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Abstract: If a message can have n different values and all values are equally probable, then the
entropy of the message is log(n). In the present paper, we investigate the expectation value of
the entropy, for arbitrary probability distribution. For that purpose, we apply mixed probabil-
ity distributions. The mixing distribution is represented by a point on an infinite dimensional
hypersphere in Hilbert space. During an ‘arbitrary’ calculation, this mixing distribution has the
tendency to become uniform over a flat probability space of ever decreasing dimensionality. Once
such smeared-out mixing distribution is established, subsequent computing steps introduce an
entropy loss expected to equal —1— + -1 + 4+ %, where n is the number of possible inputs and

m+1 m+2
m the number of possible outcomes of the computation.
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Figure 1: A logic OR gate: (a) standing alone, (b) after an AND and a NOT gate, (c) after an
undetermined logic unit.

1 Introduction: distributions

Figure 1a shows an OR logic gate. Table 1a shows the truth table of the gate. The input can
have four different values: either 00, or 01, or 10, or 11. We denote by p; the probability that
the input equals the ¢ th of these four possibilities. If all four inputs are equally probable, i.e. if
PL =Py =pP3 =Ps = i, then the input will be called equiponderant and its entropy

4
S=-> pilog(p:)
i=1
equals exactly 2log(2). We say: the input entropy equals two bits. The output can have only two
different values: either 0 or 1. We denote by p;- the probability that the output equals the j th of
these two alternatives. The output entropy

2
S'= =2 _pjlog(p;)

=1

follows from the observation that p| = p; and p) = py + ps + ps and thus p| = § and p) = 3.
We find S' = 2log(2) — 2 log(3) or 0.811 bit. We may conclude that an OR gate causes a loss of
1.189 bit. Because of the deterministic nature of a logic gate, the entropy loss S — S’ can also be
interpreted as a conditional entropy. See Appendix A. The reader will easily verify that, whatever
the logic gate, we always have S’ < S. Indeed, it is a general phenomenon that entropy of a
function of a random variable is less than or equal to the entropy of the random variable itself [1].
The conclusion that S — S’ equals 1.189 bits for an OR gate, is a direct consequence of our assump-
tion that py = po = p3 = ps = 1,
Our example shows that the output is not equiponderant, as both p} and pj, are different from %

1
4

of a logic gate is itself the outcome of a previous logic calculation. Figure 1b shows an example.
If (and this again is a big ‘if’) the eight possible values (i.e. 000, 001, ..., 111) of the input of
Figure 1b have equal probability (i.e. probability ), then the intermediate result (i.e. the input

i.e. that the input message has been chosen equiponderantly.

The assumption p; = py = p3 = py = 5 is not as selfevident as it looks like. Indeed, often the input
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Table 1: Two ways of writing down the truth table of the OR gate: (a) traditional way, (b) standard
way.

in | out in | out
00| O 1 1
01 1 2 2
10| 1 3 2
11 1 4 2

(a) (b)

of the OR gate) is not equiponderant: p; = p, = 2 and p3 = ps = 5. As a result, the OR gate has
S =3log(2) — 2 log(3) and 5" = 3log(2) — 2 log(3) — 2 log(5), such that the entropy loss is not
1.189 bit, but rather 0.857 bit. We can thus conclude that the entropy loss introduced by a logic
operation, depends on the ‘history’ of the incoming bits. According to the probability distribution
of the incoming message, the entropy loss S — S’ can have different values. The reader can easily
verify that, for the example of the OR operation, it can have any value between 0 and log(3), i.e.
between 0 and 1.586 bit. In order to have an objective measure of the entropy loss caused by
a logic gate, we should average over all possible input probabilities. We thus need a probability
distribution of the probability distribution (p;,ps, ps,ps). Such ‘distribution of distributions’ is
called a mixing distribution [2, 3].

In the general case, we assume a message that can only have n different forms. The number n
is positive, integer and finite; therefore we talk of a ‘digital’ message. Sometimes the number n
is small. E.g. if the message is just either ‘yes’ or ‘no’, then n = 2. In the above example of
the incoming message of the OR gate, we have n = 4. Often the number n is very large. E.g. a
‘telegram’ of only 100 characters from an alphabet of only 27 characters (the 26 Roman upper-case
letters plus the blank) can take n = 27'%° ~ 1.4 x 10'*3 different ‘values’. The probability of each
possible message is denoted pi, po, ..., pn—1, and p,. For an equiponderantly generated message,
each message is equally likely and thus p; =ps = ... =p, = % The entropy

S =—=Y pilog(p;)

=1

of an equiponderant message is therefore log(n). However, most messages are not equiponder-
ant: some possible messages are more likely than others. For arbitrary p;s (with, of course, the
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Figure 2: Probability space: (a) as a hypertriangle and (b) as a hyperoctant.

restriction Y7 ; p; = 1), one can easily demonstrate that
0 < S <log(n) .

The lower bound S = 0 applies to each of the n deterministic messages, where (p1, pa, ..., pr) equals
either (1, 0, ..., 0) or (0, 1, ..., 0) or ... or (0, O, ..., 1).

Figure 2a shows the space subtended by the coordinates p, ps, ..., and p,,. For sake of ‘drawability’,
the figure represents the case n = 3. Our space is the n-dimensional triangle, defined by the n-
dimensional plane )77 ; p; = 1 together with the n conditions 0 < p; < 1. Such figure sometimes
is referred to as the n-dimensional simplex. One point P within the hypertriangle represents one
probability distribution. The corners of the hypertriangle represent the deterministic messages,

whereas the centre point represents the equiponderant message.

11 1
g, g, ey g
g, %, %, %) Let us however assume that
we do not know the circuit preceding the OR gate. I.e. we only know that the logic unit preceding

If the input of Figure 1b has probabilities (p1, po, ., ps) = ( ), the intermediate result, i.e.

the input of the OR gate is represented by the point P = (

the OR gate in Figure 1c is a logic gate with three binary inputs and two binary outputs. Then
the input can have 23 = 8 possible values and the output can have 22 = 4 possible values. Now,
there exist 4% different truth tables with 8 possible inputs and 4 possible outputs. Thus the
logic ? gate is just one of the 4% = 65,536 possible logic gates. If the input of Figure 1c has

probability distribution (pi, ps, ..., ps) = (3, 5,---» 5), the input of the OR gate can be any of the
different points (%, ¢, %, %), where (a1, az, a3, as) is one of the 165 ordered partitions of 8 into

four integers: 8 = a1 + as + a3z + a4. Note that these 165 points are points on the intersection
of the hyperplane p; + po + p3 + p4 = 1 with the hypersquare lattice with lattice constant %.
For sake of ‘drawability’, Figure 2a shows another example: the points (%, %, %) in the plane
ptpe+p3=1
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If each of the 65,536 logic gates can occur with equal probability 1/65,536, we can calculate the
probability that P is in each of its 165 possible positions. These probabilities of a particular
probability distribution, are called the mixing probabilities or mixing proportions. The mixing
proportions vary from 1/65,536 in the corners of the hypertriangle (e.g. the point (0,0,0,1)) to
2,520/65,536 in the centre point (i, i, i, i) They constitute the 165 weights of a finite mixture of
165 distributions. In the limit where the input of the logic ? gate of Figure 1c has not eight but
[ possible values and where [ — oo (i.e. in the limit of ‘long history’), we obtain a smooth mixing
distribution o (p1, pe, p3, p4) over the hypertriangle. This results in a so-called infinite mixture.
Figure 2b shows the space (pi,ps,ps) after the non-linear coordinate transformation ¢; = |/p;.
Now the probability distributions are represented by points on the first hyperoctant of the unit
hypersphere "I, ¢> = 1. Bhattacharyya’s hyperoctant forms the statistical space. The use of the
square root of the probabilities is justified, because it gives the ‘natural’ geometric structure for
comparing probability distributions [4, 5, 6, 7, 8.

For an arbitrary probability distribution p with a set of k£ parameters, the statistical distance be-
tween two distributions, i.e. one with parameter set (t1, ta, ..., t;) and the other with set (¢3, ¢, ..., t}),
is defined by the length [ v/ds? of the shortest arc connecting the two points in the parameter
space [5]. Here ds? is the expectation value of

1 0p 1 Op
=222 28 gt
ijat,’patj I

%

and therefore expresses how strongly p is affected by differences dt;. In our case, the distribution

has n—1 parameters, e.g. pi, po, ..., Pn_1. After a few calculations, one finds [5, 8] that the element
ds? is the expectation value of
1
i Pi

The Bhattacharyya choice ¢; = |/p; therefore guarantees that the geometric (Euclidean) distance
between two points is equal to the statistical distance between the two statistics [8]. Indeed, (dg;)?
automatically equals p%' (dp;)?, with all due deference to a constant factor of ;.

Two different statistics (p1, po, ..., pn) and (pi,ps, ..., p};) are represented by two different points
on the hypersphere: @ = (q1, g2, -..,¢,) and Q* = (¢}, q5, ..., ¢). The statistical distance between
the two probability distributions equals the length of the geodesic line between the two points ()
and Q*. For this simple metric we have moreover that the geodesic is a large hypercircle and this
distance equals the angle subtending the arc:

arccos(q1qy + q205 + -.- + 4n ;) -

Equally spaced pairs of points therefore are said to represent equally ‘distinguishable’ statistics
[6] or equally ‘dissimilar’ statistics [7].

In Section 2, we will introduce data with arbitrary mixing distribution o (py, p, ..., p,) and then
will focuse on two special cases:

e the mixing distribution uniform in the (py,pa, ..., p,) space and
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e the mixing distribution uniform in Bhattacharyya’s (,/p1, /P2, ---» /Pn ) SDaCE.

In both cases, the expectation value of the entropy is calculated. In Section 3, we will intro-
duce data processing, i.e. computation. During such manipulation, an input mixing distribution
o(p1,p2, -, Pn) is transformed into an output mixing distribution o'(p}, p}, ..., p},), with m < n.
Accordingly, the expectation value of the entropy changes from the value S to a new value S’
The entropy loss S — S’ is calculated. The computational process is regarded as a smooth trans-
formation of the mixing distribution, from its initial shape o to its final shape ¢’. Therefore, the
process is not a path followed by a single point in the finite-dimensional probability space, be it
either the (p1, po, ..., p,) or the (g1, 4o, ..., ¢,) space, but a path followed by a single point in the
mixing space, which is an infinite-dimensional Hilbert space. In Section 4, some mathematical
properties of this space will be unfolded.

2 Mixture distributions

We now consider all possible statistics of order n. We assume they are either distributed over the
hypertriangle of dimension n or distributed over the hyperoctant. Thus, in the former case we
assume distributions o(p1, pe, ..., pn); in the latter case we consider distributions u(qi, ¢z, ---, gn)-
Both quantities are, of course, correlated. Indeed, we have

o dw, = p d, ,
where dw,, and df2,, are the infinitesimal surface areas. From
dwn, = /1 dp1dps...dp,_y
and

1
dS), = — dqidgs...dgn—1 ,

n

one can easily deduce the following relationship between dw, and df,:

dw _
—dQ: =2" 1\/73 9192---9n -
Therefore, we get
p=2""Vn qiqo.tn o . (1)

Such mixing distributions (either o or ) allow us to calculate the expectation value of any
property of a probability distribution. We e.g. can calculate the expectation value of the entropy
of a probability distribution.

The expectation value S,, of the entropy S is given by

Snzf// uSds,, |
1J2 n—1

20
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Figure 3: Probability space as a 3-dimensional octant.

where [; is a short-hand notation for 1;92, g /2 and the function w(91, 92, ..., ¥, 1) is the assumed
mixing function. The polar coordinates (r, 91,33, ..., 9,_1) are given by r =1 and
Gn = €osVUp_1
dn-1 = sin ’l9n_1 COS 1971—2
Qn_o = sind,_;sint,_ocost,_3
g3 = sint,_qsind,_osind,_;3... cos
g2 = sind,_1sind,_,sind,_;...sin 1y cos
¢i = sind,_;sind,,_osind, _3...siny sin; .

The infinitesimal surface area df2,, of the n-dimensional unit sphere is given by
dQn = sin ’192 sin2 793 sin3 794 sin"_2 ﬁn_ldﬁldﬁgdﬁgdﬂzl...dﬁn_l .

See e.g. References [9] and [10]. Figure 3 shows the 3-dimensional case, where we recover the
conventional spherical coordinates: ¢3 = costy, go = sintly cosdy, ¢ = sin ¥y sind}y, and d23 =
sin ¥od1d¥,. Note that for explicite calculations, we prefer the spherical probability space, as its
n — 1 integration intervals have simple (constant) values.

We now consider three special cases:

a) the equiponderant message (p; = po = ... = p, = 1) has a u function that is a delta peak
g n
located in the ‘middle’ of the octant:
1 1 1
p=06(19; — arccos —=, Yy — arccos —=, ..., Yp_1 — arccos — ) ;

V2 V3
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(b) an arbitrary message which has a o function that is uniform over the flat probability triangle:

1
o = —
Wn

(n—1)!

vno
where w, is the surface area of the hypertriangle in n-dimensional space (its value being
derived in Appendix B), and thus (after (1)):

p=2"Yn—-1)! qgs...qn ; (2)

(c) an arbitrary message which has a p function that is uniform over the spherical probability

octant:
t 1

m = Q_n 3
where (2, is the surface area of the n-dimensional hyperoctant (its value being derived in
Reference [11]).

We remark that equation (2) reveals the fact that a uniform o results in a p with a maximum in
the centre of Bhattacharyya’s hypersurface, in accordance with Figure 2, where the points, which
are uniformly distributed on Figure 2a, are clustered around the centre of Figure 2b.

In the first case, we, of course, have S,, = log(n). See Table 2a. In the second case, we have

S, = 2" (n — 1)! /1/2/_1 Qo S dQ . (3)

Evaluating this quantity involves the calculation of integrals of the form

—/// q192---Gn pilog(p;) dS2, .
1J2 —1

After some calculations (Appendix C), one finds:
1

1 1
S, ==+ -4+ ...+
" 2+3+ +n

Table 2b gives the values for n up to 8. Figure 4b displays the results for » up to 32. For the
important case of large n, one finds easily that

lim 5, = log(n) — (1—7)
= log(n) — 0.4228... ,

where 7y is Euler’s constant (also known as the Euler-Mascheroni constant).

Sn:Qin /1/2/n_1 S ds, .

Evaluating this quantity involves the calculation of integrals of the form

_/1/2.../71_1 pi log(pi) dS2, .

After laborious calculations [11], one finds:

In the third case, we have

22



Entropy 2005, 7[1], 15-37 23

Table 2: The expectation value S,, of the entropy of an n-valued digital message, for three dif-
ferent mixing distributions: (a) centered, (b) uniformly distributed over flat space, (c¢) uniformly
distributed over spherical space.

n (a) (b) (c)

1 log(l) =0.000{0 =0.000 |0 = 0.000
2 log(2) =0693|% =0500 |2log(2)—1 =0.386
3 log(3) =1.099|2 =0833 |2 = 0.667
4 log(4) =1.386| 1 =1.083 |2log(2)—% =10.886
5 log(5) =1.609 |2 =1.283 |2 = 1.067
6 log(6) =1.792 |2 =1450 |2log(2)—1 =1.220
7 log(7) =1.946 | 25 =1593 |12 = 1.352
8 log(8) =2.079 | B =1.718 |2log(2)+ 5 = 1.470
n>1 | log(n) log(n) — 0.423 | log(n) — 0.730

e if n is even:
S, = 2log(2) 2+2(1+1+1+ +1)
n =210 - -+t -+ =4+..+—);
& 27176 n

e if n is odd:

11 1
Sp=—242(14-+=+..+-).
+ (+3+5+ +n)

Table 2c gives the values for n up to 8. Figure 4c displays the results for n up to 32. For the
important case of large n, one finds (both for n even and for n odd) that

lim S, = log(n) —[2 — log(2) — 7]
= log(n) — 0.7296... .

3 An application: computations

Deterministic data processing can be regarded as a truth table. All possible ‘messages in’ are
listed and the table gives the corresponding ‘messages out’. In the truth table there are n rows
with the n different input messages. As not necessarily all output messages are different, we have
only m possible outgoing messages: 1 < m < n. Table 1 gives the simple example of the OR gate.
There are n = 4 possible input messages and only m = 2 possible output messages. Whereas
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entropy
N
|
|

Figure 4: The expectation values S,, of the entropy of an n-valued digital message, for three
different mixing distributions: (a) centered, (b) uniformly distributed over flat space, (c¢) uniformly
distributed over spherical space.

Table 1a shows the traditional display of the truth table, Table 1b shows a standard form. Here,
the left column consists of the ordered input message numbers {1, 2, 3, ...,n}, whereas the output
column shows the corresponding output message numbers. Note that the right-hand side column
can have equal numbers and that the highest number is m. Note that the standard form of thruth
table is also applicable in case n or m or both are no integer power of 2.

We can generate arbitrary mixings p(py, p2, ..., pn) and calculate the expectation value of both the
input entropy S = —>iL;, p;log(p;) and the output entropy S’ = — 37", pflog(p;).

3.1 Reversible computing

If m = n, then there is a one-to-one mapping from the input point P = (p1, pa, ..., ) to the
output point P' = (p, ph, ..., pl), or equivalently from the input point @ = (¢1, g2, ..., ¢5) to the
output point Q' = (¢!, ¢, ..., q},)- This case is nothing else but reversible computing [12]. Each of
the p] equals some p; (with j either equal to 7 or not). This has two consequences:

e the entropy S’ of P’ equals the entropy S of P;

24
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e the position of P’ is obtained from the position of P by a simple symmetry operation (either
a rotation or a mirroring).

However, it would be wrong to suggest that the computation is a walk from point P to point P’,
because along such path the entropy is not constant (in spite of equal values at the two ends of the
trajectory). Instead, a computation is a smooth change from mixing function o (or p) to mixing
function ¢’ (or u'). After completion of the shape change, it looks as if the mixing distribution
density is merely rotated and/or mirrored. Therefore uniformity of the mixing is conserved.

3.2 Irreversible computing

If m < n, we have a computation which is logically irreversible. Then, more than one point of the
n-dimensional hyperoctant is mapped to a single point of the m-dimensional hyperoctant. In fact,
a whole subspace of the n-dimensional sphere is mapped to a single point on the m-dimensional
sphere. Such subspaces obey equations such as p; + ps + ... + p, = constant, and therefore are
hyperoctants of dimension a, however of non-unitary radius 7. These ‘small hyperspheres’ (with
surface area ,r* ') are multidimensional generalizations of the ‘circles of latitude’ on the 3-
dimensional sphere. Thus complete ‘small hyperoctants’ of the n-dimensional sphere are mapped
to a single point on the m-dimensional sphere.

If we assume that a; different input values lead to output value 1, that a, different input values
lead to output value 2, ..., and that a,, different input values lead to output value m, then the
logic truth table realizes a partition of the number n :

n=a +a+ ...+ Gy .

For the uniform input mixing measure

1
M((haCIza 7%1) = Q_ ’

n
the resulting output measure on the m-dimensional hyperoctant is non-uniform, but equal to

1 a1— as— am—
o D Qar Qay, (4) 7 (g2) " (gf) ™ (4)

and therefore a product of powers of sines and cosines of the polar coordinates ¥}, 95, ..., and

!
m—1-

W(GL, Qs G) =

E.g. for the OR gate (where the partition n = a3 + as + ... + ap, is 4 = 1 4+ 3), the uniform mixing

distribution
(91, 0, 03) = — = r
M\V1,V2,V3) = Q. 8
gives rise to the non-uniform mixing
Q103 4
() = O, (42)* = T cos” ) .

The expectation value S" = [, [ —p| log(p}) — phlog(py) ]| 'dd equals 0.557 bit (See Table 3c).
For another gate with n = 4 and m = 2, the result can be different. Indeed, there exist 14 different
logic gates with four input values and two output values:
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Table 3: Mixing distribution and expected entropy, for three different input mixings: (a) centered,

(b) uniformly distributed over flat space, (c) uniformly distributed over spherical space.

(a) (b) (c)
p= 06(0 —arccos J5, | p= 48 q1g2050 = o
9 — arccos % ,
3 — arccos — )
before gate S = 2log(2) S= 3 S= 2log(2) —3
= 1.386 = 1.083 = (.886
= 2.000 bit 1.562 bit = 1.278 bit
= 60 —%) p'= 6sindjcos®d) | W = 2 cos®d]
after OR gate | $'= 2log(2) — 3 log(3) | S'= 5 S'= 2log(2) -1
= 0.562 0.458 = 0.386
0.811 bit 0.661 bit 0.557 bit

e 4 of these (e.g. the OR gate) correspond with the partition 4 = 1 + 3, whereas
e 6 of them (e.g. the XOR gate) realize the partition 4 = 2 4+ 2, and finally
e 4 of them (e.g. the AND gate) realize the partition 4 = 3 + 1.

In contrast to the mixing uniform over the hyperoctant, the mixing distribution, which is uniform
over the ‘flat probability space’, i.e. over the hypertriangle w,, leads to conservation of uniformity.
As mentioned above, the mixing distribution density of this uniform distribution is:

IU‘(QDQZ) aQn) = 2n—1(n - 1)' q192...9y, -

Now, one can prove (See Appendix D), that, when we average over all logic paths with n different
input messages and m different output messages, this distribution automatically leads to the new
distribution
W(a1 @y onr ) = 27 (m = 1) 10505

i.e. the mixing uniform over the hypertriangle in m-dimensional space. The reason why uniformity
over the hypertriangle is conserved, whereas uniformity over the hyperoctant is not, is visualized
geometrically in Figure 5. For sake of drawability, we have here n = 3 and m = 2. By the logic
gates,
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(@) (o)

Figure 5: Projection from 3-dimensional probability space to 2-dimensional probability space: (a)
in flat space and (b) in spherical space.

e the shaded areas on the triangle are projected towards the same infinitesimal space on the
line segment, and

e the shaded areas on the sphere are projected towards the same infinitesimal space on the
circle quadrant.

Now, the shaded surface area on the sphere is not constant, when we scan along the unit circle
in the (g1, g2)-plane, whereas the shaded surface area on the triangle is constant, when we scan
along the line segment in the (p;, p2)-plane.

In our example n = 4 and m = 2, the distribution

w(q1, G2, 43, qa) = 48 ¢142G3¢a

is transformed into the distribution
v (g, q) =2 q195

provided we average over all possible logics to come from a 4-valued input to a 2-valued output.

The expected entropy loss S — S’ then is Sy — So = ¥ — 1 = T or 0.842 bit. For arbitrary n

1= 12

and m, the expected loss is S, — S = 725 + 75 + - + 5

The entropy loss S, — S,, in a logically irreversible gate is fundamental in the framework of
thermodynamics of computing. Indeed, it lays at the origin of unavoidable heat dissipation in
irreversible computing. According to the Landauer principle [13, 14], an amount (S, — S;,,)kT of

heat will be generated during the computational step.
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4 Polynomials

From the result (4), we can conclude that the monomials

Q61,62,...,en (ﬁla 192, ceey 197),—1)

€1 €2

= q¢7'¢2...q"

= sin® ¥, cos® Y, sin® T2 Y, cos®® Vy... sin® T2t ten-149 L cos® 9,

with e; integer (zero or positive) exponents, naturally form a basis for the functions p(9, 99, ..., 9, 1).
However, these vectors are neither normal nor orthogonal. Indeed,

/1/2 o [L—l Q61782;---=enQ.f17f2;-“afn dQn = 561,f16€2,f2"'56n,fn (5)

is not satisfied. In order to construct an orthonormal basis, we replace the functions sin®* ¥ cos*?
by the functions sin(k¥) and cos(k®). The basis vectors are defined as the following products :

Qel,ez,...,en,l (191; 192a teey 19n—1) = Ml,el (ﬁl)MQ,ez (192)---Mn—1,en,1 (19n—1) 3

where the functions M (¥) are sums of sin(k¥) and cos(k¥) and satisfy the orthonormality condi-
tions

d=r/2
/19 My;(9) My;(9)dY = 6

=0

d=m/2
/19 M, (9) My ;(9)sinddd = 6,

=0

oo
/ Mn—l,i(ﬁ) Mn_l,j(’ﬁ) sin”_2 vdy = 51',]' y
9=0

which together guarantee that (5) is fulfilled. Appendix E gives some details.
We now have the following vector decomposition for the mixing distribution u:

/1(191,792,---,1%—1) = Z Z Z My yinyenyin_1 Qil,z‘2,...,in_1(191,192; ---,19”—1) .

11=0 22=0 tn—1=0

The coefficients p;,, form coordinates in a Hilbert space subtended by the orthonormal

i2’---’in—1
basis mixing distributions @y, 4,,..s, 1 (V1,V2,...,9,_1). Thus, whereas a particular distribution
(p1, P2, .-, Pn) is represented by a point in an n-dimensional space, a particular mixing distribution

w(p1, pa, -.-, Pn) is represented by a point in a space with a (denumerable) infinitum of dimensions.

[[of nana=1,
1J2 n—1

it may be even better to consider the function v = ,/u instead of the function p itself, as this new

However, because

quantity is then automatically normalized. We can thus represent mixing distributions by points
on the unit sphere of the Hilbert space subtended by the basis vectors. The quantities v relate to
the quantities p like the numbers ¢ relate to the numbers p.
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Any computation, be it reversible or irreversible, can be considered as a walk from a point
(10,0,...,0,0, #0,0,...,0,1, ---) to another point (1o 05 Moo, 0,15 ---) on the Hilbert sphere. In the spe-
cial case of reversible computing, the entropy remains constant all along the path. In the case of
irreversible computing, the entropy monotonically decreases along the path.

The uniform distribution x = 1/, (and thus v = 1/4/Q,, ) is then represented by the first basis
vector of the Hilbert space. Its coordinates are thus

(1,0,0,...) ,

i.e. a single 1 followed by an infinite number of 0s. The representation of the uniform distribution
0 =1/w, or p=2""1(n—1)!qgo...q, is dependent upon the parameter n. Suffice it here to give
the coordinates in the simple case n = 2, thus u = 2¢;¢5 or v = V2 sin? % cos? 2F

2 2 W2
—%,0,—%,0,—i 0,..)

19577
2 3\ 17
a=— [F (—) ] =0.9553... .
4

The statistical distance between two arbitrary mixing distributions v and v* is the arc

oo oo oo
arccos( D D D Visisgesin-1Viringeins )

11=0 22=0 tn—1=0

= arccos( /// vv*dQ, ) .
12 Jna

It should be stressed that the above Hilbert spaces are introduced for an arbitrary (finite) value

a (1,0,

where a is a constant:

of the integer n, and thus have nothing to do whatsoever with a limit case n — oo.

5 Conclusion

Bhattacharyya’s statistical space and metric can be used to calculate properties of messages with
an ‘arbitrary information’. It consists of the first hyperoctant of the unit-radius hypersphere.
A single point on this hyperoctant represents a probability distribution. We assume that an
arbitrary message is represented by a distribution over this probability space. This ‘distribution of
probability distributions’ allows us to calculate the expectation value of the information contained
in an ‘arbitrary message’. This content is smaller than for an equiponderant message of the same
length. A distribution of distributions or mixing distribution is represented by a point on a
unitary hypersphere in Hilbert space. Whereas uniformity of the mixing distribution in spherical
probability space is not conserved, uniformity of mixing distribution over the corresponding flat
probability space is conserved during arbitrary digital computations. Introduction of the Hilbert
space has the following motivation: it allows a visualization of data processing (i.e. computing) as
merely the movement of a point on its unit hypersphere. During such displacement, the mixing
function changes shape accordingly.
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Table 4: Joint and marginal probabilities of the OR gate.

i J | Py Pi D

I 1T|pp p1 m

1 210 p1 p2+ps+ps
2 110 p pm

2 2|ps p2 p2tp3tps
3 110 p3s D1

3 2|p3s p3 p2tp3tma
4 110 Py P

4 2

P4 Py P2+ P3+ P4

We make a final remark: in the above paper no complex numbers are introduced nor is introduced
(in contrast to Wootters [6]) any physics. Hilbert spaces are deduced naturally from the math-
ematics. Nevertheless, many concepts and results strangely remind us of quantum mechanics.
E.g. a point in the n-dimensional probability space resembles a state in classical physics, whereas
a point in the Hilbert mixing space resembles a quantummechanical state. Further, averageing
over all possible logic histories reminds us of a Feynman path integral. Such remarkable/puzzling
resemblance between purely classical considerations and quantum mechanics are also observed by
Diési and Salamon [8].

Appendix A: Conditional entropy

Let p;; be the probability that the input has the value 7 and the output has value j. The two
marginal probabilities then satisfy p; = 327, p;; and p;- = > pij- The conditional entropies
[1, 15] are defined as

n m

) Pi,j
S(out[in) = —>">" p;; log(—2)
i=1j=1 Di
) UL Di,j
S(injout) = - ZZ Dij log(—lj) )
i=1j=1 pj

Because of its deterministic character, a logic gate has probabilities p; ; which either equal p; or
equal zero. E.g. for the OR gate (Table 1b), we have the p; ; values as shown in Table 4.
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As a result, we obtain automatically

S(out|in) = - pilog(1)
i=1
=0
and
S(injout) = =3 pilog(p:) + > p;log(p})
i=1 j=1
= S—-9.

Thus the entropy loss S — S’ is none else but the input entropy once the output is known. The
entropy S’ is both a measure for the information at the output and for the mutual information of
the output with the input.

In case of a sequence of logic gates, we have S(out|in) again equal zero and S(in|out) equal to
the sum of the subsequent entropy losses along the logic cascade. We basically have a sequence
of Markov processes, however with special transition matrices 7": each of the n rows consists of
m — 1 elements equal 0 and one element equal 1. In the example of the OR gate, we have

0
1
T.,) =
( 7.7) 1
1

O O O =

Appendix B: Surface area of hypertriangle

The ‘surface area’ w,, is constructed by stacking parallel slabs of ever decreasing size (Figure 6):

Wy = /0 Wp—1 (1 - pn)n n—1 dpn 3

leading to the recursion formula

Together with wy = /2, this yields

One can find the same result as follows:

Wy = /// dwy,
12 Jn-1

= /// 2" N/ qiqe...qn S,
1J2 7 Jnm1
= 2" '\/n / sin )y cos ¥y dy / sin® ¥y cos ¥y dids / sin®=39,,_1 cos 9,1 d¥,_1
1 2 n—1
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P4

Figure 6: A hypertriangle as a stack of lower-dimensional hypertriangles.

11 1
247 2n—2

— 21171\/5
\/ﬁ

(n—1)!"
Appendix C: Calculation of an integral

Because of n-fold symmetry, all n integrals

/// q192---qn pi log(p;)ddy,
1J2 n—1

are equal, such that expression (3) leads to

Sy, = —2""'(n—1)! n// /_ 91G2---Gn Pr 10g(Pn)dS2n

= —2"7171!/ sin Y7 cos ¥ di / sin® 9,
1 2

/ sin? % 9,,_o cos U, d¥,_s / sin
n—2

-1

— 2n1 n319

Z 2n—4
(D2n 3_D2n 1)7

\—/l\DI»—t

= —2(n—1)n

cos Yy di, ...

2319, €08 Up_1 €08° Up_y log(cos?* ¥,_1) didy_1

_1cos* 9,1 log(cos® ¥, 1) di,_1
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where D,, stands for the integral
w/2
D,, = / sin™ 9 cos ¥ log(cos? ) dv)
0
1 1
= / z™log(l — x) dx —|—/ z™log(l + z) dz .
0 0

By recursive procedure, one can find that the former integral

/1 ™log(l—2) do= —(14 -+ o gt~ gty !

Applying similar procedure to the latter integral, leads to distinct results according to the parity
of m. For odd m, we find:

1 1 1 1 1 1
™ 1og(1 dr=1—-=+-—...+——
/0 z™log(l+z) dz = ( 2—|-3 +m 1—|—m)m+1
h
e thes D,, = (1+1+1+ + L ) L
" 2 3 7 (m+1)/2" m+1

As a result, we get

Appendix D: Conservation of uniformity

We first assume a particular truth table with m = n—1: see Table 5. The relation between output
mixing distribution x4’ and input mixing distribution y is:

MI(QLCIéa "'7Q;L—1) dQ;L—l = /IM((IlaCI% aqn) dQn )

with

@ = Ji+é

G = @
Q:Q =
CI;—Z = (gn-1

Q;L—l = {gn

and thus V] = 0y, ¥, = 93, ...,9,,_5 = J,,_1. This yields:
p dQ = sindysin®ds...sin" 29, 1 ddeds...dV,_; / w diy
1
= sind) sin®@...sin" 29, dd|dd}...dJ., , / w didy
1

— gldY /1 1 do,
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Table 5: The truth table of the gate.

in out
1 1
2 1
3 2
4 3
n—1|n-—2
nin—1

or
p=q

/1,ud191.

We now consider an n-dimensional mixing function of the particular form

N(QIa q2, .-, QTL) = Cnk (CII(Iz(In)k )

where the exponent k is not necessarily integer and where ¢, is the appropriate normalization

constant. This yields

o= ¢ cap(gh.qpy)" /1 (q192)"

dd,

= ok qi(ghql_))" (sindd| sindy...sin 9, _,)* /sin’C Y1 cos® 9, di,
1

VA T()

(sin ) sin ... sin 9,_,)?* ¢l (gh...q",_,)*

— N2k () ! k
= Cnk e T(E) ()™ ¢4 (g2--qn 1)

(4 F(IHQ—I) k+1 k
= Cnk T (R (@)™ (01900 1)" -

We now consider all possible truth tables with m = n — 1. If we average over all these, the factor

(¢})**1 is replaced by
1

n—1

[(@)* ™ + (@) ™+ + ()™ ]
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Only for £ = 1, this expression is a constant. If £ = 1 and only if £ = 1, we get y’ proportional

to (¢1¢5--051)":
el
"2 n-1
With ¢,1 = 2" (n — 1)! (from f, f5... [,_; # d9, = 1 and in accordance with (2)), we finally
conclude that

! !

Q1‘l2---CI;z—1 .

U= Cn1 q192---Gn
leads to
p = Cn—-1,1 ng;'“Q;zfl :

If m < n—1, we can decompose the logic gate into a cascade of subsequent logic gates, each
satisfying the condition that the number of possible output messages is equal to or one less than
the number of possible input messages. In each step the property of conservation of uniformity
(over flat probability space) is fulfilled. Thus it is also fulfilled for the whole chain. This completes
the proof of the theorem, for arbitrary n and arbitrary m, provided we average over all possible
cascades leading from an n-valued input to an m-valued output.

Appendix E: Vector basis
The functions M, ;()) have to satisfy the orthonormality conditions
/2
/0 My (9) My ;(9) did = 65 .

We choose that all M;; are extrapolated beyond the interval 0 < ¢y < 7 such that the two
(hypermeridian) boundaries ¥; = 0 and ¥, = § are hyperplanes of mirror symmetry. Then, the

functions are simple Fourier functions:

V2
My = —=

NZ3
2
M, = % cos 21 fori>1.

The functions M, ;(¥9) have to satisfy the conditions
/2
/ Mo (9) My ; () sin 9 d9 = 6, .
0

We choose that all M ; are extrapolated beyond the interval 0 < ¢, < 7 such that the (hyper-

equator) boundary ¥, = % is a hyperplane of mirror symmetry and the (hyperaxis) boundary

Y9 = 0 is a hyperline of symmetry. We have:

M2,0 = ].
5
My, = % (14 3cos29)
3
My = 6 (94 20 cos 29 + 35 cos 499)
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Apart from the classical normalization factor and an additional factor v/2 (caused by the fact we
™

have here a normalization interval (0,

Py;(cos ).
We can proceed further to calculate any My ;(9). Suffice it to mention the first two functions:

) instead of (0, 7) ), these are the even Legendre polynomials

1
M =
Y VAS
I [ k+3
= = -1 1 2
My 1 5 QkAkq[(k )+ (k+1)cos29 |,

where Ay is defined as )
/2
Akz/ sin 9 do |
0

its value being given e.g. in Reference [11] and being equal to the ratio Qxio/Qk+1. System-
atic application of the Gram—Schmidt orthonormalization procedure automatically results in the
even-numbered Gegenbauer polynomials C; (i.e. the multidimensional generalizations [10] of the
Legendre polynomials):

A+ k-1 (20)(k-2)! 1 ket
Mk,z(ﬁ)—d F—1 @itk—2) A, Cy? (cosV) .

Note that the “first’ basis function is

n—1 n—1 1 1 1
Mk,O(ﬁk) = = = .
kl;[l kl;[l V Ak \/sz) A, Vo
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