and then antibody-specific proteins were visualized using an 
enhanced chemiluminescence detection system in accordance with the recommended procedure 
(Amersham Corp., Newark, NJ, USA). The each protein levels were quantities with an image analyzer 
(FC-26WL, Vilber Lourmat, Marne-La-Vallee, France). 

3.12. Transient transfection and a luciferase assay 

For the transfection, HMC-1 cells were seeded (1 × 107) in a 100 mm culture dish. Lipofectamine™ 
2000 (Invitrogen, Carlsbad, CA, USA) was used to transiently transfect pNF-κB luciferase reporter 
vector and pRL-TK control vector constructs into HMC-1 cells. In brief, the cells were incubated at  
37 °C in a 5% CO2 incubator for 48 h, and then, the transfected HMC-1 cells were plated and 
stimulated with PMA plus A23187. Luteolin was added 1 h before stimulation. Four hours after 
stimulation, the cells were harvested and washed in cold PBS before lysing in a 500 μL lysis buffer 
(Dual-Luciferase® Reporter Assay System; Promega). After vortex mixing and centrifugation at 
12,000 × g for 3 min at 4 °C, the supernatant was stored at −70 °C until further analysis. For the 
luciferase assay, 20 μL of cell extract was mixed with 100 μL of the luciferase assay reagent at room 
temperature. To measure the luciferase activity, a luminometer (1420 luminescence counter, Perkin 
Elmer) was used in accordance with the manufacturer's protocol. All the transfection experiments were 
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performed independently at least three times, showing similar results. The relative luciferase activity 
was defined as the ratio of firefly luciferase activity to renilla luciferase activity.  

3.13. Statistical analysis 

Statistical significances were compared between each treated group and analyzed by the Student’s 
t-test. The data from the experiments are presented as means ± S.E.M. The numbers of independent 
experiments assessed are given in the figure legends.  
 
4. Conclusions  

Luteolin regulated the production of TNF-α, IL-6, IL-8 and GM-CSF in PMA plus A23187-
stimulated HMC-1 cells. Luteolin also decreased COX-2 expression and intracellular Ca2+ release. 
Furthermore, luteolin inhibited the ERK 1/2, JNK 1/2, and NF-κB pathway. Therefore, the regulation 
of the NF-κB signal pathway by luteolin isolated from the flowers of Lonicera japonica in HMC-1 
cells is a potentially attractive and characteristic probe for studying mast cell-mediated inflammatory 
diseases, such as IBD, RA, and allergy disease.  
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