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Abstract: A detailed analysis of the adiabatic-piston problem reveals, for a finely-tuned choice of 
the spatial dimensions of the system, peculiar dynamical features that challenge the statement that 
an isolated system necessarily reaches a time-independent equilibrium state. In particular, the piston 
behaves like a perpetuum mobile, i.e., it never comes to a stop but keeps wandering, undergoing 
sizeable oscillations around the position corresponding to maximum entropy; this has remarkable 
implications on the entropy changes of a mesoscopic isolated system and on the limits of validity of 
the second law of thermodynamics in the mesoscopic realm. 
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The status of the second law of thermodynamics and the possibility that its standard interpretation may not 

be valid when dealing with mesoscopic regimes, in particular over temporal and spatial scales pertaining to the 
biological realm, has been thoroughly  discussed in the First International Conference on Quantum Limits to 
the Second Law (San Diego, 2002) [1] A violation of the second law would have remarkable implications 
associated, for example, with the possibility for some living organism to extract work from a thermal bath by 
means of a cyclic process (perpetuum mobile). Thus, it is hardly necessary to underline the importance of 
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being able to conceive a specific physical system which, within the limits of some reasonable hypotheses 
underlying its modelling, may exhibit a violation of the second law, in one of its equivalent versions. One 
expects this system to possess some simple universal feature if it has to be a potential candidate for supporting 
some ubiquitous mechanism, presently unknown, at the mesoscopic level. In this context, the quantum nature 
of the physical world may, or may not, play a significant role, the mesoscopic realm being the borderline 
between the two descriptions. In this paper we describe such a physical system, completely classical in nature 
(for related approaches of inherently quantum nature, see, e.g. [2]), elementary in its simplicity and yet capable 
of exhibiting the characteristic behaviour of a perpetuum mobile and of violating the second law. One has, 
however, to note that the occurrence of this remarkable result critically depends and is extremely sensitive to 
the linear dimensions of our system: in fact, any deviation from mesoscopic values of about 1 micron 
invalidates our model and its predictions. 

 
Figure 1. The adiabatic piston: an insulating cylinder divided into two regions A and B by a movable, 

frictionless, insulating piston. TA, TB and PA,PB are the initial temperatures and pressures in the two sections. 

In the language of classical thermodynamics, the system  consists of an isolated cylinder with rigid walls , 
divided into two parts by means of a frictionless adiabatic piston, each section containing the same number of 
moles of a perfect gas (see Fig.1). The description of its dynamical evolution towards equilibrium, when 
starting from an initial condition in which the pressures on the two sides are different, is not trivial: the problem 
(also known as the “adiabatic piston problem”) is undetermined from the point of view of elementary 
thermodynamics [3], and only recently a solution has been provided in the frame of an approach based on gas 
kinetic theory, neglecting thermodynamic fluctuations [4]. The intriguing part, however, concerns the evolution 
of the system, when starting from the equal-pressure equilibrium position X(t=0)=L/2 , PA=PB and 

TA=TB=T0, driven by thermodynamic fluctuations, which we model by means of Langevin’s forces. In this 

case, as we will show below, the piston never comes to a halt but keeps moving performing sizeable random 
oscillations around its initial position. Actually, the system does not reach a time-independent equilibrium state  
and the piston behaves like a perpetuum mobile , never settling in a time independent position. The 
asymptotic time tas over which these displacements occur and their amplitudes turn out to depend on the 
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system parameters, like the ratio µ=M/Mg between the mass M of the piston and the common value Mg of 

the gas mass in the two sections, the length L of the cylinder and the gas temperature. In particular, under 
standard conditions of temperature and pressure, sizeable random displacements of the piston can be 
predicted for a specific range of values of L pertaining to the mesoscopic regime. 

The time evolution of our system is determined by the motion of the piston, described by its instantaneous 
position X(t) (see Fig.1) which, in turn, obeys Newton’s equation in the presence of random elastic collisions 
with the gas molecules. If the system starts at time t=0 and temperature T0, with the piston in the middle 

position X(t=0)=L/2 and zero velocity, then it evolves maintaining equal pressures on both sides. This last 
circumstance is expedient for understanding the peculiar behaviour of the piston, since, otherwise, any 
macroscopic pressure difference arising between the two sections would induce a restoring force which would 
immediately bring the piston back to its equilibrium position.  

Our starting point is the deterministic equation describing the piston motion which we have derived in [5]. 
In order to account for the random molecular collisions, an ad hoc stochastic acceleration a(t) is formally 
introduced, so that the stochastic evolution equation of the piston reads  
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where n is the common number of gas moles in each side and R is the gas constant. The determination of 
a(t) is a very complicated task since the standard Langevin approach does not in general carry over to 
nonlinear dynamical systems [6], as the one described by Eq.(1). In order to take advantage of the Langevin 
method, we linearize the above equation by considering small displacements around the starting position, that 
is (X-L/2)/(L/2)<<1, and by approximating the square of the piston velocity (dX/dt)2 with its thermal 
velocity KBT0/M (both hypotheses have to be proved consistent a posteriori). Proceeding in this way, a 
straightforward application of the dissipation-fluctuation theorem [7] allows to deduce 
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B −δπ>=< , where m is the molecular mass, P the common pressure 

on the two sides of the piston and S its area.  
The linearized form of Eq.(1) reads, after introducing the variable x=X-L/2,  

  ),t(ax
LM

TMK8

dt
dxTnRM2

ML
8

dt
xd

22

0gB0g

2

2

=+
π

+  (2) 

and is formally identical to that describing the Brownian motion of a harmonically-bound particle of mass 
M, a problem which has been thoroughly described in the literature [8], that is 
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where A(t) is the Langevin acceleration. Whenever β>>ω , the analysis carried out in [8] allows to identify 
two typical time scales tth=1/2β  and tas=β/2ω2 (tas>>tth), which  respectively  represent the thermalization time 
, i.e., the time over which the square-mean velocity <(dx/dt)2> attains its equipartition value KBT0/M and the 
much longer time over which, in turn, the square-mean displacement reaches its asymptotic value 
<x2>=KBT0/Mω2. By comparing Eqs.(2) and (3), we can apply the results of [8] to our case, after identifying 
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β  with (8/ML)(2nRMgT0/π)1/2 and ω2 with 8KBMgT0/M2L2. In this way, we obtain tas=(NL/u)(M/Mg)/π1/2 
and tth=tas/N, where N is the number of molecules of mass m in each of the two sections and u=(2KBT0/m) is 
the most probable velocity of the molecular Maxwell distribution. Therefore, since typically N>>1, tth turns out 
to be much smaller than tas , a circumstance which justifies a posteriori the substitution in Eq.(1) of (dX/dt)2 
with its average value KBT0/M. Besides, <x2>=KBT0/Mω2=(L/2)2M/2Mg, so that, in the limit M/Mg<<1 (that 
is, small piston mass with respect to gas mass), the two assumptions justifying the linearization of Eq.(1) are 
both verified.  

The above results have relevant implications on the entropy variation of our isolated system or, more 
precisely, due to the stochastic nature of the problem, on the ensemble-averaged entropy change <∆S> over 
many realizations of our system (starting from the initial state corresponding to the piston position 
X(t=0)=L/2). By recalling that during the piston motion the gas pressure remains constant on both sides, one 
has dS=δQ/T=cpdT/T (cp being the gas molar heat at constant pressure), so that, by taking advantage of the 

equation of state of perfect gases, the entropy  change, with respect to the initial state, of a single realization of 
the system can be easily checked to be given by  ∆S= ncpln {[LX(t)-X

2
(t)]/(L/2)

2
}= ncpln[(L2-4x2)/L2]. In 

order to get an order of magnitude for <∆S>, we  approximately write <∆S>=ncpln[(L2-4<x2>)/L2]. The 
significant quantity <∆S>/ΚΒ turns out to be (for <x2>/(L/2)2<<1) 
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Accordingly, a large asymptotic entropy decrease can take place in our isolated system. The question 
naturally arises: what are the spatial and temporal scales over which this violation of the second law of 
thermodynamics can actually occur? To answer this question, we can examine the specific case of a gas 
(e.g.,O2) in standard conditions: by expressing L in microns (N=3x107L3) and time in seconds, we have  

tas=5x10-2(M/Mg)L4,  (5) 
<∆S>/ΚΒ= −5×107(M/Mg)L3  (6) 

It is worthwhile to stress that the fourth-power dependence of tas on L greatly restrict the admissible range 
of values of L: in fact, a variation of just one order of magnitude would make our model invalid since tas would 
become too large and tth too  small to justify the adiabatic and thermalization hypothesis, respectively. In other 
words, a violation of the second law can eventually occur, as suggested by common wisdom, only in a 
very limited range of the relevant parameters. As an example, for M/Mg=10-2 and L= 1 cm we obtain an 
asymptotic time tas of the order of  the order of 1000 centuries!  Conversely, by taking L = 1 µm, we
obtain a reasonable value tas= 5x10-4 sec and <∆S>/k= -5x105. This corresponds to a violation of the second 
law in the mesoscopic realm. 

The above approach has allowed us to deal with the situation (M/Mg)<<1, since only in this limit the 
sufficient conditions for the Langevin method [6], that is <x2>/(L/2)2=M/(2Mg)<<1, is satisfied. In order to 
have an insight into the behaviour of our process in the more general case M/Mg<1, we assume Langevin’s 
approach to continue to be approximately  valid in this moderately non-linear regime. This is accomplished by 
using in the non-linear  Eq. (1) the stochastic acceleration a(t) worked out above for the linear case. 
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After introducing the dimensionless units ξ=X/L and τ=t/tp, where tp=4√2 tth  the stochastic equation 

describing the piston motion reads
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where the dot stands for derivative with respect to τ, µ=M/Mg, α(τ) a unitary-power white noise, and 

σ2=(π/2√2)(µ/N). 

 

Figure 2. Time evolution of the normalized root-mean-square deviation of the piston position from its initial 
normalized value ξ(0)=1/2, for M/Mg=0.5 and N=3x104, over 1000 realizations. 

Equation (7) can be numerically integrated by adopting a second-order leap-frog algorithm as developed in 
[9]. In particular, this allows us to evaluate the ensemble average (over 10000 realizations of the piston) of the 
time evolution of the normalized mean square-root deviation <(ξ-1/2)2>1/2 of the piston position from its initial 
value ξ=1/2. This analysis is reported in Fig.2 for M/Mg=0.5 and N=3x104. Its inspection clearly shows that 
the piston undergoes random fluctuations around the central position ξ=1/2, which increase with time up to an 
asymptotic value corresponding to a sizeable fraction of the cylinder length. 

The ensemble average of the total entropy change, as given by the expression <∆S>/KB =N(cp/R)<ln[(1-
4(ξ-1/2)2)>, of our isolated system can also be numerically evaluated. In Fig.3, <∆S>/KB is reported as a 
function of the normalized time τ. A asymptotic entropy decrease four orders of magnitude larger than KB is 
present  in this case. Further numerical analysis shows (see Fig.4) that, keeping N fixed and varying µ, the 
asymptotic value of <∆S>/KB undergoes an approximately linear decrease with µ, as predicted by Eq. (4). 
Beyond µ ≅ 0.6, the entropy decrease slows down, but we are now in a range where Langevin’s model may 
not be valid. Coversely, in the limit µ→0 our approach furnishes <x2>/(L/2)2=µ/2→0 and tas→0, 
consistently with the results of [10]. 
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Figure 3. Time evolution of the normalized entropy change, for the same case as in Fig. 2.  

The above findings violate the second law in its formulation that the entropy of an isolated system cannot 
decrease. The celebrated Boltzmann’s H-theorem [11], which can be considered as a “proof” of the second 
law, does not apply in our case since one of its main hypotheses, that is the molecular-chaos assumption, is not 
valid in our dynamics: in fact, the correlation induced by the random motion of the piston favors a common 
sign of vx and vx’ in the two-particle correlation function of the gas near the piston, while the single-particle 

correlation functions are independent from the sign of vx and vx’. This prevents the two-particle correlation 

function to factorize into the product of the one-particle distribution functions.  

 

Figure 4. Normalized entropy change as a function of µ=M/Mg for N=3x104, averaged over 1000 
realizations (dots). The continuous line is after Eq. (4). 

The validity of our model basically hinges upon the existence of a nearly adiabatic piston with which the gas 
molecules undergo completely elastic collisions and on the assumption that the gases in the cylinder 
instantaneously attain an equilibrium Maxwellian distribution. Both hypotheses are justified since, a posteriori,  
the time tas over which our process takes place is  much larger than the time tth=tas/N it takes the gas to reach 
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thermal equilibrium, and yet short enough to allow for the neglecting of heat flow through the piston and the 
cylinder walls.  

 Finally, the validity of our model appears to be corroborated by suitable molecular dynamic simulations of 
the evolution of our system. These typically involve a considerable number of point particles, which model the 
gas inside the cylinder, separated by a frictionless piston against which they undergo perfect elastic collisions. 
Actually,  preliminary attempts in this direction [12,13] with a limited number of particles, indicates that the 
difference between the temperatures on the two sides [12] or, equivalently, the piston position [13] undergoes 
relevant oscillations, so that the system does not reach equilibrium, as predicted by our model. 
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