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Abstract: Molecularly imprinted microspheres obtained by precipitation polymerization 
using nicotinamide (nia) as template have been prepared and characterised by SEM. How 
various experimental parameters can affect microsphere morphology, reaction yield and re-
binding capacity have been evaluated. Pre-polymerization interactions between template 
and functional monomer in chloroform and MeCN have been studied by 1H-NMR. The 
results suggest that the interaction between nia and methacrylic acid (MAA) is mainly 
based on hydrogen-bonding between amide protons and MAA. Computational density 
functional theory (DFT) studies on MAA-nia complexes have been also performed to 
better understand hydrogen-bonding interactions. The imprinted activity of the 
microspheres, synthesized in chloroform or acetonitrile (MeCN), has been evaluated by 
spectrophotometric analysis of nia solutions when chloroform or MeCN are used as 
incubation solvents. The results suggest that MeCN interferes with hydrogen bonding 
between template and MAA during either the polymerization step or re-binding process as 
also observed from theoretical results. Finally, the selectivity towards selected nia 
analogues has been also confirmed. 
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1. Introduction 

Molecularly imprinted polymers (MIPs) are synthetic polymers capable of selectively recognizing a 
specific target molecule (template). The template, added during the polymerization process, is 
removed by washing, leaving selective binding sites in the polymer network. The polymer obtained 
can exhibit in this way high affinity towards the template molecule which can be selectively re-bound 
to the specific sites. Nowadays MIPs are considered a convenient approach for the development of 
molecular recognition systems and have important applications in various areas, such as solid-phase 
extraction [1-4], chromatography [5-7], assays and sensors [8,9,10], catalysis [11,12], chemical traps 
and drug delivery systems (DDSs) [13,14] even if MIPs- based DDS are yet at an early stage. 

Templates interact specifically with functional monomers in different way to make covalent 
[15,16], non-covalent [17,18] or semi-covalent complexes. In this study non-covalent method has been 
chosen since it is considered the most straightforward and flexible one even if the weak interactions 
involved in the complexes formation, generally hydrogen-bonding, electrostatic or π-π interactions, 
may generate heterogeneous binding sites. 

Besides traditional bulk polymerization, other procedures have been developed in order to improve 
control of MIP particles morphology, such as suspension polymerization [19], multi-step swelling 
polymerization, sol-gel imprinting [20] and precipitation polymerization [21,22]. Our efforts to obtain 
homogeneously sized MIP particles led us to use a precipitation polymerization method which 
provides homogeneous microspheres [23-25]. This technique is an economical and labour-saving 
method and does not require addition of surfactants or stabilizers. In the precipitation technique a 
diluted system, obtained by using a high amount of a porogenic solvent, is needed in order to obtain a 
dispersion of micro-gel particles during the polymer synthesis; then the polymer microspheres are 
easily recovered by washing and centrifugation operations. 

In our work nicotinamide (nia), which is an important molecule widely diffused in nature as a form 
of vitamin B3, has been selected as target molecule; nia is part of the nicotinamide adenine 
dinucleotide (NAD) and nicotinamide adenine dinucleotide phosphate (NADP) coenzymes involved in 
various redox processes in the human body. It is both a food nutrient and a drug used in pellagra 
therapy and in the treatment of some neurodegenerative diseases [26]. Moreover, during the last few 
years its utilization in different health branches is receiving increasing attention. To our knowledge, 
only a few papers on nia-MIP systems have been reported. Fu and coworkers [27] prepared macro-
porous monolith imprinted polymers for nia and its positional isomers using bulk polymerization and 
their application in the separation of the isomers by using MIP particles as a HPLC stationary phase 
was also discussed. Wu and coworkers [28] proposed a computational model to simulate the synthesis 
of bulk MIPs, the removal of template and the recognition of the template and of its analogs. They 
have calculated the interaction energy between the monomer and the template and they used their 
computational model in prediction of chromatographic behaviour. Successively, in another paper Wu 
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and coworkers [29] used the same theoretical model focusing on the prediction of solvent effect on 
recognition properties, which was neglected in their previous work. They found that the small 
dielectric constant and aprotic solvent were likely to lead to a large interaction energy between 
template and monomer. Li and coworkers [30] reported the isotherms of nicotinamide and nicotinic 
acid obtained using nia-imprinted polymer as stationary phase. Zhang and coworkers [31] prepared 
piezoelectric sensors modified with MIPs synthesized by bulk polymerization, investigating also the 
response time of the sensors. To our knowledge, there are no studies of nia-MAA pre-polymerization 
interactions, no examples of MIP-nia systems obtained by precipitation polymerization and no studies 
of some critical experimental parameters in polymer synthesis procedure. 

Since the complexation of the nia template with the functional monomer MAA involves non-
covalent hydrogen bond interactions the choice of an appropriate method for the theoretical 
description of these systems is challenging [32]. Normal Hartree-Fock (HF) computations that do not 
include electron correlations are not suitable for this purpose. For high level post-HF methods like 
coupled clusters [CCSD(T)], the studied systems are too big to have an efficient theoretical 
description. An alternative to such methods lies in density functional theory (DFT) which due to the 
nature of the employed functionals includes some parts of the electron correlation [33,34]. Especially 
in combination with the resolution of identity (RI) approximation a very efficient theoretical 
description of bigger molecular systems is possible [35,36]. The currently available DFT methods 
work well for the structural and energetic description of hydrogen bond systems [32,37-40]. This holds 
especially for the widely applied gradient corrected functionals like BLYP [41,42], B3LYP [42,43], or 
the PBE [44,45] functional [46,47]. Another important point in the theoretical description of hydrogen 
bonds is the choice of the basis set and the resulting basis set superposition error (BSSE). This error is 
a purely mathematical artefact that can be eliminated by the counterpoise (CP) correction that was 
introduced by Boys and Bernardi [48]. Although the BSSE is found to be quite big for the energies of 
small hydrogen bonded clusters [49,50] for larger systems that contain H-bonds as structural feature its 
value decreases and becomes less basis set dependent [47,51]. 

In a previous work we prepared polymeric microspheres by using a non-covalent imprinting 
technique and precipitation polymerization of methacrylic acid (MAA) in the presence of 1,8-diaza-
bicyclo[5.4.0]undec-7-ene (DBU) as the template [52]. Now, in continuation of our interest in MIP 
research, we report herein a study of a molecular imprinted system based on non-covalent interactions 
between nia template molecules and MAA functional monomers. At the same time pre-polymerization 
studies on the possible interactions between template and functional monomer have been performed by 
1H-NMR and computational density functional theory (DFT) studies. 

A similar approach was successfully used by Prachayasittikul and coworkers for the evaluation of 
MIPs prepared by a non-covalent method [53,54], even if various differences can be observed in 
comparison with our work such as template, functional monomers, computational approach and so on. 
The author found that computer simulations confirmed the hypothesis derived from the  
experimental data. 

The preparation of imprinted microspheres by precipitation polymerization of functional 
monomer/cross-linker, methyl methacrylic acid/ethylene glycol dimethylacrylate (MAA/EGDMA) in 
the presence of nia as print molecule has been achieved and some experiments have been performed in 
order to evaluate how various parameters can affect microsphere morphology, reaction yield, re-
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binding capacity and so on. Polymeric microspheres obtained in this way have been characterised by 
SEM studies and binding ability of MIP systems towards different concentration of nia solutions in 
various solvent systems has been evaluated by spectrophotometric analysis. As a control, binding 
capacity of nia imprinted poly-(MAA-EGDMA) and non-imprinted poly-(MAA-EGDMA) have been 
compared. Finally, the selectivity towards nia analogues, such as nicotine and its isomers 
isonicotinamide (isn) and picolinamide, has been also discussed. 

2. Results and Discussion 

2.1. Polymer Syntheses and Characterization 

MIPs performance depends on many different parameters such as cross-linker/functional monomer 
ratio, temperature, type and concentration of monomers and solvent. In this work we have studied the 
influence of some of these parameters in order to optimise the experimental conditions. The polymers 
have been characterized by SEM and their average microsphere diameters, the yield of all polymers, 
and their experimental conditions are reported in Table 1. 

Table1. Experimental conditions of MIP and NIP synthesis a, yields and microsphere size. 

Sample 
Cross-linker 
EGDMA 
(mmol) 

Solvent 
Solvent 
Volume 
(mL) 

T 
(°C) 

Reaction 
Time (h) 

Yield 
(%) 

Microsphere 
size (μm) 

P1 6.19 CHCl3 40 60 20 59 (2.0±0.2) 
N-P1 6.19 CHCl3 40 60 20 62 (2.0±0.2) 
P2 6.19 MeCN 40 60 20 <5 - 
P3 6.19 MeCN  40 65 20 19  (0.20±0.02) 
P4 6.19 MeCN 30 65 20 22 (0.35±0.02) 
P5 6.19 MeCN 30 70 20 43 (0.38±0.02) 
P6 6.19  MeCN 30 70 48 45 (0.34±0.02) 
P7 9.3 MeCN 30 70 48 98 (0.50±0.05) 
N-P7 9.3 MeCN 30 70 48 95 (0.50±0.05) 

a 1.55 mmol of functional monomer (MAA) were used. 
 
We have started from a typical experimental precipitation polymerization procedure similar to that 

described in our previous paper with slight variations. Thus, nia and MAA in molar ratio 1:4 have been 
dissolved in chloroform and kept into a ultrasonic bath to promote non-covalent interactions to each 
other. Then, EGDMA (molar ratio MAA/EGDMA ¼) and AIBN have been added and the solution 
heated at 60°C for 20 h. After removal of the template and after drying the polymer P1 is obtained in 
about 60% of yield and characterized by SEM. The morphology observed from the SEM image shown 
in Figure 1 displays spherical particles with very narrow size distribution peaked at about (2 ± 0.20) 
μm. A non-imprinted polymer (N-P1), prepared following the same procedure described above except 
for the template, has been also synthesized. N-P1 polymer shows homogenous spherical particles with 
morphology and yield comparable to that measured for the imprinted polymer P1. Since polymer P1 
has been obtained with satisfactory yield and morphology it has been used along with its 
corresponding non-imprinted polymer N-P1 in rebinding study. 
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Figure 1. Scanning electron microscopy (SEM) images of P1, P3, P6 and P7 polymers 
(20,000X). 

 
 

The influence of porogenic solvents on recognition properties as reported in the literature [27,29] 
was examined neglecting the solvent effect on the polymer synthesis step. In the present work we have 
studied the solvent effect on yield and morphology size. Acetonitrile, with a higher dielectric constant 
than chloroform, is a typical porogenic solvent for MIP synthesis and it has been chosen for the 
synthesis of polymer P2, using the same procedure described for polymer P1. We can observe that the 
nature of the solvent is critical in the nia-MIPs synthesis step since P2 has been isolated with a very 
low yield, less than 5%. Thus, we have not taken into consideration this polymer for  
further characterization. 

Successively, different experiments have been performed changing other reaction parameters to 
understand the influence of these factors on the synthesis efficiency in acetonitrile solvent. When we 
increased only the temperature from 60 °C to 65 °C the polymer P3 was obtained in higher yield  
(19 %) than P2, and hence it was characterized by SEM analysis. The homogenous microspheres of 
polymer P3, shown in Figure 1, appear considerably smaller (0.20 ± 0.02 μm) than the microspheres of 
the polymer synthesized in chloroform. From these results it seems that polymerization process in 
acetonitrile needs higher temperature than in chloroform. In polymer P4 the volume of the solvent was 
reduced from 40 mL (P3) to 30 mL and we found only a slight increase in the microspheres’ size. 
Increasing the temperature from 65 °C to 70 °C gave a polymer P5 in 43 % of yield. The SEM image 
of polymer P6 is also shown in Figure 1; in this case the reaction time was increased from 20 h to 48 h, 
obtaining a performance comparable to that found for the imprinted polymer P5. Therefore, we can 
conclude that reaction time do not significantly influence the reaction process. Finally, increasing the 
cross-linker/functional monomer ratio from 1:4 to 1:6, a polymer P7 was obtained with a very high 
yield and increased size (Figure 1) in comparison to our previous syntheses. This last experiment gave 
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us better results and polymer P7 has been used in the rebinding study. Its non-imprinted polymer N-P7 
has been also synthesized. In accordance with chloroform results, also in this case blank polymer  
(N-P7) is similar to its related imprinted polymer (P7). In conclusion, from this study we can observe 
that the nature of the solvent is the most important parameter since it completely changes the reaction 
course; an increasing of temperature or cross-linker amount also gave an improved reaction yield. 

2.2. Prepolymerization-complexation studies on the interactions between template and functional 
monomer 

Studies on the interactions between template, functional monomer and solvent have been performed 
by 1H-NMR measurements in two different solvents. The nia and MAA molecules have been mixed in 
CDCl3 or MeCN-d3 in the same ratio and at similar concentrations as those utilised for polymer 
synthesis. The chemical shifts of the amide protons of nia in the absence or presence of MAA in 
CDCl3 and MeCN-d3 are reported in Table 2. 

Table 2. 1H-NMR chemical shift changes of NH2 amide protons of nia with or without 
MAA in CDCl3 or MeCN-d3 solvents. 

  Chemical shift (δ, ppm) 
Solvent  nia nia + MAA Δδ 
CDCl3 H Amide 5.93 6.51 0.58 
  6.17 7.00 0.83 
MeCN-d3 H Amide 6.22 6.60 0.38 
  6.90 7.03 0.13 

 
The signals of the amide protons of nia in CDCl3 in the absence of MAA appear at 5.93 and 6.17 

ppm. The signals shift downfield when MAA is added to the solution (Δδ, 0.58 and 0.83 ppm). In 
contrast, all pyridinic protons were minimally shifted by addition of MAA. Moreover, no additional 
proton signals are present, so there is no evidence of hydrogen transfer with ionic compound formation 
ascribable to the protonation of the nia amide nitrogen site. We can argue that the interaction between 
acid and base is mainly based on hydrogen-bonding between amide protons and MAA. A similar 
behaviour has been observed in MeCN-d3 solvent, where downfield shifts of the nia amide protons of 
0.38 and 0.13 ppm have been measured. The amide protons are less shifted in MeCN-d3 than in 
CDCl3, suggesting that the interaction between functional monomer and template is weaker in MeCN. 

The signals of the amide proton of nia in CDCl3 in the absence of MAA appear at 5.93 and 6.17 
ppm. When the same experiment has been performed in MeCN-d3 the amide signals occur downfield 
shifted at 6.22 and 6.90 ppm. These results agree well with the hydrogen bonding–acceptor capacity of 
the MeCN solvent. Hydrogen bonding certainly occurred between nia and MeCN, probably this 
interaction makes less strong hydrogen bonding between nia and MAA. 

2.3. Computational Studies on the Complexes Between nia and MAA 

In this section the results of the theoretical studies on the MAA– nia complexes are shown. First the 
chosen level of theory for the discussed binding energies (RI-BLYP/SV(P) for the structure 
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optimization and B3LYP/TZVP single point calculations for the binding energies) was validated by a 
comparison with values obtained from more computationally-intensive methods. A reoptimization of 
the 1:1 and the 1:2 complexes of the template with MAA on the RI-BLYP/TZVP niveau showed no 
significant changes (compare Table 3 the first two lines for an example). This leads to the conclusion 
that the RI-BLYP/SV(P) approach is sufficient for the structural optimization. The influence of the 
basis set superposition error (BSSE) was also estimated by the counterpoise (CP) correction [48] for 
the 1:1 and the most stable 1:2 complexes (Table 3 lines 3 and 4). With the applied triple zeta basis set 
this error is about 0.5 kcal/mol for each hydrogen bond (computed on the B3LYP/TZVP//RI-
BLYP/SV(P) level of theory). 

Table 3. A comparison of the obtained binding energies between various theoretical 
approaches for two selected 1:1 complexes and the most stable 1:2 complex between nia 
and MAA. 

Approach 3 4 1:2 
RI-BLYP/def2-TZVP//RI-BLYP/SV(P) -4.2 -13.9 -24.4 
RI-BLYP/def2-TZVP//RI-BLYP/def2-TZVP -4.4 -14.0 -24.5 
B3LYP/def2-TZVP//RI-BLYP/SV(P) -4.9 -14.7 -25.9 
B3LYP/def2-TZVP//RI-BLYP/SV(P) with BSSE -4.5 -14.1 -24.7 
RI-MP2/def2-TZVPP//RI-BLYP/SV(P) -7.0 -15.9 -29.0 

 
To validate the B3LYP/TZVP//RI-BLYP/SV(P) approach the binding energies were also computed 

on the RI-MP2/TZVPP//RIBLYP/SV(P) level of theory [55] (Table 3 last line). These energies are 
about 2 kcal/mol lower for each H-bond, but show the same trends. This leads to the conclusion that 
the B3LYP/TZVP//RI-BLYP/SV(P) level is a suitable approach for the computation of binding 
energies in MAA–nia complexes. 

Figure 2 shows the 1:1 complexes at all four possible binding sites of nia. The computed binding 
energies are summarized in Table 4. In the first column the binding energies as they are computed in 
the gas phase are given. The second column lists the binding energies in an environment with the 
dielectric constant of chloroform, while the third column shows the binding energies in acetonitrile. 
The values in parenthesis are the BSSE corrected values. For the stabilization energies computed in a 
polar surrounding the CP correction obtained from the gas phase computations was used. 

From the computed values for the binding energies of the 1:1 complexes (compare Table 4) it can 
be seen that there is a strong difference in the strength of the hydrogen bonds between MAA and nia at 
the four binding sites. The double hydrogen bond between the amide group of nia and the carboxyl 
group of MAA (4) gives the best stabilization in gas phase (14.7 kcal/mol). In contrast, the hydrogen 
bond between an amidic proton of nia and the carbonyl oxygen of MAA (3) provides only a weak 
stabilization of 4.9 kcal/mol. The well known trend that the binding energy of a hydrogen bond is 
decreased when going from the gas phase to a polar surrounding can be seen for all four possible 
hydrogen bonds. In the more polar acetonitrile surrounding the hydrogen bond between the amidic 
proton of nia and the carbonyl oxygen of MAA (3) does not provide any significant stabilization. 

The experimental preparation of the molecularly imprinted MAA polymer with nia provides an 
excess of MAA affording to each template molecule the possibility to bind up to four functional 
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monomers in the prepolymerization-complexation step. Figure 3 shows the most stable complexes 
between nia and MAA for a ratio of 1:2, 1:3 and 1:4 between template and functional monomer. The 
computed stabilization energies are given in Table 5. 

Figure 2. Schematic representation of all possible 1:1 complexes between nia template and 
MAA functional monomer. 

 

Table 4. Computed binding energies (in kcal/mol with and without BSSE correction) of all 
possible 1:1 complexes between nia and MAA in gas phase and in different polar 
surroundings. 

Hydrogen bond Gas phase CHCl3 (ε = 4.81) MeCN (ε = 37.5) 
1 -9.2 (-8.7) -5.4 (-4.9) -4.2 (-3.8) 
2 -11.5 (10.9) -7.4 (-6.8) -5.8 (-5.2) 
3 -4.9 (-4.5) -2.1 (-1.7) -0.8 (-0.4) 
4 -14.7 (14.1) -9.1 (-9.5) -6.7 (-6.1) 

Figure 3. The most stable prepolymerization-complex structures for a ratio of 1:2, 1:3 and 
1:4 between nia template and MAA functional monomer. 
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Table 5. The computed binding energies (in kcal/mol) of the prepolymerization-
complexation between nia and MAA shown in Figure 3 in gas phase and in the different 
polar surroundings. 

Surrounding 1:2 1:3 1:4 
Gas phase -25.9 -38.5 -46.2 

CHCl3 (ε = 4.81) -16.1 -23.0 -27.1 
MeCN (ε = 37.5) -12.3 -16.7 -19.9 

 
From the values for the stabilization energies between nia and more than one template molecule 

summarized in Table 5 it can be seen that the addition of each new MAA molecule to the complex 
provides an additional stabilization. This effect is very strong in the gas phase, but is also found in the 
polar surroundings of chloroform and acetonitrile. From the structures shown in Figure 3 it can be seen 
that a framework of hydrogen bonds is also formed between the functional monomer molecules. This 
leads to a good stabilization of the prepolymerization-complex. This also should help to form good 
cavities in the MIP after extracting the nia molecules from the polymer. A good rebinding property of 
the polymer to the nia template can then be expected from this prepolymerization-complexation 
behaviour. 

Since the acetonitrile solvent molecules also have a hydrogen bond acceptor capacity it is possible 
that a MeCN molecule forms a hydrogen bond to the amidic protons if MeCN is used as 
polymerization porogen solvent. This is indeed the case as the 1H-NMR studies indicate. To verify this 
hypothesis the hydrogen bond complex between an acetonitrile molecule and the amidic proton of nia 
is also computed (cf. Figure 4). 

Figure 4. The hydrogen bond between MeCN and nia. 

 

A comparison of the computed stabilization energies (Table 6) between the hydrogen bond to the 
MeCN solvent molecule and the hydrogen bond formed between the template molecule and the amidic 
proton of nia shows, that the solvent molecules are able to build stronger hydrogen bonds at this 
position than MAA. Since the computed energy differences are very small this finding is additionally 
checked with the RI-MP2 approach. 
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Table 6. The binding energy (in kcal/mol) of the hydrogen bond of 3 and the hydrogen 
bond between nia and MeCN for various theoretical approaches in comparison. 

Approach nia-MAA nia-MeCN 
B3LYP/def2-TZVP (gas phase) -4.9 -5.4 

B3LYP/def2-TZVP with BSSE (gas phase) -4.5 -5.2 
B3LYP/def2-TZVP (MeCN ε = 37.5) -0.8 -1.2 

B3LYP/def2-TZVP (MeCN ε = 37.5) + BSSE -0.4 -1.0 
RI-MP2/def2-TZVPP (gas phase) -7.0 -7.1 

RI-MP2/def2-TZVPP with BSSE (gas phase) -5.9 -6.6 
 

For all levels of theory the hydrogen bond of nia to the solvent is computed to give a bigger 
stabilization. This effect is even stronger if the BSSE correction is included in the theoretical values. 
This interaction with the solvent blocks the amidic proton from the binding to the functional monomer, 
and the framework of hydrogen bonds between the MAA molecules can not be established. As a 
consequence an effective complexation of nia in acetonitrile as polymerization porogen solvent is not 
possible. Since this effective prepolymerization-complexation is necessary for a good imprinting 
process it can be expected that the MIP prepared in MeCN as polymerization porogen solvent shows a 
bad recognition behavior towards nia. This is found in the experiment for the polymer P7 which was 
synthesized in acetonitrile as polymerization porogen solvent. 

2.4. Binding Capacity Evaluation 

Binding capacity of P1 and P7 synthesized in chloroform and MeCN, respectively, has been 
evaluated by re-binding studies. Their non-imprinted polymers N-P1 and N-P7 have been also used as 
a reference. The binding capacity in CHCl3 of imprinted polymer P1 and non-imprinted polymer N-P1 
versus nia concentration has been reported in Figure 5.  

Figure 5. Binding capacity in CHCl3 of imprinted polymer P1 and non-imprinted polymer 
N-P1 versus nia concentration. 

 
 

The imprinted polymer P1 curve shows a typical trend, the amount of nia re-bound to the polymer 
increases with the increasing initial concentration of nia from 0.1 × 10-3 M to 5 × 10-3 M reaching a 
saturation plateau at higher concentrations. As expected, non-imprinted polymer N-P1 shows a less 
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sensitive response to the template. This confirms that during the polymer synthesis a reasonable 
number of specific binding sites are formed and the polymer P1 has a good affinity for nia template. 
The affinity of MIPs is affected by solvents with different hydrogen-bonding capacities used in the re-
binding experiments. So that, the binding capacity evaluation of MIP P1 has been performed using 
MeCN as solvent. In Figure 6 these results have been compared with the previous curve obtained in 
chloroform. MeCN as re-binding solvent shows a weaker imprint effect than chloroform. MeCN 
unlike the chloroform enables to make hydrogen bonding with nia interfering with nia availability in 
the re-binding process. 

Figure 6. Binding capacity of imprinted polymer P1 in CHCl3 and MeCN versus nia concentration. 

 
 

The solvent influence on the interaction between template and MAA and the formation of specific 
recognition sites in imprinting process has been considered by using polymer P7, synthesized in 
MeCN, in the re-binding studies. Unlike polymer P1 results, polymer P7 has shown no significant 
binding capacity when chloroform or MeCN are used as the incubation solvents. Probably MeCN 
interfered with hydrogen bonding between template and MAA during the polymerization step of the 
polymer P7. So that, the formation of poor recognition site occurred when MeCN is used as 
polymerization porogen solvent. This agrees well with 1H NMR assumption. 

2.5. Selectivity Evaluation 

The different affinity of imprinted polymer P1 towards other three similar nitrogen bases, such as 
isonicotinamide (isn), picolinamide and nicotine, has been investigated. 5 × 10-3 M chloroform solution 
of picolinamide, isn and nicotine have been incubated with imprinted polymer P1 using the same 
procedure employed with nia. Each calculated binding capacity has been shown in Figure 7. 
Picolinamide and isn are two positional isomers of nia that have the amide group linked to a different 
pyridinic ring carbon. The greatest results are obtained for nia, but also isn shows a significant affinity 
towards imprinted polymer P1, but lower than nia. Picolinamide, unlike isn, did not show any affinity 
towards imprinted polymer P1 even though it is structurally similar to nia. This difference can be 
ascribed to the intramolecular hydrogen bond in picolinamide compound. Finally, nicotine with a 
different structure did not show any affinity towards imprinted polymer P1. 
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Figure 7. Binding capacity of imprinted polymer P1 versus different nitrogen bases. 

 

3. Conclusions 

We have reported in this work for the first time the preparation of imprinted microspheres in 
presence of nia as print molecule using a precipitation polymerization method. We have studied the 
influence of some parameters in order to optimise the experimental conditions and from this study we 
can observe that the nature of the solvent is the most important parameter, since it completely changes 
the reaction course; furthermore an increase in temperature or an increase of the amount of cross-linker 
improves the yields of the reaction. 

Complexation studies on possible interactions between template and functional monomer were also 
performed in chloroform and MeCN using 1H-NMR. We have found that the interaction between nia 
and MAA in both solvents studied is mainly based on hydrogen-bonding. The theoretical results show 
a framework of hydrogen bonds that is also established between the functional monomer molecules. 
Moreover, computational results (H-bond stabilisation energies for the bonds between the template and 
the functional monomer or the nia molecule and the solvent) and experimental results (1H NMR shift 
changes of the amidic protons) agree that the interaction between nia and MAA is less strong in 
MeCN, for the presence of hydrogen bonding occurred between nia and MeCN. These results are in 
line with the studies carried out by Prachayasittikul and coworkers [53,54] suggesting that 
computational studies can be helpful for a preliminary assessment of template, functional monomer, 
solvent interactions in MIPs studies. 

The binding ability of MIP systems towards different concentration of nia solutions in various 
solvent systems has been evaluated by spectrophotometric analysis. The imprinted activity of polymer 
P1, synthesized in chloroform, has been demonstrated when chloroform or MeCN are used as 
incubation solvents. Whereas, polymer P7, synthesized in MeCN, has shown no significant binding 
capacity in both solvents. Probably MeCN interfered with hydrogen bonding between template and 
MAA during the polymerization step and re-binding process. 

The selectivity of P1 towards nia by considering other analogous compounds, such as nicotine and 
its isomers isonicotinamide (isn) and picolinamide has been also confirmed. 
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4. Experimental  

4.1. General 

The compounds nia (99+ %), isn (≥ 99 %), picolinamide (> 98 %), nicotine (> 99 %, GC), 
methacrylic acid (> 99 %), ethylene glycol dimethacrylate (> 98 %), azobis(isobutyronitrile) (AIBN, > 
98 %), were purchased from Aldrich and used as received. Ultrapure water was obtained from a model 
New Human Power I ultrapure water system from Human Corporation. Acetonitrile (MeCN) (Baker, 
analyzed grade) was dried by leaving overnight over molecular sieves and then distilled from calcium 
hydride before use. Dry chloroform (Aldrich, ≥ 99.8 % A.C.S. reagent) was passed through a column 
of basic alumina (Aldrich, standard grade) before use. All other solvents (Baker, analyzed grade) were 
used without further purification. 

Sonication was carried out using a Sonorex RK 102H ultrasonic water bath from Bandelin 
Electronic. Centrifugation was achieved with a PK121 multispeed centrifuge from Thermo Electron 
Corporation. A Heidolph Instrument Rotamax 120 type rocking table was used for shaking incubated 
mixtures. 1H-NMR spectra were recorded on a Bruker Avance 400 NMR spectrometer at room 
temperature and chemical shifts were reported relative to tetramethylsilane. Absorbances were 
measured by UV Vis spectrophotometer Cary 100 scan (Varian). The morphology of the microspheres 
was analyzed by using a ZEISS EVO 40 scanning electron microscopy (SEM) in high vacuum mode 
without prior treatment. 

4.2. Polymers Preparation and Template Removal 

Syntheses of nia imprinted microspheres were carried out following the method described in our 
previous paper [52] with slight variations. The conditions used for the synthesis are summarized in 
Table 1: in every experiment, 0.43 mmol of nia and 1.55 mmol of MAA were dissolved in the solvent 
in a 100 mL three necked round bottom flask and the solution was kept into a ultrasonic bath for 10 
min; then, EGDMA and 0.15 mmol of AIBN were added to the solution. The reaction mixture was 
saturated with nitrogen for 10 min and heated for 20 h or 48 h to allow polymerization. After cooling 
at room temperature, the mixture was sonicated for further 5 min and the microspheres separated by 
filtration. The template in the microspheres was removed by washing several times with 20 ml of 
ethanol/acetic acid (8/2 v/v) solution until nia signal at 262 nm was not detected and then washed with 
ethanol in order to remove the acetic acid present. Finally the microspheres were dried and stored 
under vacuum to avoid any contamination. As a control, non-imprinted microspheres (NIP) were also 
prepared following the same procedure above described except for the template. 

4.3. Computational Details 

To study the binding situation in the prepolymerization-complexation step, all possible 
combinations of nia with the functional monomer MAA (see Figure 8) were build up with the aid of 
the AVOGADRO program [56] and preoptimized by the MMFF94 [57] forcefield applying its 
implementation in the avogadro program. The obtained structures were then fully optimized using 
density functional theory (DFT) on the BLYP/SV(P) niveau [41,42,58] applying the TURBOMOLE 
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program package [59] . For these calculations the resolution of identity (RI) approximation [34,35] 
together with the corresponding auxiliary basis sets [35,60] provided by TURBOMOLE were applied. 
The binding energies then were obtained by single point calculations on the B3LYP/TZVP//RI-
BLYP/SV(P) niveau [42,43,61] according to: 

Binding energy = (Energy of nia-MAA complex) - (Energy of nia) - x × (Energy of MAA) 

where x stands for the amount of MAA molecules in the complex. 

Figure 8. The possible binding sites for the functional monomer MAA to the nicotinamide 
template molecule. 

 
 

The MAA–nicotinamide complexes were optimized in gas phase and in a polar environment. This 
was done with the COSMO [62] approach for chloroform (ε = 4.81) and acetonitrile (ε = 37.5). The 
influence of the basis set superposition error (BSSE) was also estimated by the counterpoise (CP) 
correction [48]. The applied level of theory was validated by a comparison of the computed binding 
energies with values obtained from RI-BLYP/TZVP//RI-BLYP/TZVP and RI-MP2/TZVPP// 
RIBLYP/SV(P) computations [55] (section Results and Discussion, Table 3). 

4.4. Calibration Curves and Binding Experiments 

To evaluate the amount of template extracted during the washing step calibration curves were 
prepared reporting absorbance versus template concentration. Similarly calibration curves were 
achieved when template or its analogues were used in the re-binding stages. 

In a polypropylene tube, MIP or NIP (20 mg) were suspended in MeCN (5.0 mL) containing nia at 
a known concentration ranging from 1 × 10-4 M to 1 × 10-2 M. The mixture was incubated for 16 h 
using a rocking table working at room temperature and 75 rpm. After centrifugation at 8,000 rpm for 
10 min, the supernatant was filtered through a 0.20 µm porosity polypropylene filter. The nia 
concentration in the solution after the binding process was determined by measuring the absorbance at 
262 nm and the result was compared with concentration before incubation. Re-binding experiments 
were also performed in chloroform solutions following the same procedure except for the use of glass 
tube. Analogously to nia, solutions of nicotine, isonicotinamide or picolinamide at the concentration of 
5 × 10-3 M in chloroform were incubated with polymer microspheres and treated as above reported. 
Nicotine, isonicotinamide or picolinamide concentrations in the solution after the binding process were 
determined by measuring the absorbance at 262 nm, 268 nm and 265 nm respectively and compared 
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with their initial concentration. Binding processes and measurements were performed in triplicates and 
their average binding percentages were calculated. 
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