OPEN ACCESS **MOLECULES** ISSN 1420-3049 www.mdpi.com/journal/molecules

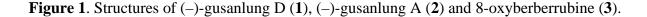
Article

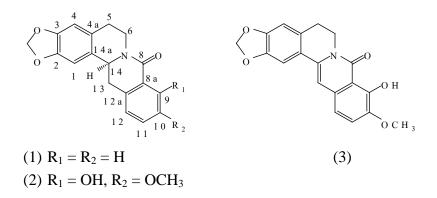
Total Syntheses of (±)-Gusanlung A, (±)-Gusanlung D and 8-Oxyberberrubine and the Uncertainty Concerning the Structures of (-)-Gusanlung A, (-)-Gusanlung D and 8-Oxyberberrubine

Surachai Nimgirawath ^{1,*}, Phansuang Udomputtimekakul ¹, Thitima Apornpisarn ¹, Asawin Wanbanjob ¹ and Thongchai Taechowisan ²

- ¹ Department of Chemistry, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand; E-mails: Phansuang@yahoo.com (P.U.), winsusc@gmail.com (T.A.), thitima_noon@hotmail.com (T.A.)
- ² Department of Microbiology, Faculty of Science, Silpakorn University, Nakorn Pathom 73000, Thailand; E-mail: tthongch@su.ac.th (T.T.)

* Author to whom correspondence should be addressed; E-mail: surachai@su.ac.th

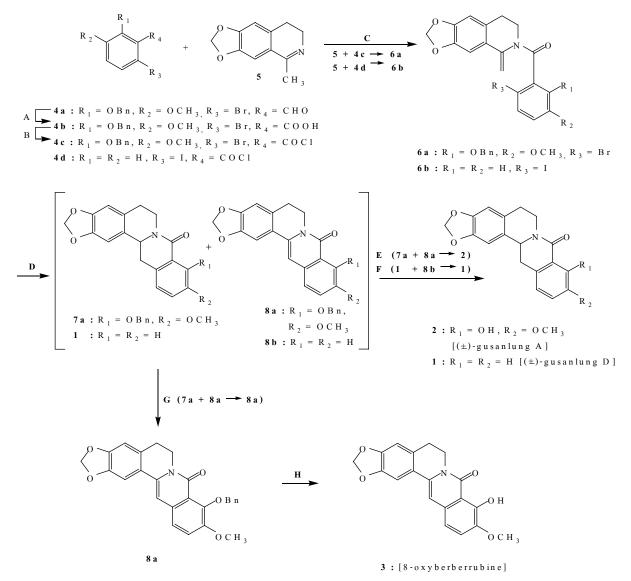

Received: 12 January 2009; in revised form: 9 February 2009 / Accepted: 12 February 2009 / Published: 12 February 2009


Abstract: (\pm)-Gusanlung A, 8-oxyberberrubine and (\pm)-gusanlung D have been synthesized by radical cyclisation of the corresponding 2-aroyl-1-methylenetetrahydroisoquinolines. The ¹H and ¹³C spectra of (-)-gusanlung D were found to be different from those of synthetic (\pm)-gusanlung D. Careful analyses of the ¹³C spectra of (–)-gusanlung A and natural 8-oxyberberrubine also cast doubt on the correctness of the structures previously assigned to these two compounds. (\pm)-Gusanlung A and (\pm)-gusanlung D were inactive against *Staphylococcus aureus* ATCC25932, *Escherichia coli* ATCC10536 and *Candida albicans* ATCC90028.

Keywords: Alkaloid; Protoberberine; Isoquinoline; Synthesis; Antimicrobial activity.

Introduction

(-)-Gusanlung D, isolated from Acangelisia gusanlung H. S. Lo (Menispermaceae), is the first natural 8-oxotetrahydroprotoberberine alkaloid with an unoxygenated ring D [1]. Based on spectral data analysis, structure 1 was proposed for (-)-gusanlung D. Prior to the isolation of (-)-gusanlung D, Kessar et al. synthesized in 1992 a compound which is essentially (±)-gusanlung D [2]. However, a close comparison of the ¹H-NMR data of (\pm) -gusanlung D with those reported for (–)-gusanlung D revealed significant differences. In 2003 Reimann, Grasberger and Polborn reported another synthesis of (±)-gusanlung D [3]; in this case the ¹³C-NMR spectral data were found to show significant differences to those reported for (-)-gusanlung D. Subsequently, an unsymmetric synthesis of (-)gusanlung D was achieved by Chrzanowska, Dreas and Razwadowska in 2004 [4]. Comparison of the ¹H- and ¹³C-NMR data of synthetic (-)-gusanlung D with those of natural (-)-gusanlung D also showed significant differences. Finally, Chang and Chang reported a total synthesis of (±)-gusanlung D [5], whose spectral data were said to agree with those in references [1-4]. This last conclusion added further confusion to the matter since, if the spectral data of (\pm) -gusanlung D [5] are in good agreement with those reported for (±)-gusanlung D [2-3] and synthetic (–)-gusanlung D [4], they cannot also be consistent with those reported for natural (-)-gusanlung D [1]. In view of these discrepancies in the ¹H- and ¹³C-NMR data of natural (-)-gusanlung D [1] and the synthetic alkaloids, it was therefore highly desirable to perform another independent synthesis of (\pm) -gusanlung D to shed further light on the possible structure of (–)-gusanlung D.

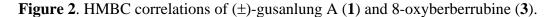

Furthermore, two new related alkaloids: (–)-gusalung A [6] and 8-oxyberberrubine [1], for which structures 2 and 3 were proposed based on spectral analysis, were isolated from *Acangelisia gusanlung* H. S. Lo. In view of the uncertainty regarding the correct structure of (–)-gusanlung D (1), it was therefore highly desirable to also confirm the correctness of the structures proposed for (–)-gusanlung A (2) and 8-oxyberberrubine (3) by total syntheses.

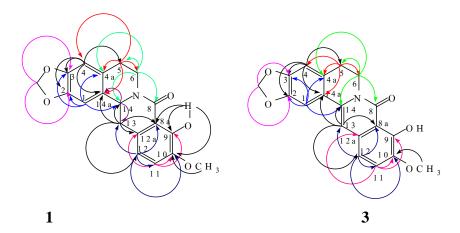
Results and Discussion

Syntheses of (\pm) -gusanlung A (2) and 8-oxyberberrubine (3)

The synthesis of (\pm) -gusanlung A (2) was based on the radical-initiated cyclization of 2-(2'-benzyloxy-6'-bromo-3'-methoxybenzoyl)-1-methylene-6,7-methylenedioxy-1,2,3,4-tetrahydroisoqui-noline (**6a**), as outlined in Scheme 1, with subsequent catalytic hydrogenolysis of the benzyl protecting group.

Scheme 1. Synthetic routes to (\pm) -gusanlung A (1), (\pm) -gusanlung D (2), and 8-oxyberberrubine (3).




Reagents and Conditions A) NaClO₂, sulphamic acid/ *tert*-butanol-H₂O; B) SOCl₂/ benzene; C) Et_3N/dry benzene; D) Bu_3SnH , AIBN/ dry benzene; E) H₂, Pd/C/ ethanol; F) hydrazine, Pd/C/ ethyl acetate-ethanol; G) I₂/ dioxane; H) conc. HCl/ ethanol.

Thus, oxidation of 2-benzyloxy-6-bromo-3-methoxybenzaldehyde (4a) [7] with sodium chlorite gave 2-benzyloxy-6-bromo-3-methoxybenzoic acid (4b), whose acid chloride (4c) was then reacted

with 6,7-methylenedioxy-1-methyl-3,4-dihydroisoquinoline (5) [8] in the presence of triethylamine to give thee moderately stable compound **6a**. Treatment of **6a** with tributyltin hydride in the presence of a catalytic amount of 2,2'-azobis(isobutyronitrile) gave a 31.3% yield of a mixture of (\pm)-9-benzylgusanlung A (**7a**) and 9-benzyl-8-oxyberberrubine (**8a**) in a ratio of 78:22 according to ¹H-NMR analysis. Catalytic hydrogenolysis of the mixture of **7a** and **8a** to remove the benzyl protecting group also resulted in the concurrent hydrogenation of the C-C double bond to give pure (\pm)-gusanlung A (**2**). On the other hand, oxidation of the mixture of **7a** and **8a** with iodine gave 9-benzyl-8-oxyberberrubine (**8a**), whose benzyl protecting group was removed by acid treatment to give 8-oxyberberrubine (**3**).

The ¹H-NMR data of synthetic (\pm) -gusanlung A (2) were in reasonably good agreement with those reported for natural (–)-gusanlung A (2). However, a number of carbons in the ¹³C-NMR spectrum of natural (-)-gusanlung A (2) were found to have guite different chemical shifts from the corresponding carbons in the spectrum of (\pm) -gusanlung A (2). We therefore carried out ¹H-¹H-COSY, HMQC and HMBC experiments to allow complete assignments of chemical shifts of (\pm) -gusanlung A (2). Details of the HMBC correlations are shown in Figure 2 and Table 4. The ¹H-NMR spectral data of natural 8oxyberberrubine (3) were found to be in good agreement with those of synthetic 8-oxyberberrubine (3). However, from HMBC correlation experiment, it was possible to establish that the chemical shifts of H-1 and H-13 previously assigned should be interchanged. On the other hand, the ¹³C spectrum of natural 8-oxyberberrubine (3) had a number of features which were quite different from those of synthetic 8-oxyberberrubine (3). These differences were highlighted and the HMBC correlations were shown in Figure 2 and Table 5. In summary, it can be concluded that while the ¹H-NMR analysis lent good support to the structures proposed for (-)-gusanlung A (2) and 8-oxyberberrubine (3), in view of the discrepancies in a number of carbon chemical shifts in the 13 C-NMR spectra of (-)-gusanlung A (2) versus those of (\pm) -gusanlung A (2) on the one hand, and natural 8-oxyberberrubine (3) versus synthetic 8-oxyberberrubine (3) on the other, no definite conclusions can be drawn at this time concerning the correctness of the structures previously assigned to (-)-gusanlung A (2) and 8oxyberberrubine (3).

Synthesis of (\pm) -gusanlung D

The synthesis of (\pm) -gusanlung D (1) was uneventful. Thus, 2-iodobenzoyl chloride (4d) was reacted with 5 [8] in the presence of triethylamine to give the highly unstable 2-(2'-iodobenzoyl)-1-methylene-6,7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (6b). Treatment of 6b with tributyltin hydride in presence of a catalytic amount of 2,2'-azobis(isobutyronitrile) gave a 39.0% yield of a mixture of 1 and 8b in a ratio of 87:23 from ¹H-NMR analysis. Treatment of the mixture with hydrazine and palladium/charcoal gave (\pm)-gusanlung D (1), whose ¹H- and ¹³C-NMR data were in good agreement with those of (\pm)-gusanlung D (1) and (–)-gusanlung D [1]. The structure previously assigned to (–)-gusanlung D [1] therefore remains uncertain.

Table 1. Comparison of ¹H-NMR spectral data between natural (-)-gusanlung D [**1**], synthetic (-)-gusanlung D [**4**] and synthetic (±)-gusanlung D [**2**] and [**this work**].

	(–)-gusanlung D	(–)-gusanlung D	(±)-gusanlung D	(±)-gusanlung D	
/ ··· \	CDCl ₃ [1]	CDCl ₃ [4]	CDCl ₃ [2]	CDCl ₃ [this work]	
(position)	m.p. 250-251 °C	т.р. 195-197 °С	т.р. 175-177 °С	т.р. 175-176 °С	
	${}^{1}\mathbf{H}$	${}^{1}\mathbf{H}$	${}^{1}\mathbf{H}$	$^{1}\mathrm{H}$	
1	7.35 (s)	6.71 (s)	6.76 (d)	6.72 (s)	
4	6.80 (s)	6.67 (s)	6.76 (d)	6.67 (s)	
5α	2.70-3.40 (m)	2.7-2.8 (m)	2.83-3.35 (m)	2.70-2.82 (m)	
5β	2.70-3.40 (m)	2.82-3.02 (m)	2.83-3.35 (m)	2.87-3.07 (m)	
6α	2.70-3.40 (m)	2.82-3.02 (m)	2.83-3.35 (m)	2.87-3.07 (m)	
6β	4.8 (m)	4.93-4.99 (m)	4.7-5.1 (m)	4.88-4.99 (m)	
9	8.07 (d, 8.0)	8.13 (d, 7.4)	8.1-8.37 (m)	8.13 (dd, 7.6, 1.4)	
10	7.29-7.41 (m)	7.34-7.40 (m)	7.25-7.65 (m)	7.39 (br t, 7.4)	
11	7.29-7.41 (m)	7.41-7.49 (m)	7.25-7.65 (m)	7.46 (dt, 7.4, 1.5)	
12	7.29-7.41 (m)	7.24 (d, 7.4)	7.25-7.65 (m)	7.22-7.29 (m)	
13α	2.70-3.40 (m)	2.82-3.02 (m)	2.83-3.35 (m)	2.87-3.07 (m)	
13β	2.70-3.40 (m)	3.18 (dd, 15.3, 3.7)	2.83-3.35 (m)	3.18 (dd, 15.7, 3.7)	
14	3.95 (m)	4.83 (dd, 13.3, 3.7)	4.7-5.1 (m)	4.84 (dd, 13.3, 3.7)	
OCH ₂ O	6.20, 6.06 (s)	5.96 (s)	5.93 (s)	5.96 (s)	

Table 2. Comparison of ¹³C-NMR spectral data between natural (-)-gusanlung D [1], synthetic (-)-gusanlung D [4] and synthetic (±)-gusanlung D [3] and [this work].

	(–)-gusanlung D	(-)-gusanlung D	(±)-gusanlung D	(±)-gusanlung D
	CDCl ₃ [1]	CDCl ₃ [4]	CDCl ₃ [3]	CDCl ₃ [this work]
(position)	m.p. 250-251 °C	m.p. 195-197 °C	т.р. 175-177 °С	т.р. 175-176 °С
	¹³ C	¹³ C	¹³ C	¹³ C
1	107.3	105.8	105.97	105.9
2	135.0	146.5 ^b	146.57	146.6 °
3	147.0	146.7 ^b	146.77	146.8 ^c
4	107.5	108.6	108.81	108.7

	(–)-gusanlung D	(–)-gusanlung D	(±)-gusanlung D	(±)-gusanlung D
(position)	CDCl ₃ [1]	CDCl ₃ [4]	CDCl ₃ [3]	CDCl ₃ [this work]
	m.p. 250-251 °C	m.p. 195-197 °C	т.р. 175-177 °С	т.р. 175-176 °С
4a	126.5	128.8	128.85	128.9
5	29.7	29.6	29.61	29.7
6	42.0	38.7	38.49	38.8
8	162.0	164.5	158.67	164.6
8a	117.3	137.2	137.24	137.3
9	128.7^{a}	128.6	128.60	128.6
10	127.9 ^a	127.3	127.37	127.4^{*}
11	127.1 ^a	131.8	132.33	131.9 *
12	126.8 ^a	126.8	126.87	126.9
12a	124.6	129.0	131.81	129.1
13	33.5	38.1	37.78	38.1
14	49.4	55.2	55.18	55.3
14a	126.5	128.5	128.55	128.6
OCH ₂ O	100.9	101.1	101.00	101.1

Table 2. Cont.

^{a, b, c, *} assignments may be interchangeable.

Table 3. Comparison of ¹H-NMR spectral data between natural (-)-gusanlung A [**1**] and synthetic (±)-gusanlung A [**this work**].

	(-)-gusanlung A	(±)-gusanlung A	(±)-gusanlung A
	$(DMSO-d_6)$ [6]	(DMSO- <i>d</i> ₆) [this work]	(CDCl ₃) [this work]
(position)	m.p. 260-262 °C	m.p. 188-189 °C	m.p. 188-189 °C
	$^{1}\mathrm{H}$	${}^{1}\mathrm{H}$	${}^{1}\mathbf{H}$
1	6.96 (s)	7.00 (s)	6.71 (s)
4	6.80 (s)	6.79 (s)	6.66 (s)
5	2.73-2.81 (m)	2.75-2.89 (m)	2.72-2.84 (m)
6α	2.73-2.81 (m)	2.89-3.01 (m)	2.94-3.40 (m)
6β	4.71 (m)	4.69-4.59 (m)	4.80-4.87 (m)
11	6.99 (d, 8.1)	7.09 (d, 8.1)	6.94 (d, 8.1)
12	6.86 (d, 8.1)	6.71 (d, 8.1)	6.63 (d, 8.1)
13α	3.13 (dd, 15.3, 3.1)	3.36 (dd, 15.2, 3.6)	3.14 (dd, 15.2, 3.8)
13β	2.62 (dd, 15.3, 13.3)	2.66-2.75 (m)	2.80-2.94 (m)
14	4.68 (dd, 13.3, 3.1)	4.84 (dd, 13.3, 3.4)	4.80 (dd, 13.6, 3.5)
C ₁₀ -OCH ₃	3.76 (s)	3.78 (s)	3.90 (s)
OCH ₂ O	5.98, 5.99 (s)	5.98, 6.00 (s)	5.96 (s)
OH	-	12.88 (s)	12.83 (s)

Table 4. Comparison of ¹³C-NMR spectral data between natural (-)-gusanlung A [**6**] and synthetic (-)-gusanlung A [**this work**] and HMBC correlations of (±)-gusanlung A [**this work**].

	(-)-gusanlung A	(±)-gusanlung A	(±)-gusanlung A	(±)-gusanlung A	
	(DMSO- <i>d</i> ₆) [6]	$(DMSO-d_6)$ [this	(CDCl ₃) [this	(DMSO	-d ₆) [this work]
(position)		work]	work]	НМВС	
	m.p. 260-262 °C	m.p. 188-189 °C	m.p. 188-189 °C		
	¹³ C	¹³ C	¹³ C	2J	3J
1	106.1	106.6	105.8	C-2	C-3, 4a, 14
2	145.9 ^a	146.7 ^c	146.8*	-	-
3	147.7 ^a	146.5 ^c	146.7*	-	-
4	107.8	108.7	108.6	C-3	C-2, 5, 14a
4a	129.1 ^b	128.3	128.1	-	-
5	29.0	28.9	29.4	C-4a, 6	C-4, 14a
6	37.8	38.5	38.4	C-5	C-4a, 8, 14
8	161.4	168.4	168.6	-	-
8a	122.3 ^b	111.4	111.4	-	-
9	149.7 ^a	151.4	151.8	-	-
10	145.7 ^a	147.2	147.5	-	-
11	118.9	116.7	115.4	C-10	C-9, 12a
12	122.1	116.9	116.1	C-11	C-8a, 10, 13
12a	128.2 ^b	129.6	128.7	-	-
13	37.7	35.9	37.1	C-12a, 14	C-8a, 12, 14a
14	54.4	55.4	55.7	C-13, 14a	-
14a	129.3 ^b	129.1	128.4	-	-
C ₁₀ -OCH ₃	60.5	56.3	56.3	-	C-10
OCH ₂ O	100.5	101.3	101.2	-	C-2, 3
OH				C-9	C-8a, 10

^{a, b, c, *} assignments may be interchangeable.

Table 5. Comparison of ¹ H- and ¹³ C-NMR spectral data between natural 8-oxyberberubine
(3) [1], synthetic 8-oxyberberubine (3) [this work] and HMBC correlations of 8-
oxyberberrubine [this work].

	natural 8-oxy-	synthetic 8-oxy-	natural 8-oxy-	synthetic 8-oxy-	s	synthetic
	berberrubine (3)	berberrubine (3)	berberrubine (3)	berberrubine (3)	8-oxyberberrubine (3)	
(monsition)	CDCl ₃ [1]	CDCl ₃ [this	CDCl ₃ [1]	CDCl ₃ [this	(CDCl	3) [this work]
(position)		work]		work]	НМВС	
	m.p. 240-241 °C	m.p. 238-239 °C	m.p. 240-241 °C	m.p. 238-239 °C		
	${}^{1}\mathbf{H}$	${}^{1}\mathbf{H}$	¹³ C	¹³ C	2J	3J
1	6.83 (s)	7.21 (s)	104.0	104.8	C-2	C-3, 4a, 14
2			141.6	147.5*	-	-
3			146.4	148.6*	-	-
4	6.72 (s)	6.71 (s)	107.1	108.0	C-3	C-2, 5, 14a
4a			109.6	129.5	-	-
5	2.91 (t, 7.2)	2.92 (t, 6.1)	28.4	28.4	C-4a,	C-4, 14a
					6	
6	4.27 (t, 7.2)	4.27 (t, 6.1)	39.1	39.1	C-5	C-4a, 8, 14

	natural 8-oxy-	synthetic 8-oxy-	natural 8-oxy-	synthetic 8-oxy-		synthetic
	berberrubine (3)	berberrubine (3)	berberrubine (3)	berberrubine (3)		erberrubine (3)
					-	
(position)	CDCl ₃ [1]	CDCl ₃ [this	CDCl ₃ [1]	CDCl ₃ [this	(CDCl ₃) [this work]	
(position)		work]		work]	HMBC	
	m.p. 240-241 °C	m.p. 238-239 °C	m.p. 240-241 °C	m.p. 238-239 °C		
8			164.0	165.4	-	-
8a			129.9	111.0	-	-
9			149.0	150.3	-	-
10			147.5	144.9	-	-
11	7.30 (AB q, 8.0)	7.28 (d, 8.5)	114.9	119.1	C-10	C-9, 12a
12	7.00 (AB q, 8.0)	6.99 (d, 8.5)	120.0	115.3	C-11	C-8a, 10, 13
12a			128.9	130.5	-	-
13	7.21 (s)	6.83 (s)	103.6	103.6	C-14	C-8a, 12,
						14a
14			133.6	134.6	-	-
14a			122.1	123.5	-	-
C ₁₀ -OCH ₃	3.96 (s)	3.97 (s)	56.7	56.7	-	C-10
OCH ₂ O	6.02 (s)	6.02 (s)	100.6	101.5	-	C-2, 3
OH	-	13.14	-	-	-	-

Table 5. Cont.

* assignments may be interchangeable.

Antimicrobial activity

(\pm)-Gusanlung D (1) and (\pm)-gusanlung A (2) at the concentration value 256 μ g/mL were inactive against *Staphylococcus aureus* ATCC25932, *Escherichia coli* ATCC10536 and *Candida albicans* ATCC90028.

Conclusions

Based on spectral analysis, there were significant discrepancies between the spectral data of natural (-)-gusanlung D and synthetic (\pm)-gusanlung D. Hence, the structure previously proposed for (-)-gusanlung D remains doubtful. While the ¹H spectral data of natural (-)-gusanlung A and 8-oxyberberrubine were in reasonably good agreement with those of synthetic (\pm)-gusanlung A and 8-oxyberberrubine, the ¹³C spectral data of natural (-)-gusanlung A and 8-oxyberberrubine were not entirely in good agreement with those of synthetic (\pm)-gusanlung A and 8-oxyberberrubine. The structures previously proposed for natural (-)-gusanlung A and 8-oxyberberrubine must therefore be treated with caution.

Experimental

General

Melting points were determined on a SMP 2 Stuart Scientific melting point apparatus and are uncorrected. Infrared spectra were recorded on CH₂Cl₂-films with a Perkin Elmer Spectrum GX FT-IR

spectrophotometer. Ultraviolet spectra were recorded on methanol solutions with a Perkin Elmer Lambda 35 UV-VIS spectrophotometer. ¹H- and ¹³C-NMR spectra were recorded on (D) chloroform solutions at 300 MHz for ¹H and 75 MHz for ¹³C with a Bruker AVANCE 300 spectrometer. Tetramethylsilane was used as the internal standard. MS spectra were recorded on a POLARIS Q mass spectrometer.

2-Benzyloxy-6-bromo-3-methoxybenzoic acid (**4b**). A solution of sodium chlorite (0.36 g, 3.6 mmol) in H₂O (5 mL) was added to a solution of 2-benzyloxy-6-bromo-3-methoxybenzaldehyde (**4**a) [7] (1.0 g, 3.1 mmol) and sulfamic acid (0.5 g) in *tert*-butanol (10 mL) and H₂O (3 mL). The solution was stirred for 1 h. The mixture was shaken with ethyl acetate (20 mL) and the ethyl acetate layer was extracted with 5% sodium carbonate (3×20 mL). The aqueous layer was then acidified with concentrated hydrochloric acid and extracted with chloroform (3×20 mL). The chloroform layer was dried over anhydrous sodium sulfate. Removal of the solvent under vacuum gave a solid which was recrystallized from benzene-hexane to give **4b** as pale white crystals (0.8 g, 76.2%), m.p. 112-115 °C; ¹H-NMR: δ 7.47-7.42 (2H, m, Ph-H); 7.38-7.25 (4H, m, Ph-H × 3 and Ar-H); 6.88, (1H, d, *J* = 8.9 Hz, Ar-H); 5.10 (2H, s, <u>CH₂Ph</u>); 3.89 (3H, s, OCH₃). ¹³C-NMR: δ 171.0 (C), 152.2 (C), 145.9 (C), 136.7 (C), 130.6 (C), 128.4 (CH), 128.2 (CH), 114.9 (CH), 108.7 (C), 76.0 (CH₂), 56.2 (OCH₃).

2-(2'-Benzyloxy-6'-bromo-3'-methoxybenzoyl)-1-methylene-6,7-methylenedioxy-1,2,3,4-tetrahydro-

isoquinoline (6a). A solution of acid 4b (3.6 g, 10.0 mmol) and thionyl chloride (3.9 g, 32.8 mmol) in benzene (20 mL) was refluxed for 1 h. The solvent and excess thionyl chloride were removed under vacuum to give acid chloride 4c as a yellow oil (3.7 g, 94.9%) which was used in the next step without further purification. A solution of acid chloride 4c (1.9 g, 5.3 mmol) in dry benzene (20 mL) was added dropwise over 10 min. to a solution of isoquinoline 5 [8] (1.0 g, 5.3 mmol) and triethylamine (1.0 g) in dry benzene (20 mL), then the mixture was refluxed for 2 h. On cooling, the precipitated triethylamine hydrochloride was filtered off. The filtrate was evaporated under vacuum to give enamide **6a** as a yellow oil (2.6 g, 84.4%) which was unstable and decomposed on standing. It was immediately used in the next step without further purification. ¹H-NMR: δ 7.38-7.23 (5H, m, Ph-H), 7.18(1H, d, *J* = 8.8 Hz, H-5'), 6.89 (1H, s, H-8), 6.75 (1H, d, *J* = 8.8 Hz, H-4'), 6.41 (1H, s, H-5), 5.90 (2H, AB q, J = 1.3 Hz, OCH₂O), 5.14 (1H, d, J = 1.3 Hz, =CH₂), 5.00 (2H, AB q, J = 10.8 Hz, CH₂Ph), 4.81 (1H, d, J = 1.3 Hz, =CH₂), 4.13-4.02, 3.57-3.50 (2H, 2 m, CH₂-3), 3.80 (3H, s, OCH₃), 2.90-2.59 (2H, m, CH₂-4); ¹³C-NMR: δ 165.0 (C), 152.1 (C), 147.8 (C), 146.5 (C), 145.3 (C), 141.4 (C), 137.4 (C), 134.3 (C), 129.0 (C), 128.4 (CH), 128.1 (CH), 127.9 (CH), 127.7 (CH), 125.1 (C), 113.4 (CH), 110.0 (C), 108.4 (CH), 104.4 (CH₂), 103.8 (CH), 101.1 (CH₂), 75.4 (CH₂), 55.9 (OCH₃), 41.6 (CH₂), 28.8 (CH₂).

(\pm)-Gusanlung A (1) and 9-benzyl-8-oxyberberrubine (8a). A solution of enamide 6a (2.7 g, 5.3 mmol), tributyltin hydride (3.4 g, 11.7 mmol) and 2,2'-azobis(isobutyronitrile) (0.2 g, 0.7 mmol) in dry benzene (50 mL) was refluxed with stirring for 3 h., then the solvent was removed under vacuum. The residue was washed with hexane (4 × 15 mL) and dissolved in chloroform (30 mL). The chloroform layer was washed with brine, then dried over anhydrous sodium sulfate. The solvent was removed under vacuum to give a yellow solid which was recrystallized from ethanol to give a 31.3% yield of a

mixture of (\pm)-9-benzylgusanlung A (**7a**) and 9-benzyl-8-oxyberberrubine (**8a**) in a ratio of 78:22 from ¹H-NMR analysis.

A solution of the mixture of **8a** and **7a** (303.7 mg, 0.7 mmol) in ethanol (50 mL) was hydrogenated over 10% Pd/C (30.4 mg) at atmospheric pressure for 48 h. The catalyst was fittered off and the solvent was removed under vacuum to give a crude yellow solid. Recrystallization of the crude solid from ethanol gave (±)-gusanlung A (**2**) as a pale yellow solid (82.4 mg, 34.3%), m.p. 188-189 °C; UV (MeOH) λ_{max} nm (log ε): 219 (4.54), 271sh (3.87), 281 (3.98), 308 (4.16), 319 (4.15); IR ν_{max} (film): 3737, 3650, 3585, 2919, 2852, 1748, 1634, 1615, 1581, 1542, 1506, 1488, 1456, 1386, 1356, 1336, 1315, 1262, 1239, 1154, 1084, 1069, 1037, 1001, 933, 858, 804, 792, 728 cm⁻¹; MS (EI) m/z (%): 339 (M⁺, 55), 176 (100). ¹H-NMR see Table 3, ¹³C-NMR and HMBC see Table 4.

A solution of iodine (4.6 g, 18.3 mmol) in dioxane (100 mL) was added dropwise over 30 min. to a refluxing solution of the mixture of 7a and 8a (1.3 g, 3.0 mmol) and sodium acetate (1.5 g) in dioxane (50 mL), then the mixture was refluxed for 6 h. On cooling, the sodium acetate was filtered off and the precipitate was washed with chloroform (100 mL). The chloroform layer was washed with 5% NaHSO₃ (100 mL), dilute NH₃ (30 mL), H₂O (100 mL) then dried over anh. Na₂SO₄. Removal of the solvent under vacuum gave a red solid which was recrystallized with ethanol to give 9-benzyl-8oxyberberrubine (8a) as red crystals (0.6 g, 50.0%), m.p. 190-192 °C. UV (MeOH) λ_{max} nm (log ϵ): 206sh (4.62), 224 (6.31), 255sh (5.78), 312 (5.76), 342 (6.03), 369 (5.86), 387 (5.71); IR v_{max} (film): 2938, 2898, 2841, 1651, 1619, 1599, 1494, 1484, 1386, 1372, 1317, 1277, 1225, 1176, 1100, 1083, 939, 871, 834, 777, 734 cm⁻¹; ¹H-NMR: δ 7.73-7.68 (2H, m, Ph-H); 7.43-7.32 (3H, m, Ph-H); 7.32-7.28 (2H, m, H-11 and H-12); 7.22 (1H, s, H-1), 6.72 (1H, s, H-13); 6.70 (1H, s, H-4); 6.00 (2H, s, OCH₂O); 5.16 (2H, s, CH₂Ph); 4.31 (2H, t, J = 6.1 Hz, CH₂-6); 3.88 (3H, s, OCH₃); 2.88 (2H, t, J = 6.1 Hz, CH₂-5); ¹³C-NMR: δ 160.2 (C), 151.7 (C), 148.4 (C), 148.2 (C), 147.3 (C), 138.1 (C), 135.6 (C), 132.4 (C), 130.1 (C), 128.7 (CH), 128.2 (CH), 127.7 (CH), 123.8 (C) , 122.5 (CH), 119.8 (C), 119.1 (CH), 107.9 (CH), 104.7 (CH), 101.4 (CH₂), 101.3 (CH), 75.7(CH₂), 56.9 (OCH₃), 39.5 (CH₂), 28.7 (CH₂).

8-*Oxyberberrubine* (**3**). A solution of **8a** (100.0 mg, 0.2 mmol) in ethanol (30 mL) and conc. HCl (30 mL) was refluxed for 3 h. On cooling, the solution was extracted with chloroform (50 mL). The extract was washed with water (50 mL), then dried over anh. Na₂SO₄. Removal of the solvent under vacuum gave a yellow solid which was recrystallized with ethanol to give 8-oxyberberrubine (**3**) as pale yellow crystals (42.2 mg, 53.5%), m.p. 238-239 °C (Lit. [2] m.p. 240-241 °C); UV (MeOH) λ_{max} nm (log ε): 225 (4.44), 258sh (3.99), 270 (3.87), 288 (3.69), 345 (4.16), 369 (4.13); IR ν_{max} (film): 3011, 2893, 2836, 1645, 1594, 1490, 1393, 1320, 1267, 1228, 1181, 1087, 1033, 932, 826, 665 cm⁻¹. ¹H-NMR, ¹³C-NMR and HMBC see Table 5.

2-(2'-Iodobenzoyl)-1-methylene-6, 7-methylenedioxy-1,2,3,4-tetrahydroisoquinoline (**6b**). A solution of 2-iodobenzoyl chloride **4d** (1.4 g, 5.4 mmol) in dry benzene (20 mL) was added dropwise over 10 min. to a solution of isoquinoline **5** [8] (1.0 g, 5.3 mmol) and triethylamine (1.0 g) in dry benzene (20 mL), then the mixture was refluxed for 2 h. On cooling, the precipitated triethylamine hydrochloride was filtered off and the filtrate was evaporated under vacuum to give enamide **6b** as a yellow oil (2.2 g, 99.1%) which was unstable and decomposed on standing, so it was immediately used in the next

736

step without further purification. ¹H-NMR: δ 8.07-6.84 (5H, m, Ar-H); 6.58 (1H, s, Ar-H); 5.92 (2H, s, OCH₂O); 5.18 (1H, br s, =CH₂); 4.50 (1H, br s, =CH₂); 4.12(2H, br s, CH₂); 2.95 (2H, br s, CH₂); ¹³C-NMR: δ 169.0 (C), 161.2 (C), 148.2 (C), 146.8 (C), 142.6 (C), 142.2 (CH), 139.3 (CH), 135.9 (C), 132.5 (C), 129.9 (CH), 128.3 (CH), 125.0 (C), 108.4 (CH), 106.2 (CH₂), 103.9 (CH), 101.2 (CH₂), 41.8 (CH₂), 29.0 (CH₂).

(±)-Gusanlung D (1) and 13,14-didehydrogusanlung D (8b). A solution of enamide 6b (2.9 g, 10.0 mmol) tributyltin hydride (11.7 g, 40.0 mmol) and 2,2'-azobis(isobutyronitrile) (1.6 g, 10.0 mmol) in dry benzene (50 mL) was refluxed with stirring for 3 h., then the solvent was removed under vacuum. The residue was washed with hexane (4 ×15 mL) and dissolved in chloroform (30 mL). The chloroform layer was washed with brine, then dried over anhydrous sodium sulfate. The solvent was removed under vacuum to give a solid which was recrystallized from ethanol to give a 39.0% yield of a mixture of 1 and 8b in a ratio of 23:87 from ¹H-NMR analysis.

A mixture of **1** and **8b** (200.0 mg, 0.7 mmol), Pd/C (300.0 mg), hydrazine (50 mL), ethanol (50 mL) and ethyl acetate (50 mL) was refluxed for 48 h. The Pd/C was filtered and the filtrate extracted with chloroform (80 mL). The extract was washed with 10% HCl (2 × 50 mL), water (50 mL) then dried over anh. Na₂SO₄. Removal of the solvent under vacuum gave a yellow solid which was recrystallized with ethanol to give pure (±)-gusanlung D (1) as pale yellow crystals (99.4 mg, 49.4%), m.p. 175-176 °C (lit. [**5**] m.p. 175-177 °C). UV (MeOH) λ_{max} nm (log ε): 206 (6.27), 230 (5.78), 253sh (5.42), 290 (5.42), 335 (5.02), 365 (4.77); IR ν_{max} (film): 2922, 1646, 1602, 1576, 1487, 1412, 1362, 1333, 1285, 1241, 1218, 1178, 1141, 1038, 936, 906, 853, 743, 636, 505 cm⁻¹. ¹H-NMR and ¹³C-NMR see Tables 1 and 2.

Minimum inhibitory concentration (MIC)

MIC of (±)-gusanlung A (2) and (±)-gusanlung D (1) were determined by NCCLS microbroth dilution methods [9]. (±)-Gusanlung A (2) and (±)-gusanlung D (1) were weighed and dissolved in DMSO to make a solution of concentration 2.56 mg/mL. From this stock solution two-fold serial dilution has been carried out to give a series of solutions from 256 µg/mL to 0.50 µg/mL with culture medium in 96-well microplates (100 µL of total volume). Three different microorganisms were selected *viz. Staphytolcoccus aureus* ATCC25932, *Escherichia coli* ATCC10536 and *Candida albicans* ATCC90028. They were subcultured on nutrient broth supplemented with 10% glucose (NBG) (for bacteria) or Sabouraud glucose broth (for yeast) and incubated at 37 °C for 24 h. A final concentration of 1 x 10⁵ cfu/mL of test bacteria or yeast was added to each dilution. The plates were incubated at 37 °C for 48 h. MIC was defined as the lowest concentration of test agent that inhibited bacterial or yeast growth, as indicated by the absence of turbidity. Test agent-free broth containing 5% DMSO was incubated as growth control.

References

1. Zhang, J-S.; Men-Olivier, L.L.; Massiot, G. Isoquinoline alkaloids from *Acangelisia gusanlung*. *Phytochemistry* **1995**, *39*, 439-442.

- Kessar, S.V.; Singh, P.; Vohra, R.; Kaur, N.P.; Venugopal, D. Facile generation and trapping of α-Oxo-*o*-quinodimethanes: Synthesis of 3-aryl-3,4-dihydroisocoumarins and protoberberines. *J. Org. Chem.* 1992, *57*, 6716-6720.
- Reimann, E.; Grasberger, F.; Polborn, K. Protoberberines from *Reissert*-Compounds VIII [1]. Oxazoloisoquinolines, new and efficient educts for the synthesis of 8-oxoprotoberberines. *Monatsh. Chem.* 2003, 134, 991-1014.
- 4. Chrzanowska, M.; Dreas, A.; Rozwadowska, M.D. Asymmetric synthesis of (*R*)-(+) and (*S*)-(-)-2,3-methylenedioxy-8-oxoberbine (gusanlung D). *Tetrahedron Asymmetry* **2004**, *15*, 1113-1120.
- 5. Chang, J-K.; Chang, N-C. Total synthesis of (±)-gusanlung D. *Tetrahedron* **2008**, *64*, 3483-3487.
- 6. Zhang, J-S.; Chen, Z.-L. Two new 8-oxotetrahydroprotoberberine alkaloids, gusanlung A and B, from *Acangelisia gusanlung*. *Planta Med*. **1991**, *57*, 457-459.
- 7. Nimgirawath, S.; Lorpitthaya, R.; Wanbanjob, A.; Taechowisan, T.; Shen, Y-M. Total synthesis and the biological activities of (±)-norannuradhapurine. *Molecules* **2009**, *14*, 89-101.
- 8. Ishiwata, S.; Nozaki, T. Syntheses of isoquinoline derivatives. V. Syntheses of alkyl derivertives of the pyridine nucleus. *J. Pharm. Soc. Jpn.* **1951**, *71*, 1257-1260.
- National Committee for Clinical Laboratory Standards, Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved standard M27-A. National Committee for Clinical Laboratory Standards, Wayne, Pa, USA,1997.

Sample Availability: All stable products reported in this paper are available from the authors.

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).