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Abstract: A detalled andlyss of the adiabetic-piston problem reveds, for a findy-tuned choice of
the spatid dimengons of the system, peculiar dynamica features that challenge the statement that
an isolated system necessarily reaches atime-independent equilibrium gate. In particular, the piston
behaves like a perpetuum mobile, i.e, it never comes to a stop but keeps wandering, undergoing
Szegble oscillations around the podtion corresponding to maximum entropy; this has remarkable
implications on the entropy changes of a mesoscopic isolated system and on the limits of vaidity of
the second law of thermodynamicsin the mesoscopic realm.
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The gatus of the second law of thermodynamics and the possibility that its sandard interpretation may not
be vaid when dedling with mesoscopic regimes, in particular over tempord and spatid scales pertaining to the
biologica redm, has been thoroughly discussed in the Firgt International Conference on Quantum Limits to
the Second Law (San Diego, 2002) [1] A violation of the second law would have remarkable implications
associated, for example, with the possibility for some living organism to extract work from a thermd bath by
means of a cyclic process (perpetuum mobile). Thus, it is hardly necessary to underline the importance of
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being able to concave a specific physicd sysem which, within the limits of some reasonable hypotheses
underlying its moddling, may exhibit a violation of the second law, in one of its equivdent versons. One
expects this system to possess some smple universd feature if it has to be a potentia candidate for supporting
some ubiquitous mechanism, presently unknown, at the mesoscopic leve. In this context, the quantum nature
of the physicd world may, or may not, play a sgnificant role, the mesoscopic redm being the borderline
between the two descriptions. In this paper we describe such aphysica system, completely classica in nature
(for related gpproaches of inherently quantum nature, see, eg. [2]), dementary in its Smplicity and yet cgpable
of exhibiting the characteristic behaviour of a perpetuum nobile and of violating the second law. One has,
however, to note that the occurrence of this remarkable result criticaly depends and is extremely senditive to
the linear dimendons of our sysem: in fact, any deviation from mesoscopic vaues of about 1 micron
invaidates our modd and its predictions.

S

Figure 1. The adiabatic piston: an insulating cylinder divided into two regions A and B by amovable,
frictionless, insulating piston. Ta, Tg and Pa,Ps aretheinitid temperatures and pressures in the two sections.

In the language of classical thermodynamics, the sysem conggts of an isolated cylinder with rigid wals ,
divided into two parts by means of a frictionless adiabatic piston, each section containing the same number of
moles of a perfect gas (see Fig.1). The description of its dynamica evolution towards equilibrium, when
garting from an initid condition in which the pressures on the two sdes are different, is not trivid: the problem
(aso known as the “adiabatic piston problem”) is undetermined from the point of view of dementary
thermodynamics [3], and only recently a solution has been provided in the frame of an approach based on gas
kinetic theory, neglecting thermodynamic fluctuations [4]. The intriguing part, however, concerns the evolution
of the sysem, when dating from the egua-pressure equilibrium postion X(t=0)=L/2 , Pa=Pg and
Ta=Tg=Tp, driven by thermodynamic fluctuations, which we mode by means of Langevin's forces. In this
case, as we will show below, the piston never comes to a hdt but kesps moving performing sizeable random
ocillations around its initid podtion. Actudly, the system does not reach a time-independent equilibrium Sate
and the pison behaves like a perpetuum mobile , never setling in a time indegpendent pogtion. The
asymptotic time g over which these displacements occur and their amplitudes turn out to depend on the
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system parameters, like the ratio m=M/Mg between the mass M of the piston and the common value Mg of
the gas mass in the two sections, the length L of the cylinder and the gas temperature. In particular, under
gandard conditions of temperature and pressure, sSizesble random displacements of the piston can be
predicted for a specific range of values of L pertaining to the mesoscopic regime.

The time evolution of our system is determined by the motion of the piston, described by its instantaneous
position X(t) (see Fig.1) which, in turn, obeys Newton's equation in the presence of random dastic collisons
with the gas molecules. If the system garts at time t=0 and temperature Tg, with the piston in the middle
position X(t=0)=L/2 and zero velocity, then it evolves maintaining equa pressures on both sdes. This last
circumgtance is expedient for understanding the peculiar behaviour of the piston since, otherwise, any
macroscopic pressure difference arising between the two sections would induce a restoring force which would
immediatdy bring the piston back to its equilibrium postion.

Our garting point is the deterministic equation describing the piston motion which we have derived in [5].
In order to account for the random molecular collisons, an ad hoc stochadtic accderation at) is formaly
introduced, so that the stochastic evolution equation of the piston reads

d’X _ [16nRM,Toe1 1 odx  2M, e - L/2¢a@x¢2
d® oML &IX JL-Xpdt M EX(L- X)gEd o
where n is the common number of gas moles in each Sde and R is the gas congtant. The determination of
at) is a very complicated task since the standard Langevin approach does not in generd carry over to
nonlinear dynamica systems [6], as the one described by Eq.(1). In order to take advantage of the Langevin
method, we linearize the above equation by consdering smal displacements around the starting position, that
is §X-L/2)8(L/2)<<1, and by agpproximating the square of the piston velocity (dX/dt)? with its thermd
veocity KgTo/M (both hypotheses have to be proved consstent a posteriori). Proceeding in this way, a
dgraghtforward  gpplication of the disspatonfluctuaion theorem [7] dlows to deduce
<a(t)a(t') >=[8(2mK ; T/p)Y?PS/M?]d(t - t') , where m is the molecular mass, P the common pressure
on the two sides of the piston and Sits area.
The linearized form of Eq.(1) reads, after introducing the variable x=X-L/2,

d2X+ 3 [2nRMgTOd_X+8KBMgTOX:a(t) @
dt> ML p dt M 22 ’

and is formdly identica to that describing the Brownian mation of a harmonicaly-bound particle of mass

M, a problem which has been thoroughly described in the literature [8], thet is
2
‘;’2‘ +b%’t‘+w2x =A(t) , ©)

where A(t) is the Langevin accderation. Whenever b>>w , the anadlysis carried out in [8] dlowsto identify
two typica time scales t,=1/2b and tx=b/2wW?* (t=>>ty,), which respectively represent the thermdization time
, i.e, the time over which the square-mean velocity <(dx/dt)*> attains its equipartition vaue Kg T¢/M and the
much longer time over which, in turn, the square-mean displacement reaches its asymptotic vaue
<x*>=KzTo/MW?. By comparing Egs.(2) and (3), we can apply the results of [8] to our case, after identifying

=a(t), (1
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b with (8/ML)(2nRM,yTo/p)"? and w? with 8KgMyTo/M?L?. In this way, we obtain t=(NL/u)(M/Mg)/p*?
and t=t/N, where N is the number of molecules of mass m in each of the two sections and u=(2KgTo/m) is
the most probable velocity of the molecular Maxwdl distribution. Therefore, snce typicaly N>>1, ty, turns out
to be much smadler than t, , a circumatance which justifies a posteriori the substitution in Ec.(1) of (dX/dt)?
with its average value Kg To/M. Besides, <x*>=KgTo/MwW’=(L/2)°M/2M, S0 that, in the limit M/M,<<1 (that
is, smdl piston mass with respect to gas mass), the two assumptiors judtifying the linearization of Eq.(1) are
both verified.

The above results have relevant implications on the entropy variation of our isolated system or, more
precisdly, due to the stochagtic nature of the problem, on the ensemble-averaged entropy change <DS> over
many redizations of our sysem (dtating from the initid Sate corresponding to the piston posgtion
X(t=0)=L/2). By recdling that during the piston motion the gas pressure remains constant on both sides, one
has dS=dQ/T=cpdT/T (cp being the gas molar heat a constant pressure), so that, by taking advantage of the
equation of dtate of perfect gases, the entropy change, with respect to the initid state, of a Sngle redization of
the system can be easily checked to be given by DS= ncpln {[LX(t)-XZ(t)]/(LIZ)Z}: ncpln(L?4x)/L7. In
order to get an order of magnitude for <DS>, we approximately write <DS>=nc,In(L*-4<x*>)/L?]. The
sgnificant quantity <DS>/K g turns out to be (for <x?>/(L/2)°<<1)

<DS> _ C, N M

- 2N—, 4
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Accordingly, a large asymptotic entropy decrease can take place in our isolated system. The question
naturaly arises. what are the spatid and tempord scaes over which this violation of the second law of
thermodynamics can actualy occur? To answer this question, we can examine the specific case of a gas
(e.9.,0,) in standard condiitions: by expressing L in microns (N=3x10’L®) and time in seconds, we have

tx=5x10°(M/Mg)L*, (5)
<DS>/Kg= -5 10"(M/Mg)L® (6)

It is worthwhile to stress that the fourth-power dependence of t on L greetly restrict the admissble range
of vaues of L: in fact, avariation of just one order of magnitude would make our model invaid since t would
become too large and t, too smal to judtify the adiabatic and thermdization hypothesis, respectively. In other
words, a violation of the second law can eventually occur, as suggested by common wisdom, only in a
very limited range of the relevant parameters. As an example, for M/My=107 and L= 1 cm we obtain an
asymptotic time tas of the order of the order of 1000 centuries! Conversely, by taking L = 1 nm, we
obtain a reasonable value t= 5x10" sec and <DS>/k= -5x10°. This corresponds to aviolation of the second
law in the mesoscopic realm.

The above gpproach has dlowed us to ded with the stuation (M/Mg)<<1, snce only in this limit the
aufficient conditions for the Langevin method [6], that is <x>/(L/2)>=M/(2Mg)<<1, is satisfied. In order to
have an indght into the behaviour of our process in the more general case M/My<1, we assume Langevin's
gpproach to continue to be approximately valid in this moderately non-linear regime. Thisis accomplished by
usnginthenonlinear Eq. (1) the stochastic acceleration a(t) worked out above for the linear case.
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After introducing the dimensionless units x=X/L and t=t/tp, where tp:4('f2 tn the stochastic equation
describing the piston motion reads

f 4/ x
where the dot stands for derivative with respect to t, m=M/Mg, a(t) a unitary-power white noise, and
s?=(p/2C2)(mN).
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Figure 2. Time evolution of the normalized root-mean-square deviation of the piston podtion from itsinitia
normalized value x (0)=1/2, for M/M4=0.5 and N=3x10", over 1000 redizations

Equation (7) can be numerically integrated by adopting a second-order |eap-frog agorithm as developed in
[9]. In particular, this dlows us to evauate the ensemble average (over 10000 redizations of the piston) of the
time evolution of the normalized mean square-root deviation <(x-1/2)>>? of the piston position from itsinitial
vaue x=1/2. This andysis is reported in Fig.2 for M/M4=0.5 and N=3x10". Itsinspection clearly shows that
the piston undergoes random fluctuations around the central position x=1/2, which increase with time up to an
asymptotic vaue corresponding to a Sizesble fraction of the cylinder length.

The ensemble average of the total entropy change, as given by the expresson <DS>/Kg =N(c/R)<In[(1-
4(x-1/2)%)>, of our isolated system can aso be numericaly evauated. In Fig.3, <DS>/K g is reported as a
function of the normdized time t. A asymptotic entropy decrease four orders of magnitude larger than Kg is
present in this case. Further numericad andysis shows (see Fig.4) that, keeping N fixed and varying m the
asymptotic value of <DS>/K g undergoes an approximately linear decrease with m as predicted by Eq. (4).
Beyond m @0.6, the entropy decrease dows down, but we are now in a range where Langevin's model may
not be vdid. Coversdy, in the limit n® O our approach furnishes <x®>/(L/2)>=mi2® 0 and t® O,
consstently with the results of [10].
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Figure 3. Time evolution of the normaized entropy change, for the same case asin Fig. 2.

The above findings violate the second law in its formulation that the entropy of an isolated system cannot
decrease. The celebrated Boltzmann's H-theorem [11], which can be considered as a“proof” of the second
law, does not gpply in our case since one of its main hypotheses, that is the molecular-chaos assumption, is not
vdid in ar dynamics in fact, the corrdation induced by the random motion of the piston favors a common
sgn of  and ¢ in the two-particle corrdation function of the gas near the piston, while the single-particle
corrdaion functions are independent from the sign of W and v . This prevents the two- particle correation
function to factorize into the product of the one-particle distribution functions.
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Figure 4. Normalized entropy change as a function of m=M/M for N=3x10", averaged over 1000
redizations (dots). The continuous line is after Eq. (4).

The vdidity of our modd bascdly hinges upon the exisence of a nearly adiabatic piston with which the gas
molecules undergo completely dadtic callisons and on the assumption that the gases in the cylinder
ingtantaneoudy attain an equilibrium Maxwellian distribution. Both hypotheses are judtified Snce, a posteriori,
the time t over which our process takes place is much larger than the time t,=t</N it takes the gasto reach
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thermd equilibrium, and yet short enough to dlow for the neglecting of heat flow through the piston and the
cylinder walls.

Findly, the vdidity of our modd appears to be corroborated by suitable molecular dynamic smulations of
the evolution of our system. These typically involve a condgderable number of point particles, which modd the
gas indde the cylinder, separated by a frictionless piston againgt which they undergo perfect dadtic collisons.
Actudly, prdiminary atempts in this direction [12,13] with a limited number of particles, indicates thet the
difference between the temperatures on the two sides [12] or, equivalently, the piston position [13] undergoes
relevant oscillations, so that the system does not reach equilibrium, as predicted by our modd.
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