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Abstract 
 
Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion 
have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. 
The explosion is considered at different heights. Entropy production is also calculated along with the 
strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been 
found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to 
smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and 
shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of 
entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away 
from the point of explosion. However for the isothermal shock, the calculation of entropy production 
shows negative values. With negative values for the isothermal case, the production of entropy is 
smaller at higher heights of explosion, which goes on increasing as the shock moves away from the 
point of explosion. Directional study of the shock motion and entropy production show that in both the 
cases of adiabatic and isothermal flow, shock strength and shock velocity are larger in upward motion 
of the shock, in comparison to the downward motion of the shock. For adiabatic flow, entropy 
production is larger in upward motion of the shock; whereas, with negative values, entropy production 
is smaller in upward motion of the isothermal shock. For the adiabatic case, the profiles of shock 
strength, shock velocity and entropy production are smooth and have the largest value in vertically 
upward direction and have the lowest value in vertically downward direction, forming the oval shape. 
For the isothermal case, the profiles of shock strength and shock velocity show similar trend as that for 
adiabatic case but the profile of entropy production shows opposite trend. The profiles maintain their 
shape as the shock moves away. Comparison with observed values of shock velocity shows that 
isothermal case produces better results in comparison to the adiabatic case.     
 
Keywords: spherical blast wave, adiabatic flow, isothermal flow, explosion, entropy production 
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Nomenclature                                                            Subscripts 
 h0 =height of explosion (m)                                        h = unshocked state at a height h   
 p = pressure of fluid (air)                                           1 = state at the earth surface 
 g = defined in equation (2.2)                                      2 = state just behind the shock front 
 gs= acceleration due to gravity at                                
       the surface of earth (m/s2)                                    
 Re=radius of earth (m)                                                 
 t = time 
 r = radial distance from the point of explosion          Greek letters   
 h =height of any point from the earth surface (m)       ρ =density of fluid (air)  
 u= radial component of fluid velocity (m/s)                θ = angle measured in vertical direction   
 v= transverse component of fluid velocity (m/s)         ε = total energy /unit mass (sum of 
 U =shock velocity (m/s)                                                      internal and kinetic energies for 
 R=shock radius (m)                                                             unit mass = E+½ u2) 
 γ =specific heat ratio of the gas                                    α =constant defined in equation (2.19) 
 ℜ=gas constant for unit mass of the gas                                                              
 T′=energy released during explosion (J)                       
 T=absolute temperature (K)                                          
 E=internal energy/unit mass (J/kg)                                    
 M=shock strength 
 s =specific entropy (entropy /unit mass) (kJ/kg-K) 
 c=local sound speed (m/s) 
 A=function of entropy defined in (2.6) 
 B=constant defined in (2.11) 
 A′=constant defined in (3.4) 
 B′=constant defined in (3.10) 
 K, L, N, O=coefficients defined in (2.23), (2.24), (2.25) and (2.26) respectively 
 
1. Introduction  
 
Propagation of spherical blast wave in nonuniform media is of immense importance in the field of 
shock dynamics, as almost all the naturally available media are nonuniform in nature. Nonuniformity 
in any medium can be due to various phenomena namely the gravitation, self gravitation, rotation, 
thermal conductivity, viscosity etc.. The atmosphere on the earth surface is a commonly available 
example of the nonuniform medium produced due to the gravitational effect of the earth.  
       Adiabatic propagation of blast wave produced due to a sudden release of a large amount of energy 
has been first investigated by Taylor [39, 40] and Sedov [30, 31] using the similarity method. A 
detailed study of adiabatic shock propagation in air and nonuniform media has also been done by 
Zeldowitch and Raizer [23, 50]. Other studies in this field are by Kopal [11], Sakurai [28, 29], Brode 
[5], Hayes [9, 10], Laumbach and Probestein [14], Ojha [20] and Nath [19]. 
       An atomic explosion or the burst of novae produces very strong Shocks and very high 
temperature. The assumption of adiabatic flow by Taylor [39] in case of atomic explosion and by 
Parker [21] in the case of novae burst is no more valid. In such cases, the assumption of isothermal 
flow gives more accurate description of the problem. The text by U.S. department of Defense [42], 
Zel’dovich and Raizer [49] and many other websites [44, 45] describes the effect of atomic explosion 
in the air. Fission of Uranium or Plutonium in an Atomic bomb leads to the liberation of a large 
amount of energy (~ 1013 J) in a very small period, with in a limited space. The large amount of energy 
released, causes a temperature of more than a million degrees. Because of the extremely high 
temperature, there is an emission of energy by the electromagnetic radiations. Much of these radiations  
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are absorbed by the air surrounding the bomb, with the results that air becomes heated. Since the 
radiation energy can travel rapidly between any two points, hence there is no appropriate temperature 
gradient. Because of the uniform temperature, the medium surrounding the explosive is referred to as 
an Isothermal sphere and the blast generated by the explosive propagates isothermally.  
       Self similar isothermal flow behind the spherical shock wave produced by a point explosion with 
their propagation in uniform and nonuniform atmosphere has been first investigated by Korbinikov 
[12, 13]. Other studies in isothermal shock propagation are done by many using different methods [2, 
15, 17, 24, 27]. Isothermal blast wave model of Supernova Remnants are been developed by Solinger 
et.al. [37]. Ray and Bhomik [25] studied the explosion in stars for isothermal shock conditions. The 
expansion of solar corona has been investigated by Bhomik [3] using blast wave theory headed by an 
isothermal shock. Blast wave in inhomogeneous isothermal atmosphere, with real gas and heat transfer 
effects have been studied by Gretler [8]. Using isothermal shock conditions, cylindrical blast wave 
with radiation heat flux in self gravitating gas has been investigated by Singh et.al.[32]. 
       Thomas [41] used energy hypothesis for spherical blast wave. This hypothesis was used by 
Bhutani [4], Singh and coworkers [33, 34, 35, 36] and Vishvakarma et al. [43] used it for the case of 
water. 
       Change in entropy is an essential phenomenon of shock wave propagation. Change in entropy and 
temperature due to shock wave in different type of media are considered by Kopal [11], Sakurai [28, 
29], Rosciszewshi [26], Eschenroeder [7], Strusmia [38] In case of relativistic shock, Yadav and 
coworkers [46, 48] and. Recently, rate of entropy production is investigated by Yadav et al. [47] for 
the case of explosion in seawater. 
       In this paper, the adiabatic and isothermal propagation of spherical blast wave in the nonuniform 
media of earth’s atmosphere has been considered using energy hypothesis of Thomas [41]. 
Expressions for the shock strength, shock velocity and pressure, density and temperature ratios of 
shocked (downstream) and unshocked (upstream) fluid parameters are calculated numerically to 
achieve the variation of entropy production with propagation distance (r) in different directions (θ). 
Results are compared with those obtained by Taylor [40]. 
 
2. Adiabatic propagation of the blast wave 
 
Let us consider the nonuniform earth atmosphere, in which the explosion take place at point `O’ due to 
a spherical charge at a time t=0 and at a height h0 above the surface of earth. This point is considered 
as origin (r=0). (figure 1). 

                                     
                               Figure 1. Shock front in the earth’s atmosphere. 
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The explosion causes an immediate production of a spherical blast wave which propagates with a 
velocity U. At any time t, the radius of the spherical shock front is given as r=R (t). Variable θ 
represents the direction, which is taken as zero (θ=00) towards the earth surface and is 1800 in the 
vertical direction.  
       The partial differential equations governing the conservation of mass, momentum and energy of 
the adiabatic spherical flow under the effect of earth’s gravitation are given by: 
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Variation of the gravity with height is given by: 
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As h<< Re, then: 
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In the hydrostatic equilibrium condition: 
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The height h at any point on the spherical shock front of radius R, in the direction θ is given by: 
 

       θcos0 Rhh −=                                                                                                                            (2.5) 
 
Relationship between pressure and density for any gas particle is adiabatic, for which adiabatic 
equation of state is: 
 

       ργ).(sAp =                                                                                                                                  (2.6) 
 
For the sake of simplicity it is assumed that γ does not vary with temperature. Differentiating equation 
(2.6) with respect to r and equating it with equation (2.3): 
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∂−                                                                                                                 (2.7) 
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Differentiating equation (2.5) and substituting it in equation (2.7): 
 

       hgA ∂−=∂− .... 2 ρργ γ                                                                                                                    (2.8) 
 
 
Substituting equation (2.2) in (2.8) and integrating for the limits ρ=ρ1 at h=0 and ρ=ρh for the height h: 
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Rearranging, we get density at a height h is:  
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And pressure at a height h is: 
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Where the constant B is given by:    
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Local sound velocity is ( )[ ]
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Relation (2.9), (2.10) and (2.12) denotes the undisturbed values of the density, pressure and local 
sound velocity at a height h, in front of the shock wave produced by the explosion.  
 
2.1: Calculation of downstream fluid parameters  
 
After the passage of the shock, the new values of pressure, density, particle velocity and temperature 
are p2, ρ2, u2 and T2 respectively. Using well known Rankine – Hugoniot conditions, these flow 
variables can be written in terms of the initial conditions of the air given by ph and ρh, by means of 
following equations: 
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The Rankine- Hugoniot condition for the conservation of energy at the shock front is given by: 
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With the assumption that all the released energy is used in producing shock, then according to the 
Energy hypothesis, the change in total energy per unit mass is given by: 
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For the case of strong shock α is given by [36]: 
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From equation (2.17) and (2.18): 
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With the algebraic substitution of the values of p2, u2, ρ2 and α in (2.20) and on solving, we get the 
shock strength: 
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Shock velocity is given by: 
 
       U = ch.M                                                                                                                                     (2.22) 
 
Where the coefficients K, L, N and O are given as: 
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Shock strength M is calculated at different shock positions (shock radius) in a particular direction (θ) 
given in equation (2.5). Then pressure ratio p2/p0 and density ratio ρ2/ρ0 at different shock positions in 
a particular direction θ, are calculated using equations (2.13) and (2.14) given below: 
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2.2: Calculation of entropy production 
 
Assuming that no chemical reaction takes place, the entropy change in a gaseous medium is given by 
the relation [51]: 
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The first part of equation (2.29) is calculated using the gas equation as below: 
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On solving we get: 
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Substituting (2.31) and (2.28) in (2.29), the rate of change of entropy in a non dimensional form (as ∆s 
is divided by ℜ, the gas constant) is given by: 
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Entropy production is calculated at different shock positions (shock radius R) in a particular direction 
θ and for different heights of explosion. 
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3. Isothermal propagation of the shock  
 
Let us consider the isothermal propagation of the shock produced due to explosion at point O (figure 
1). The partial differential equations governing the conservation of mass, momentum and energy for 
the isothermal spherical flow under the effect of earth’s gravitation are given by: 
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Equation (3.1d) shows the absence of any temperature gradient.  
 
The hydrostatic equilibrium conditions are given by: 
 

       θ
ρ

cos1 g
r
p
=

∂
∂                                                                                                                             (3.2) 

       θ
θρ

sin1 gp
r

−=
∂
∂                                                                                                                        (3.3) 

 
Relationship between pressure and density of the fluid particle is given by the equation of state: 
 
       Tp ℜ= ρ                                                                         
 
The fluid (air) particles are in a state of isothermal flow (T is constant), for which the equation of state 
is: 
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Equating equation (3.5) and (3.2): 
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Differentiating equation (2.5) and substituting it in equation (3.6): 
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Substituting equation (2.2) in (3.7) and integrating for the limits ρ=ρ1 at h=0 and ρ=ρh at a height h:  
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Rearranging, we get density at a height h is:  
 

       ( )[ ]hhRB eh −′−= exp1ρρ                                                                                                             (3.8) 
 
And pressure at a height h is: 
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Relation (3.8) and (3.9) denotes the undisturbed values of the density and pressure. Local sound 
velocity at a height h is given by equation (3.11) which is same everywhere as the medium is 
isothermal.  
 
3.1: Calculation of downstream fluid parameters  
 
After the passage of the shock, the new values of pressure, density, particle velocity and temperature 
are p2, ρ2, u2 and T2 respectively. The jump conditions for the fluid variables across the isothermal 
shock front are given by [32]: 
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The Rankine- Hugoniot condition representing the conservation of energy at the shock front is given 
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For the case of strong isothermal shock, α is given by [36]: 
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From equation (3.17) and (3.18): 
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Substituting the values of p2, u2, ρ2 and α in (3.20), we get the shock strength as: 
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Shock velocity is given by: 
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Shock strength M is calculated at different shock positions (shock radius) in a particular direction (θ), 
given in equation (2.5).  
       The density ratio ρ2/ρh at different shock positions in a particular direction θ, are calculated using 
equation (3.13) and (3.21), given by: 
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3.2: Calculation of entropy production 
 
Assuming that no chemical reaction takes place, the entropy change in a gaseous medium is given by 
the relation [51]: 
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For the isothermal case T2=Th, hence change in entropy is given by: 
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Substituting (3.23) in (3.25), the rate of entropy production in a non dimensional form is given by: 
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At different heights of explosion, entropy production is calculated at different shock positions in a 
particular direction θ. 
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4. Results and Discussion  
 
The plots in Figures 2 and 3 show the effect of height of explosion on the shock strength M and shock 
velocity U. Figures 2a and 2b shows the variation of shock strength (M) with propagation distance (R) 
for the adiabatic and isothermal flow respectively, at different heights of explosion h0 (=1km, 4km and 
7km), as the shock moves in the horizontal direction (θ=900). Corresponding variation of shock 
velocity (U) with propagation distance (R), for the two cases, are shown in figure 3a and 3b.  
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Figure 2. Variation of Shock strength (M) with propagation distance (R) at different heights of explosion h0 in 
the direction θ = 900.  
 
In both the cases of adiabatic and isothermal flow, shock strength and shock velocity have higher 
values at higher heights of explosion (i.e. M and U at 7km > at 4km > at 1km). However, for the 
isothermal case, the values of shock strength and shock velocity are smaller in comparison to the 
adiabatic case. The effect of earth gravitation on the motion of shock is dominantly shown by these 
plots. 
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Figure 3. Variation of shock velocity (U) with propagation distance (R) at different heights of explosion h0 in 
the direction θ = 900.  
 
These plots also show the characteristics properties of blast waves. Near the point of explosion, M and 
U are quite large. As the shock moves away from the point of explosion, M and U decrease initially  
 

(a) Adiabatic flow

(a) Adiabatic flow

(b) Isothermal flow

(b) Isothermal flow
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very sharply. At a sufficiently large distance the shock strength approaches the value 1.0 and shock 
velocity approaches the value of local sound velocity. 
       Entropy production also depends on the height of explosion. Figure 4 give the corresponding 
variation of entropy production with propagation distance (R) for the adiabatic and isothermal case.  
 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10 110 210 310

1 km
4 km
7 km ∆

s/
ℜ

 h0 =

 R  (m)

-14.00

-12.00

-10.00

-8.00

-6.00

-4.00

-2.00

0.00
10 110 210 310

1 km
4 km
7 km

∆s
/ ℜ

h0 =

R (m)  
 
Figure 4. Variation of entropy production (∆s/ℜ) with propagation distance (R) at different heights of 
explosion h0 in the direction θ = 900.  
 
For the adiabatic case (figure 4a), entropy production decreases as the shock moves away. In this 
manner the shock produces a non isentropic flow field behind it. However the decrease in entropy 
production is not so much sharp as shown by M and U. Also the entropy production is larger for 
higher height of explosion (i.e. ∆s/ℜ at 7km > at 4km > at 1km). The plot also shows that the 
difference in entropy production at different heights of explosion is small near the point of explosion. 
Again the difference in ∆s/ℜ at different h0’s decreases as the shock moves away.   
       At high altitudes, the shock faces a low value of initial pressure and initial density. At low 
pressure and density the air molecules are freer for motion. Hence the conversion of kinetic energy of 
the shock motion into the disordered motion of the air molecules (entropy) is larger for explosions at 
high altitudes [6].      
       Figure 4b shows the corresponding variation of entropy production with propagation distance (R) 
for the isothermal case. It shows that variation in entropy production increases as the shock moves 
away (attention is to be made on the negative sign of entropy production. A decrease in negative value 
corresponds to the increase in the entropy. It looks strange to see the negative entropy production for 
the case of isothermal shock considered here. In the oncoming article, production of negative entropy 
has been discussed.). However the increase in entropy production is not so much sharp as shown by M 
and U. Also the entropy production is smaller for higher height of explosion (i.e. ∆s/ℜ at 7km < at 
4km < at 1km). The plot also shows that the difference in entropy production at different heights of 
explosion is small near the point of explosion. Again the difference in ∆s/ℜ at different h0’s decreases 
as the shock moves away from the point of explosion.   
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Directional dependence of the shock motion is shown in figures 5 and 6. Figure 5a and 5b shows the 
variation of shock strength M with propagation distance R for the adiabatic and isothermal case 
respectively, in different directions at a fixed height of explosion h0= 4km.  
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Figure 5. Variation of shock strength (M) with propagation distance (R) in different directions (θ) at the height 
of explosion h0= 4 km. 
 
Plots in figure 5 show that, in both the cases of adiabatic and isothermal flow, shock strength M is 
larger as the shock moves in upward direction (i.e. M in the direction θ = 1800 >θ = 900 >θ = 00). 
However, for the isothermal case, the value of shock strength is smaller in comparison to the adiabatic 
case. 
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Corresponding to figure 5(a and b), Variation of shock velocity U with propagation distance R, in 
different directions at a fixed height of explosion h0= 4km is shown in figure 6a (adiabatic case) and 
6b (isothermal case).  
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Figure 6. Variation of shock velocity (U) with propagation distance (R) in different directions (θ) at the height 
of explosion h0= 4 km. 
 
Plots in figure 6 show that, in both the cases, shock velocity U is larger as the shock moves in upward 
direction (i.e. U in the direction θ = 1800 >θ = 900 >θ = 00). However, for the isothermal case, the 
values of shock velocity are smaller in comparison to the adiabatic case. 
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For the adiabatic and isothermal cases, the variations of entropy production ∆s/ℜ with propagation 
distance R in different directions, at a fixed height of explosion h0= 4km is given in figure 7a and 7b 
respectively. Figure 7a show that for the adiabatic case, entropy production is larger in upward motion 
of the shock, in comparison to the downward motion of the shock. 
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Figure 7. Variation of entropy production (∆s/ℜ) with propagation distance (R) in different directions (θ) at 
the height of explosion h0= 4 km. 
 
For the isothermal case (figure 7b), the curves show that entropy production is smaller in upward 
motion of the shock, in comparison with the downward motion of the shock.   
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Figures 8a and 8b shows the variation of shock strength M with the direction (θ) at a fixed propagation 
distance R=10m and a constant height of explosion h0=7km, for the adiabatic and isothermal cases 
respectively. Axes, representing M are drawn at θ=900 (showing the horizontal direction, in which 
shock motion is unaffected by the gravity). The direction 1800> θ>900 signifies the upward motion of 
the shock and the direction 900> θ>00 show the downward motion of the shock.  
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Figure 8. Variation of shock strength (M) with direction (θ) at the height of explosion (h0) = 7 km and at 
propagation distance R=10m.   
 
Figures 9a and 9b shows the variation of shock velocity U with the direction (θ), for the adiabatic and 
isothermal cases respectively, at a fixed propagation distance R=10m and a constant height of 
explosion h0=7km.  
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Figure 9. Variation shock velocity (U) with direction (θ) at the height of explosion (h0) = 7 km and at 
propagation distance R=10m.  
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Figures 8 and 9 show that in both the cases, shock strength and shock velocity are highest in vertical 
upward motion (θ=1800) of the shock. With a decreasing trend, M and U are lowest in downward 
motion of the shock (θ=00). 
 

Figures 10a and 10b shows the corresponding variation of entropy production ∆s/ℜ with the direction 
(θ) at a fixed propagation distance R=10m and at a height of explosion h0=7km, for the adiabatic and 
isothermal flow respectively. 
 
For the adiabatic case, figure 10a shows that entropy production is highest in vertical upward motion 
(θ=1800) of the shock. With a smoothly decreasing trend, entropy production ∆s/ℜ is lowest in 
downward motion of the shock. However, the isothermal case (figure 10b) shows that entropy 
production is lowest in vertical upward motion (θ=1800) of the shock.  
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Figure 10. Variation of entropy production (∆s/ℜ) with direction (θ) at the height of explosion (h0) = 7 km and 
at propagation distance R=10m.   
 
A more enhanced view of the directional dependence of the shock motion for the adiabatic and 
isothermal flows are shown in radial plots in figure 11, 12 and 13. Plots in figures 11(a, b and c) show 
the shock strength profiles at propagation distances R= 10m, 20m and 30m respectively. Radial axes 
show the different directions, from 00 to 3600 and the shaded area gives the relative magnitude of 
shock strength in different direction. Corresponding profiles of shock velocity and entropy production 
are shown in figure 12 (a, b, c) and figure 13 (a, b, c).  
 
In both the cases, the profiles of shock strength (M) and shock velocity (U) given in figure 11(a, b and 
c) and 12(a, b and c) show a smooth variation with direction, with the highest value in vertical upward 
direction and the lowest value in vertical downward direction, forming an oval shape. The profiles 
maintain their shape as the shock moves forward.  
 

For adiabatic flow, the profiles of entropy production ∆s/ℜ, given in figure 13(a, b and c) show a 
smooth variation with direction, with the highest value in vertical upward direction and the lowest 
value in vertical downward direction, forming an oval shape. Whereas, for isothermal flow, the 
profiles of entropy production ∆s/ℜ, show a smooth variation with direction, with the lowest value in 
vertical upward direction and the highest value in vertical downward direction, forming an oval shape.  
The profiles maintain their shape as the shock moves forward 
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(a) Shock strength profile at R=10m 
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(b) Shock strength profile at R=20m 
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(c) Shock strength profile at R=30m 

 
Figure 11. Variation of shock strength (M) in different directions (shock strength profiles) at the height of 
explosion h0=7 km and at the propagation distances (a) R=10m (b) R=20m (c) R=30m.  
 



Entropy 2006, 8                                                                                                                                  161
 
                              Adiabatic flow                                                       Isothermal flow 

          

215.80

215.90

216.00

216.10

216.20

216.30
180

210

225

240

270

300

315

330
0

30

45

60

90

120

135

150

                   

194.40

194.50

194.60

194.70

194.80

194.90
180

210

225

240

270

300

315

330
0

30

45

60

90

120

135

150

 
(a) Shock velocity profile at R=10m 

 

          

76.2

76.25

76.3

76.35

76.4

76.45

76.5
180

210

225

240

270

300

315

330

0

30

45

60

90

120

135

150

                 

68.65

68.70

68.75

68.80

68.85

68.90

68.95
180

210

225

240

270

300

315

330

0

30

45

60

90

120

135

150

 
(b) Shock velocity profile at R=20m 
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(c) Shock velocity profile at R=30m 

 
Figure 12. Variation of shock velocity (U) in different directions (shock velocity profiles) at the height of 
explosion h0=7 km and at the propagation distances (a) R=10m (b) R=20m (c) R=30m.  
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(a) Entropy profile at R=10m 
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(b) Entropy profile at R=20m 
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(c) Entropy profile at R=30m 

 
Figure 13. Variation of entropy production (∆s/ℜ) in different directions (entropy profiles) at the height of 
explosion h0=7 km and at the propagation distances (a) R=10m (b) R=20m (c) R=30m. 
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5. Comparison with observed results 
 
Among the results, the most easily observable is the velocity of the shock U. All the other parameters 
can be calculated using shock velocity. I.e. why, in this work we have used the shock velocity for the 
comparison of our results. The commonly available experimental data is given in Taylor′s paper [40]. 
His work describes the New Mexico atomic bomb explosion, occurred in 1945 [Appendix]. The 
experimental points fit very well in the theoretical curve predicted by Taylor. 
 
To make a comparison, we have used here the same values of γ=1.32, energy of explosion 
T′=8.45×1013 J and initial density ρ0=1.25 kg/m3 as given in [40]. The horizontal direction (θ=900) of 
shock propagation is taken for the height of explosion h0=100m. 
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Figure 14. Comparison of our results for shock velocity with those obtained using Taylor′s work. 
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Figure 15. Comparison of density ratio (ρ2/ρh) obtained for the adiabatic and isothermal flow. 

 
In figure 14, it can be seen that shock velocity U calculated using Energy hypothesis for both adiabatic 
and isothermal flow are higher then the shock velocity obtained using Taylor′s relation. Near the point 
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of explosion the difference in the two is quite large, which decreases sharply as the shock moves 
away from the point of explosion. It can be seen that shock velocity U calculated using Energy 
hypothesis for isothermal flow give more accurate results in comparison to the adiabatic flow. 
 
In figure 15, the comparison of density ratio (ρ2/ρh) for the isothermal and adiabatic flow shows that 
the post shock medium is largely compressed in the case of isothermal shock how ever for the 
adiabatic case the compression is limited only up to (γ+1)/(γ-1), as given in relation (2.19). 
 
6. Negative entropy production by isothermal shocks!! 
 
Entropy production for a gas is simply given by: 
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For the isothermal compression process (created by the isothermal shock), Tinitial=Tfinal and ρfinal>ρinitial, 
we have the entropy production (∆s/ℜ) = - (ρfinal/ρinitial), which results a negative entropy production. 
This looks paradoxical, as if it is the violation of second law of thermodynamics. But it is not violating 
the second law of thermodynamics. 
 
This can be explained on the basis of the entropy concept of Prigogine [22]. According to it, the 
change in entropy dS can be splitted into two parts, i.e. 
 

dS = deS + diS 
 
Where deS denotes the flow of entropy due to interaction with the exterior and diS is the contribution 
due to changes inside the system. Entropy change inside the system diS is never negative. i.e. 
 

diS = 0     for reversible process 
diS > 0     for irreversible process 

 
The medium in which the shock propagates can be divided into two regions, namely the shocked 
region and the unshocked region. For the case of adiabatic shock, the shocked region behaves as an 
isolated system. At any moment, there is no coupling of energy between this isolated system and the 
surrounding unshocked region (i.e. deS = 0). In this case the change in entropy is, 
 

dS = diS > 0 
 
But in case of isothermal shock, the shocked region is no more an isolated system but it behaves as an 
open system. Isothermal conditions permit the coupling of energy through radiation between the 
shocked and unshocked region. In case of isothermal shock propagation, the first phase of the process 
started earlier, with the preheating of the gas molecules in the unshocked region by the radiation 
energy produced in the shocked region. The isothermal condition (T1 = T2) prevails due to the 
preheating of unshocked gas molecules in the presence of large amount of radiation energy. In the 
second phase of the process, the gas molecule crosses the shock front and enters in the shocked region 
where they are compressed, as well as radiates, to maintain the isothermality. 
 
For an open system, entropy can change in both ways i.e. positive and negative. If the heat flows into 
the system, its entropy increases. But, entropy decreases if the heat flows out from the system. The 
first phase of the shock process (during preheating) leads to an increase in entropy of the gas 
molecules where as the second phase produces a decrease in entropy. Overall entropy increases 
because of the large increase in entropy in the first phase, in comparison to the decrease in entropy in 
the second phase. Hence, there is no violation of the second law of thermodynamics. 
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In our study we have considered only the equilibrium conditions for the isothermal case. From 
conservation of energy point of view, for the isothermal shock case, it is necessary to include the heat 
flow between the system (shocked region) and the surrounding (unshocked region), which happens in 
the form of radiations. Considering the heating of unshocked gas by the radiations, the shock process 
becomes very complex.   
 
Conclusion 
 
The results of this paper show that for both adiabatic and isothermal flow, explosion at higher altitudes 
on earth′s atmosphere produces higher shock velocity and shock strength. In both the cases, near the 
point of explosion, strength and velocity of the shock are quite large. As the shock moves away from 
the point of explosion, shock strength and shock velocity decrease initially very sharply. At a 
sufficiently large distance the shock strength approaches the value unity and shock velocity 
approaches the value of local sound velocity. However, for the isothermal case, the values of shock 
strength and shock velocity are smaller in comparison to the adiabatic case. For adiabatic flow, 
entropy production/unit mass of the gas is also higher for explosions at high altitudes in comparison to 
explosion at low altitude. This is due to the low initial pressure and density at high altitudes. The 
molecules of air are freer for random motion, due to low pressure and density. Hence, the shock 
produces higher entropy at high altitudes. 
 
The results for isothermal assumption show that entropy production/unit mass of the gas is smaller for 
explosions at high altitudes in comparison to explosion at low altitude. With the isothermal 
assumption, entropy production is equal to the negative logarithm of the final and initial density. Due 
to the low density at high altitudes, such results are obtained. However, the variation of entropy 
production with propagation distance increases as the shock moves away from the point of explosion 
due to the decreasing isothermal compression. 
 
The directional study of adiabatic shock propagation shows that upward moving shock has higher 
shock velocity and shock strength. For adiabatic shock, entropy production is also higher for upward 
moving shock in comparison to downward moving shock. The variations of shock strength, shock 
velocity and entropy production with direction (the profiles of shock strength, shock velocity and 
entropy production respectively) are also smooth, with the highest value in the vertical upward 
direction and lowest value in vertical downward direction, forming an oval shape. All the profiles 
maintain their shape as the shock moves forward. These results are different from those achieved in 
case of shock propagation in seawater [47]. In case of water, the profiles change their shape during the 
shock motion. 
 
In contrast, the directional study of isothermal shock propagation shows that the entropy production is 
smaller in upward motion of the shock. The profiles of shock strength and shock velocity have the 
highest value in vertical upward direction and lowest value in the vertically downward direction, 
forming the shape of an oval. Where as, the profiles for entropy production ∆s/ℜ show an opposite 
trend in comparison to the profiles of shock strength and shock velocity. The profiles maintain their 
shape as the shock moves forward.  
 
Comparison with observed results show that shock velocity U calculated using Energy hypothesis for 
isothermal flow give more accurate results in comparison to the adiabatic flow.  
 
Negative outcome of entropy in isothermal assumption shows that the state of the system (shocked 
medium) has changed from a relatively disorganized state to a more organized state (density of the 
medium is largely increased). It is the change in entropy that ultimately provides us with the answer to 
how systems will naturally evolve in one direction with time and not the other. Systems always evolve 
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in time in such a way that the total entropy of the “system + surroundings” increases. If it is 
observed that entropy appears to decrease in a system, than compulsorily there is a change in the 
entropy of the surroundings large enough to make the total entropy change positive.  
 
Our results show that blast wave produces a non-isentropic flow field behind it. In other words, the 
blast wave produces a flow field with entropy gradients. The present work is as such applicable to the 
case of explosions in stellar medium. An explosion in such type of medium produces entropy 
gradients, with decreasing value of entropy, away from the point of explosion. Due to many reasons, 
compression waves are generated in the stellar medium. The steepening of a normal compressive wave 
into a shock in the presence of entropy gradients have been studied by many [1, 16 and 18]. Hence, 
each compressive wave moving out from the interior of the stellar medium are steepened to form a 
shock, in the presence of entropy gradients created earlier. In this manner multiple shocks are presents 
in the non-isentropic stellar medium. This work is applicable as well, for the shock motion in 
interstellar mediums. The interstellar medium is dominated by the action of Supernovae, stellar wind 
and other violent activities. Shock waves are supposed to be an essential part in all the violent 
activities of the space. In this manner the study of shocks play an important role in the dynamic 
evolution, emission process and interpretation of many unsolved facts of the universe.      
 
The physics of shock waves give a strong coupling between the fluid dynamics and the 
thermodynamics of the medium, in which they propagates. The thermodynamic state of the fluid 
molecules changes as they cross the shock front. Thermodynamic state is defined by many variables. 
Among them, entropy is the most powerful to define a thermodynamic state. For all type of processes, 
reversible or irreversible, entropy analysis can provide many such informations regarding the changes 
in energy and the matter [22], which can not be given by other variables. Because of this, it becomes 
important to analyze the entropy production during shock propagation.  
 
Data employed 
 
The data employed for the calculation is given below: 
       Acceleration due to gravity at the earth surface gs = 9.81 m/s2  
       Radius of the earth Re = 6371.230 km 
       Pressure at the earth surface p1 = 1 b 
       Density of the air at the earth surface = 1.29 kg/m3 
       Specific heat ratio for air γ =1.4 
       Energy released during explosion = 8.45 x 1013 J 
 

Appendix 
 
The experimental results are based on the photographs of the explosion taken at different moments. 
The different photographs give the radius of the shock at different moments. These results fit very well 
in the theoretical curves of Taylor [40], giving the relation between the shock radius and the time as: 
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Where β is a coefficient depending on specific heat ratio γ (note- β is denoted as α in [40]). From the 
relation between the radius of the shock and time, we get the relation for the shock velocity U as 
below: 
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For γ=1.32, the value of βT′=8.45×1013 J 
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