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1 Introduction

For given random variables X and Y , the distribution of linear combinations of the form αX +βY

is of interest in problems in automation, control, fuzzy sets, neurocomputing and other areas of

computer science. Some examples are:

1. In automatic control, one often encounters the problem of maximizing the expected sum of

n variables, chosen from a sequence of N sequentially arriving i.i.d. scalar random variables,

X1, X2, . . . , XN . The objective is to devise a decision rule so as to maximize
∑n

i=1
Xki

, where

ki ∈ {1, 2, . . . , N} is the index of the ith random variable selected. At time k, the random

variable Xk is observed, and the decision to select the value or not must be taken online.

This problem is known as the sequential screening problem and many decision problems can

be formulated in this way (Pronzato [1]).

2. The theory of congruence equations (see, for example, Cerruti [2]) has applications in com-

puter science. There is a wide literature about congruence equations and the last twenty

years has seen interesting formulas and functions derived: among these, expressions giving

the number of solutions of linear congruences. Counting such solutions has relations with

statistical problems like the distribution of the values taken by particular sums.

3. In neurocomputing, linear combinations are used for combining multiple probabilistic clas-

sifiers on different feature sets. In order to achieve the improved classification performance,

a generalized finite mixture model is proposed as a linear combination scheme and imple-

mented based on radial basis function networks. In the linear combination scheme, soft

competition on different feature sets is adopted as an automatic feature rank mechanism so

that different feature sets can be always simultaneously used in an optimal way to determine

linear combination weights (Chen and Chi [3]).

4. Sums of random variables also have many applications in fuzzy sets and systems (see, for

example, Boswell and Taylor [4], Williamson [5], Inoue [6], Jang and Kwon [7], and Feng [8,

9]).

The distribution of αX + βY has been studied by several authors especially when X and Y are

independent random variables and come from the same family. For instance, see Fisher [10] and

Chapman [11] for Student’s t family, Christopeit and Helmes [12] for normal family, Davies [13]

and Farebrother [14] for chi-squared family, Ali [15] for exponential family, Moschopoulos [16] and

Provost [17] for gamma family, Dobson et al [18] for Poisson family, Pham-Gia and Turkkan [19]

and Pham and Turkkan [20] for beta family, Kamgar-Parsi et al [21] and Albert [22] for uniform

family, Hitezenko [23] and Hu and Lin [24] for Rayleigh family, and Witkovský [25] for inverted

gamma family.

However, there is relatively little work of the above kind when X and Y belong to different families.

In the applications mentioned above, it is quite possible that X and Y could arise from different

but similar distributions. In this paper, we study the exact distribution of αX + βY when X and
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Y are independent random variables having the exponential and gamma distributions with pdfs

fX(x) = λ exp (−λx) (1)

and

fY (y) =
µaya−1 exp(−µy)

Γ(a)
, (2)

respectively, for x > 0, y > 0, λ > 0, µ > 0 and a > 0. We assume without loss of generality that

α > 0.

The paper is organized as follows. In Section 2, we derive explicit expressions for the pdf and

the cdf of αX + βY . A measure of entropy of the linear combination is investigated in Section

3. In Section 4, we provide computer programs for generating tabulations of the percentage

points associated with the linear combination. We hope that these programs will be of use to the

practitioners mentioned above.

The calculations of this paper involve several special functions, including the incomplete gamma

function defined by

γ(a, x) =

∫ x

0

ta−1 exp (−t) dt,

the complementary incomplete gamma function defined by

Γ(a, x) =

∫

∞

x

ta−1 exp (−t) dt,

and the error function defined by

erfc(x) =
2√
π

∫

∞

x

exp
(

−t2
)

dt.

The properties of the above special functions can be found in Prudnikov et al. [26] and Gradshteyn

and Ryzhik [27].

2 PDF and CDF

Theorem 1 derives explicit expressions for the pdf and the cdf of αX + βY in terms of the

incomplete gamma functions.

Theorem 1 Suppose X and Y are distributed according to (1) and (2), respectively. The cdf of

Z = αX + βY can be expressed as

FZ(z) =
1

Γ(a)
γ

(

a,
µz

β

)

− (µα)a

(µα − λβ)aΓ(a)
exp

(

−λz

α

)

γ

(

a,
z(µα − λβ)

αβ

)

(3)

for β > 0 and z > 0, as

FZ(z) =
1

Γ(a)
Γ

(

a,
µz

β

)

− (µα)a

(µα − λβ)aΓ(a)
exp

(

−λz

α

)

Γ

(

a,
z(µα − λβ)

αβ

)

(4)
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for β < 0 and z < 0, and as

FZ(z) = 1 − (µα)a

(µα − λβ)a exp

(

−λz

α

)

(5)

for β < 0 and z ≥ 0. The corresponding pdfs are:

fZ(z) =
λ(µα)a

α(µα − λβ)aΓ(a)
exp

(

−λz

α

)

γ

(

a,
z(µα − λβ)

αβ

)

(6)

for β > 0 and z > 0,

fZ(z) =
λ(µα)a

α(µα − λβ)aΓ(a)
exp

(

−λz

α

)

Γ

(

a,
z(µα − λβ)

αβ

)

(7)

for β < 0 and z < 0, and

fZ(z) =
λ(µα)a

α(µα − λβ)a exp

(

−λz

α

)

(8)

for β < 0 and z ≥ 0.

Proof: If β > 0 then the result follows by writing

Pr (αX + βY ≤ z) = Pr

(

X ≤ z − βY

α

)

=

∫ z/β

0

FX

(

z − βy

α

)

fY (y)dy

= FY

(

z

β

)

− µa exp (−λz/α)

Γ(a)

∫ z/β

0

ya−1 exp

(

−µα − λβ

α
y

)

dy

=
1

Γ(a)
γ

(

a,
µz

β

)

− µa exp (−λz/α)

Γ(a)

αa

(µα − λβ)aγ

(

a,
z(µα − λβ)

αβ

)

,

where the last step follows from the definition of the incomplete gamma function. The result in

(4) can be established similarly by using the definition of the complementary incomplete gamma

function. The result in (5) follows by setting z = 0 into to the two incomplete gamma function

terms in (4). �

The following corollaries provide the cdfs for the sum and the difference of the exponential and

gamma random variables.

Corollary 1 Suppose X and Y are distributed according to (1) and (2), respectively. Then, the

cdf of Z = X + Y can be expressed as

FZ(z) =
1

Γ(a)
γ (a, µz) − µa

(µ − λ)aΓ(a)
exp (−λz) γ (a, z(µ − λ))

for z > 0.

Corollary 2 Suppose X and Y are distributed according to (1) and (2), respectively. Then, the

cdf of Z = X − Y can be expressed as

FZ(z) =
1

Γ(a)
Γ (a, µz) − µa

(µ + λ)aΓ(a)
exp (−λz) Γ (a, z(µ + λ))
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for z < 0 and as

FZ(z) = 1 − µa

(µ + λ)a exp (−λz)

for z ≥ 0.

Using special properties of the incomplete gamma functions, one can obtain simpler expressions

for (3)–(4) when a takes integer or half integer values. This is illustrated in the corollaries below.

Corollary 3 If a ≥ 1 is an integer then (3)–(4) can be reduced to the simpler forms

FZ(z) = 1 − exp(−y)
a−1
∑

k=0

yk

k!
− (µα)a

(µα − λβ)a exp

(

−λz

α

)

+
(µα)a

(µα − λβ)a exp

(

−x − λz

α

) a−1
∑

k=0

xk

k!

for β > 0 and z > 0, and

FZ(z) = exp(−y)

a−1
∑

k=0

yk

k!
− (µα)a

(µα − λβ)a exp

(

−x − λz

α

) a−1
∑

k=0

xk

k!

for β < 0 and z < 0, where x = z(µα − λβ)/(αβ) and y = µz/β.

Corollary 4 If a − 1/2 ≥ 0 is an integer then (3)–(4) can be reduced to the simpler forms

FZ(z) = 1 − erfc (
√

y) − exp(−y)

Γ(a)

[

a−3/2
∑

k=0

yk+1/2

(a)k−a+3/2

−
−1
∑

k=a−1/2

yk+1/2

(a)k−a+3/2

]

− (µα)a

(µα − λβ)a exp

(

−λz

α

)

+
(µα)aerfc

(√
x
)

(µα − λβ)a

+
(µα)a exp(−x)

(µα − λβ)aΓ(a)

[

a−3/2
∑

k=0

xk+1/2

(a)k−a+3/2

−
−1
∑

k=a−1/2

xk+1/2

(a)k−a+3/2

]

for β > 0 and z > 0, and

FZ(z) = erfc (
√

y) +
exp(−y)

Γ(a)

[

a−3/2
∑

k=0

yk+1/2

(a)k−a+3/2

−
−1
∑

k=a−1/2

yk+1/2

(a)k−a+3/2

]

− (µα)aerfc
(√

x
)

(µα − λβ)a

− (µα)a exp(−x)

(µα − λβ)aΓ(a)

[

a−3/2
∑

k=0

xk+1/2

(a)k−a+3/2

−
−1
∑

k=a−1/2

xk+1/2

(a)k−a+3/2

]

for β < 0 and z < 0, where x = z(µα − λβ)/(αβ) and y = µz/β.

Figure 1 below illustrates possible shapes of the pdfs (6)–(8) for selected values of α, β and a.

The four curves in each plot correspond to selected values of a. As expected, the densities are

unimodal and the effect of the parameters is evident.
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Figure 1. Plots of the pdf of (3)–(4) for λ = 1, µ = 1, a = 0.5, 2, 5, 10, and (a): α = 1 and β = 1;

(b): α = 1 and β = −1; (c): α = 1 and β = 2; and, (d): α = 1 and β = −2. The curves with the

left to the right correspond to increasing values of a.

3 Entropy

An entropy of a random variable is a measure of variation of the uncertainty. The simplest known

entropy is the Shannon entropy (Shannon [28]) defined by

E [− log fZ(Z)] = −
∫

log fZ(z)fZ(z)dz. (9)

Consider calculating this when Z has the pdfs described in Theorem 1. If β > 0 then one can

write

E [− log fZ(Z)] = − log

[

λ(µα)a

α(µα − λβ)aΓ(a)

]

+
λ

α
E(Z) − λ(µα)a

α(µα − λβ)aΓ(a)
I,
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where I denotes the integral

I =

∫

∞

0

log γ

(

a,
z(µα − λβ)

αβ

)

exp

(

−λz

α

)

γ

(

a,
z(µα − λβ)

αβ

)

dz.

Unfortunately, this integral I cannot be reduced to a closed form even in the simplest case a = 1.

Thus, one cannot obtain a closed form expression even for the simplest entropy measure when Z

is distributed as in Theorem 1. Hence, we performed a numerical study to examine the behavior

of (9) with respect to the parameters in Theorem 1. A program in R (Ihaka and Gentleman [29])

written to compute (9) is presented below.

cc<-lambda*((mu*alpha)**a)/(alpha*gamma(a)*(mu*alpha-lambda*beta)**a)

ff<-function (x)

{tt<-gamma(a)*pgamma(x*(mu*alpha-lambda*beta)/(alpha*beta),shape=a)

tt<-exp(-lambda*x/alpha)*tt*log(tt)

return(tt)}

ent<-1+lambda*beta*a/(alpha*mu)-log(cc)

ent<-ent-cc*integrate(ff,lower=0,upper=Inf)$value

Figure 2 below shows the variation of (9) for a range of values of α, β and a with λ = 1 and µ = 1.

The effect of the parameters is evident: for fixed β, (9) is an increasing function of both α and

a; for fixed α, (9) increases with respect to β but, with respect to a, it initially increases before

decreasing.
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Figure 2. Plots of the Shannon entropy for λ = 1, µ = 1, β = 1, α = 2, 3, . . . , 10 and a =

0.1, 0.2, . . . , 10 (left); for λ = 1, µ = 1, α = 2, β = −1,−2, . . . ,−9 and a = 0.1, 0.2, . . . , 10 (right).

The curves in the top plot from the bottom to the top correspond to increasing values of α. The

curves in the bottom plot from the left to the right correspond to increasing values of β.

167



Entropy 2005, 7[2], 161-171 168

One could also consider other more advanced measures of entropy such as the Rényi entropy

defined by

JR(γ) =
1

1 − γ
log

{
∫

fγ
Z(z)dz

}

,

where γ > 0 and γ 6= 1 (Rényi [30]). But, for the reasons mentioned above, one cannot obtain

closed form expressions for these and the investigation will have to be performed numerically.

4 Percentiles

In this section, we provide two computer programs for generating tabulations of percentage points

zp associated with the cdf of Z = αX + βY . These percentiles are computed numerically by

solving the equations

1

Γ(a)
γ

(

a,
µzp

β

)

− (µα)a

(µα − λβ)aΓ(a)
exp

(

−λzp

α

)

γ

(

a,
zp(µα − λβ)

αβ

)

= p,

1

Γ(a)
Γ

(

a,
µzp

β

)

− (µα)a

(µα − λβ)aΓ(a)
exp

(

−λzp

α

)

Γ

(

a,
zp(µα − λβ)

αβ

)

= p

and

1 − (µα)a

(µα − λβ)a exp

(

−λzp

α

)

= p.

Evidently, this involves computation of the incomplete gamma and the complementary incomplete

gamma functions and routines for this are widely available. We used the function GAMMA (·) in the

algebraic manipulation package, MAPLE. The MAPLE programs below compute the percentiles

zp for p = 0.01, 0.05, 0.1, 0.90, 0.95, 0.99 for given values of α, β, λ, µ and a.

#this program gives percentiles when beta > 0

ff:=(1/GAMMA(a))*((mu*alpha)/(mu*alpha-lambda*beta))**a*exp(-lambda*z/alpha):

ff:=ff*(GAMMA(a)-GAMMA(a,z*(mu*alpha-lambda*beta)/(alpha*beta))):

ff:=1-GAMMA(a,mu*z/beta)/GAMMA(a)-ff:

p1:=fsolve(ff=0.01,z=0..1000):

p2:=fsolve(ff=0.05,z=0..1000):

p3:=fsolve(ff=0.1,z=0..1000):

p4:=fsolve(ff=0.90,z=0..1000):

p5:=fsolve(ff=0.95,z=0..1000):

p6:=fsolve(ff=0.99,z=0..1000):

print(p1,p2,p3,p4,p5,p6);

#this program gives percentiles when beta < 0

ff1:=(1/GAMMA(a))*((mu*alpha)/(mu*alpha-lambda*beta))**a:
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ff1:=ff1*exp(-lambda*z/alpha):

ff1:=ff1*GAMMA(a,z*(mu*alpha-lambda*beta)/(alpha*beta)):

ff1:=GAMMA(a,mu*z/beta)/GAMMA(a)-ff1:

ff2:=1-((mu*alpha)/(mu*alpha-lambda*beta))**a*exp(-lambda*z/alpha):

bd:=1-((mu*alpha)/(mu*alpha-lambda*beta))**a:

if (bd>0.01) then p1:=fsolve(ff1=0.01,z=-1000..0): end if:

if (bd<=0.01) then p1:=fsolve(ff2=0.01,z=0..1000): end if:

if (bd>0.05) then p2:=fsolve(ff1=0.05,z=-1000..0): end if:

if (bd<=0.05) then p2:=fsolve(ff2=0.05,z=0..1000): end if:

if (bd>0.1) then p3:=fsolve(ff1=0.1,z=-1000..0): end if:

if (bd<=0.1) then p3:=fsolve(ff2=0.1,z=0..1000): end if:

if (bd>0.9) then p4:=fsolve(ff1=0.9,z=-1000..0): end if:

if (bd<=0.9) then p4:=fsolve(ff2=0.9,z=0..1000): end if:

if (bd>0.95) then p5:=fsolve(ff1=0.95,z=-1000..0): end if:

if (bd<=0.95) then p5:=fsolve(ff2=0.95,z=0..1000): end if:

if (bd>0.99) then p6:=fsolve(ff1=0.99,z=-1000..0): end if:

if (bd<=0.99) then p6:=fsolve(ff2=0.99,z=0..1000): end if:

print(p1,p2,p3,p4,p5,p6);

We hope these programs will be of use to the practitioners of the linear combination (see Section

1).
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