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Abstract: We consider quantum diffusion of the initially localized wavepacket in
one-dimensional kicked disordered system with classical coherent perturbation. The
wavepacket localizes in the unperturbed kicked Anderson model. However, the wavepacket
gets delocalized even by coupling with monochromatic perturbation. We call the
state "dynamically delocalized state”. It is numerically shown that the delocalized
wavepacket spreads obeying diffusion law, and the perturbation strength dependence
of the diffusion rate is given. The sensitivity of the delocalized state is also shown by the
time-reversal experiment after random change in phase of the wavepacket. Moreover,
it is found that the diffusion strongly depend on the initial phase of the perturbation.
We discuss a relation between the ”classicalization” of the quantum wavepacket the
initial phase dependence. The complex structure of the initial phase dependence is
related to the entropy production in the quantum system.
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1 Introduction

Generally, quantum system is classicalized by decoherence and dephasing, and the system becomes
dissipative [1, 2, 3, 4, 5, 6]. The classical pictures for the dissipation in the quantum system
are treated by heat-bath theory [1, 2, 3], linear response theory [4, 5] and Landauer formula
(6] and so on. In the standard pictures the coupling with external infinite number of degrees
of freedom (DOF) and/or stochastization mechanism are implicitly or explicitly assumed in the
system itself. We consider a question: is the coupling with macroscopic number of DOF and/or
external stochastization mechanism really necessary for destruction of the quantum coherence in
the quantum system [7, 8]7 In the present paper, we investigate the localization and delocalization
in 1DDS as a typical quantum interference effect and the destruction by the coupling with coherent
perturbation.

Recently, we have found an interesting property in Anderson model with coherently time-
dependent perturbation [8, 9]. In the unperturbed Anderson model, it is well-known that almost all
eigenstates are localized and the quantum diffusion of initially localized wavepacket is suppressed
at the localization length, as a result of the interference between scattering waves [10]. When
classical coherent perturbation consisting of some frequency components makes the localized state
delocalized and we called the state ”dynamically delocalized state”. The similar models have been
investigated by some groups [11, 12, 13]. Moreover, when we couple an oscillator in the ground
state with the system in the delocalized state, the energy of the system in the excited state has
been irreversibly transferred to the oscillator [8]. Although it is a very interesting feature of the
dynamically delocalized state because the phenomenon hints a kind of the potential dissipative
property in the quantum system, I do not repeat the results here. For the details, see Ref.[8, 9].

The similar delocalization phenomena to Anderson model can be also observed in kicked Ander-
son model [15]. The spread of the initially localized wave packet are suppressed and the packets
are exponentially localized in the kicked Anderson model too. Moreover, the localization can be
also delocalized by the coherent perturbation. Accordingly, instead of Anderson model we can use
the kicked Anderson model to investigate the property of the localization and the delocalization
phenomena. The kicked system is convenient to save CPU time for long-time numerical simula-
tion. How does the localization change as perturbations from other DOF is introduced in a kicked
1DDS? In the present paper, we give some more extended numerical results than the preliminary
reports in Ref.[15].

The outline of the present paper is as follows. In Sec.2 model systems investigated are in-
troduced. In Sec.3, we numerically investigate the wave packet dynamics in unperturbed and
coherently perturbed kicked Anderson model. First we show the localization in the unperturbed
kicked Anderson model, and estimate the localization length as a function of the disorder strength.
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Secondly, we investigate the delocalization in monochromatically perturbed case. It is shown that
when the perturbation strength is small the spread of the packet obeys subdiffusion law charac-
terizing by an index «, and the spatial decay of the wave packet obeys stretched Gaussian form
characterizing by an index (3. We give the numerical result of the relation between o and 3 with
comparing to an analytical result given by Zhong et al. [14]. Moreover, the wave packet spreads
obeying a normal diffusion law in the polychromatically perturbed kicked Anderson model. In
Sec.4, we give numerical result for time-reversal experiments after random phase-change of the
wave packet, in comparison to cases in periodic system. In Sec.5, furthermore, we show that the
delocalization is sensitive to change of the initial phase of the classical perturbation. It is briefly
discussed about the relation between the phase sensitivity and the classicalization of the quantum
wave packet. The last section is devoted to summary and discussion.

2 Model

The tight binding Hamiltonian for the kicked 1DDS is given by,

Hy(t) = T(p)+ > In>V(n) <n|I 6(t—m), (1)

where p(= —iL) is a shift operator and V'(n) is uniformly distributed on-site energy in the range

[—W, W] and T(p)(= 2(cosp — 1)) is hopping term between nearest neighbor sites. The dynamics
of kicked Anderson model is given by Floquet operator,

U= exp(—%@) exp(—;V(n)) exp(

_1@) (2)
h 2
The value of the wave function is determined in the middle of the two successive kicks, and the
periodic boundary conditions are assumed. It is instructive to recall the relation Harper model
and kicked Harper model [16, 17, 18]. Note the form is equivalent to second order symplectic
integration method for time evolution of the general time-dependent system, and the potential
strength W is which is equivalent to strength of the kick.
Furthermore, we consider parametrically perturbed kicked Anderson model to investigate the

delocalization phenomena, which Hamiltonian is given as follows:
H”(t) = Ho(t)+2|n>V(n,t) <n|25(t—m), (3)

Vi(n,t) = e\j/(g) Z cos(w;t + @), (4)
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where the frequency components of the classical coherent perturbation {w;} are taken to be
mutually incommensurate numbers and the order is O(1). The time evolution operator U(s) for
ssteps is given by,

: 1 T
U(s) =11 GXP(—ﬁ
k=1
We set ¢; = 0 until Sec.5.

3 Dynamical delocalization

In this section, we show the diffusion property in the kicked Anderson model with increasing of
the number of the frequency components of the perturbation.

3.1 Unperturbed case (L=0)
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Figure 1: Time dependence of MSD of kicked Figure 2: Localization length ¢ as a function of
Anderson model with some potential strength potential strength W in the kicked Anderson
W. The system and ensemble size are 2'* and model. The ¢ is estimated by MSD as my(t) ~
30 respectively. h =0.125. €2(t) at t =10000 and 20000 denoted by open
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Figure 3: Some snapshots of the ensem-
ble averaged probability distribution function
P(n,t) of the kicked Anderson model without
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Figure 4: Some snapshots of the ensem-
ble averaged probability distribution function
of binary periodic system with monochro-
matic perturbation L = 1,¢ = 0.1
(t =500,700,900.)

First we numerically show time dependence of the mean square displacement (MSD),

ma(t) =< U(t)|(n — no)*|(t) >, (6)

of initially localized wave packet W(n,t = 0) = d,,,, in the kicked Anderson model. Diffusion of

the packets are suppressed and localized as shown in the Fig.1. Figure 2 shows the localization

length ¢ as a function of the fluctuation strength W numerically estimated by &(¢)? = may(1)

at several time. The localization length & decreases as the potential strength W increases as
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€ o« W2, The W dependence saturates around W ~ 3.5 given by W/h ~ 7. Figure 3 shows
time-dependence of the ensemble-averaged probabilistic function P(n,t) =< [¥(n,t)|* >. We can
see clear exponential localization in the unperturbed kicked Anderson model. On the other hand,

the ensemble-averaged probablistic functions in a binary periodic system show Gaussian process
like behavior. (See Fig.4.)

3.2 Monochromatically perturbed case (L=1)

Next, we use the strongly localized case W = 1.0 in the unperturbed kicked Anderson model
to show the delocalization phenomena. As seen in Fig.5 the wave packet is delocalized even in
the monochromatically perturbed case (L = 1), and we call the state ”dynamically delocalized
state” in a sense that any stochastic perturbation is not imposed on the system [9]. Note that
the axes of Fig.5(b) are in log-scale. When the perturbation strength e is small, it seems that
the diffusion is not a normal diffusion: a clear subdiffusion is well observed. As increase of the
¢, the diffusion process approaches normal diffusion. However, we can not judge whether the
critical value €, dividing the subdiffusion and normal diffusion exists or not by the data. We can
formally characterize the diffusive behavior as the subdiffusion by following index « in a form,
my ~ t* Figure 6(b) shows the index a as a function of the perturbation strength e. The
exponent o approaches unity from below with increasing the e. The diffusion rate D estimated
formally by ms ~ Dt in Fig.5(a) is also given in Fig.6(a). The e dependence changes around
"certain value” e.(~~ 0.1), and the D begins to increase rapidly. For e > 0.3 the « saturates near
unity. Accordingly, the way of the spread of the wave packet gradually transits from subdiffusive
behavior to normal diffusive one with increasing e through the transition range (e ~ 0.1 — 0.3).

3.3 Polychromatically perturbed cases (L=2,3)

In the polychromatically perturbed cases, we can observe clear normal diffusion even for the small
perturbation strength as seen in Fig.7. The perturbation strength dependence of the diffusion
rate D estimated by the MSD is shown in Fig. 6(a). It seems that the e dependence of the D
rapidly grows without ”threshold” compared with the case of L = 1 in Fig.6(a). We can regard
appearance of the normal diffusion as a kind of ”classicalization” of the quantum wave packet,
which is caused by the coupling with the other DOF.

3.4 Spatio-temporal distribution function (L=1)

Moreover, in the monochromatically perturbed cases the space-time dependence of the ensemble-
averaged probabilistic function P(n,t) are shown in Fig.8 [9, 19]. The functional form of the
distribution function approaches Gaussian function as increase of the strength e, which corresponds



Entropy 2004, 6

—
D
R

600x10°

400

m,
T

200

o
1
I

1003

N w > o
h R 1

N ow s oo
h T M
—
(=)
~
w
~
o
o
~
T T T T TTT T T T T TTT

m,

1073

Figure 5: (a) Time dependence of MSD in
kicked Anderson model with monochromatic
perturbation (L = 1) at some perturbation
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to a solution in diffusion equation in the stochastic process [19]. The peaks around the center of

the distribution come from a remain of the localization in the unperturbed case [20, 21, 24]. In
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Figure 8: Some snapshots of the ensemble
averaged probability distribution function of
the kicked Anderson model with perturbation,
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(t =1000,3000,5000.)

our pervious paper, it is numerically shown that the quantum diffusion of the wave packet obeys

a scaled form in the perturbed Anderson model [9]. The scaled form of the distribution function
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is given by the stretched Gaussian distribution,

P(n,t) exp{—const.(tLL/L)ﬁ}, (7)
except for the range close to the center of the distribution.

Thus the distribution function is specified by the two exponents, i.e., a characterizing the
temporal growth of the wave packet, and [ characterizing its spatial decay. The distribution func-
tion is of a unified form, which contains the two extreme limits, i.e., the exponential localization
(a =0, = 1) and the normal diffusion (o = 1, f = 2) as special cases, and in general interpolates
them [19]. Here we estimate the («, 3) for the subdiffusive behavior in the monochromatically
perturbed kicked Anderson model. The same procedure employed in Ref.[9] is used to determine
the index [ characterizing the spatial decay. Figure 9 shows the plot of («, ) obtained for various
value e.

We consider the relation between o and (3. Under some assumptions Zhong et al. analytically
derived following relation between the two indexes in the quantum diffusion,

6 = ) (8)

in our notation [14]. The curve is also overwritten in the Fig.9. Some data in the prtuerbed
Anderson model are also overploted [9]. In the normal diffusion side (a ~ 1, 8 ~ 2) the numerical
data coincide with the universal relation, while in the localization side (o ~ 0, ~ 1) it deviate
from the curve. The deviation might be caused by one of the assumptions they used in the
derivation. Although they used a generalized master equation with memory function as the start
point, the equation does not describe exponential localization. Accordingly it seems that the
universal relation is true for the diffusive side, while is not always true for the localization side.

Recently, we have some mathematical tools in order to treat with the power-law behaviors with
long-term memory effects such as fractional calculus [22], Tsallis statistics [23] and so on. However
the derivation of the power-law indeces «, 3 and the relations from the dynamical precess is a
remaining and important problem.

4 Time irreversibility

In this section, we show the result for time-reversal experiments after random phase-change of the
wave packet in the unperturbed and the monochromatically perturbed kicked Anderson model,
comparing with the results in periodic system. The same idea based on the time irreversibility
have been used to investigate the ”classicalization” for quantum chaos systems [25].
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Figure 9: Plot of the («, 3) obtained at various
subdiffusive cases. The relation = 2/(2—«)
is overwritten. Some data (A) in Anderson
model are also overploted. The error bars de-

note 50 percent error.

4.1 Unperturbed case (L=0)
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We give the method for the time-reversal experiments used in the present paper. First the system

evolves by the time-evolution operator UT given in eq.(2), until t = T. At t = T a perturbation
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Pis applied for the wave packet. We used the random phase-change of the amplitude ¥ (n,T')
at each site n, accordingly the perturbation does not change the probability amplitude |¥(n,T)|?
of the quantum state. After applying the perturbation p, we evolves the state by the unitary

operator UT=* until s = T as follows.

U(s+1T)=UT=PUTT(0). (9)

In the concrete, we change the phase of the packet at ¢t =T,

U(n,T) — exp{ia&, }¥(n,T), (10)

where &, is a random number in a range [—1, 1] at each site n and «a is the phase-change strength.
As the a has the meaning in a range —7 < a < 7, we changed the value a in a range a < 10.

We monitor the time dependence of the MSD for the whole process. Figure 10 shows the result
for various change-strength @ in binary periodic and disordered cases without perturbation(e = 0).
In the case with small strength the state can almost return to the initial state concerning the MSD.
However, it follows that in both cases as increase of the change-strength a the return to the initial
state becomes difficult in the backward process. We follow that for same value of the a = 1.0 in
the disordered system the return to the initial state becomes more unstable when compared with
the result in the periodic system.

4.2 Monochromatically perturbed case (L=1)

Figure 11 shows the results of the time reversal experiments for various phase-change strength a
in periodic system with monochromatic perturbation (L = 1,e = 0.2). As increase of the value «,
it become difficult to return to the initial state. The results of the time reversal experiments at a
fixed value @ = 0.1 in disordered system with the monochromatic perturbation (L = 1) is shown
in Fig.12. The return to the initial state is much more difficult than periodic case in spite of the
small spread of the wave packet. Different from the periodic system, even for small perturbation
strength e the irreversibility can be built in the disordered system.

Next we quantitatively characterize the sensitivity of the dynamically delocalized states to the
phase-change by the following ratio,

n(T e, a) = T =T)

(11)

Note that if the phase-change fully breaks the quntum coherency in the state n becomes about
two. Figure 13 shows e dependence of the n for some a’s. As € increases 7 increases up to the
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saturation level (~ 2). Generally 7 in the disordered system is larger than one in the periodic
system. Moreover, in the disordered system the larger e is the faster the speed to reach the
saturation level becomes. Figure 14 shows a dependence of the n for some €’s. In the unperturbed
cases 1 of the disordered system is larger than periodic system and increases with fluctuation. In
the perturbed case of € = 0.1, 1 reaches the saturation level (~ 2) even for a = 0. The value is
almost consistent with ”critical value” €. found in Sect.3.

Totally we can say that disordered system with coherent perturbation has much potential for
irreversibility, and the disordered system has an ability to be entangled with the other quantum

state.
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Figure 11: Time reversal experiments for var- Figure 12: Time reversal experiments for var-
ious phase-change strength a in the periodic ious perturbation strength € in the disordered
case with monochromatic perturbation (L = case with monochromatic perturbation (L =
1,e = 0.2, T = 250). 1,a =0.1,T = 500).

5 Autonomous transformation and initial phase sensitivity

In this section, we consider the ”classicalization” of the quantum wave packet in the monochromat-
ically perturbed case (L = 1) by observing an effect of the initial phase change of the perturbation
on the delocalized states. We reset w; = w and ¢; = ¢ in the notation.
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5.1 Autonomous transformation

In the previous sections, we used the nonautonomous model. The nonautonomous model can be
transformed into autonomous model. In this subsection we consider the delocalization though the
autonomous expression for the time-dependent model. As the autonomous version of the H**(¢)
with L = 1, we consider autonomous Hamiltonian consisting of three DOF as

HP =T(p) 4+ 2] + wl +V(n){1 +ecos¢} > cos(2mke), (12)
K

where J(= —ih%) and I(= —iha%) are action operators conjugate to angle variables ¢ and o,
respectively. The action-angle operators satisfy the commutation relations, [¢, J] = [¢, I]| = ih.
The action representation of the state |¥(¢) > is given by using the autonomous version of the

time evolution as follows;

O(n,m,t) = <m exp{—%H‘“‘ttHO > (13)
2 d¢ . U ! osc
= exp{zwmt} < m|(;5 > ¢|T_|_ exp{——/ dsH (ws + (;5)}|0 >
0 \/2m T Jo

= L T s explim(wt + ) Y0(n, 6,1), (14)

21 Jo
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where |0 > is an initial state and T is a time-ordering operator. We used the action eigenstate
|m > in the phase representation, < ¢|m >= ﬁ exp{—im¢}. See Ref.[7] for the more details. In
our quantum dynamics the wave packet in action representation is given by Fourier transformation
of U(n,¢,t) with respect to the initial phase ¢. Accordingly we can guess the classical dynamics
given by the Hamiltonian H*“, effect of the chaotic motion in a phase space makes a normal
diffusion in action space of the linear oscillator (1, ¢).

If there does not exist any correlation between the classical trajectories in the action space, the
distribution function becomes Gaussian form in the action space [7]. We can expect that in the
quantum dynamics once wave function is ”classicalized ” the diffusion of the wave packet in the
action space continues with time.

5.2 Numerical result

We try to investigate the dissipative property of the dynamically delocalized state. Figure 15
shows the ¢ dependence of the real part of the wave function " (n*, ¢,t)(= Re{¥(n*, ¢,t)}) at
the site n* = N/2. It follows that the diffusion sensitively depends on the initial phase ¢ of
the perturbation in the strongly perturbed case (e = 0.2). Generally the structure of the phase
dependence becomes complex as time elapses. Figure 16 shows the decay of the self-correlation
function C'(¢) =< U (t, ¢y + @) V" (¢, ¢g) >4, at the initially localized site n* = ng. It decays
rapidly and fluctuates around zero level in the case with strong perturbation (¢ = 0.2). Even
in the weakly perturbed case (¢ = 0.05) the initial phase dependence becomes more complex as
the strong perturbed case (e = 0.2) as the time elapses. The larger time elapses the faster the
correlation function C'(¢) decays. It directly reflects to the phase sensitivity of the wave function.
The same structure concerning the initial phase dependence exists in imaginary part and the
probability distribution |¥(n, ¢,t)|? as shown in Fig.17. Such a structure can also be observed in
the other site.(See Fig.17.) The growth of such a complex structure immediately corresponds to
the diffusion property of the ®(n,m,t) in action space through Fourier transformation. We can
say the time-dependent perturbation bring about destructive of the interference of the quantum
wave packet.

In the disordered system, when the packet spreads over the whole system the phase dependence
becomes more complex. The number N, (¢) of the nodes of the initial phase dependence increases
obeying a rule, N, (t) ~ /t as time evolves. However, it should be noted that in the perturbed
periodic system we can not observe the kinds of the growth of the complex structure in phase
dependence as shown in Fig.18. The more details of the initial phase dependence will be given
elsewhere [26].
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Figure 15: Some snapshots of the ¢ depen-
dence of the real part of the wave packet
U(n = ng,t, ¢) in disordered system. We used
one sample in this simulation. (¢ = 43 4% 47.)
The parameters are (a)L = 1, ¢ = 0.05 and
(b)L =1, e = 0.2.

5.3 Discussion

147

250 4 T
00

150

wo i -

50 L

200}
150
100—1:52:

Figure 16: The correlation function C(¢) esti-
mated by data in Fig.15. The parameters are
(a)L = 1, ¢ = 0.05 and (b)L = 1, ¢ = 0.4.
The ensemble average have done by shift of
the initial phase ¢q.

The quantum state we investigated in the perturbed kicked Anderson model is a pure state, i.e.
Trpwe = Trpr, = 1, where pe = |[¥(t) >< W(¢)] [27] . As a result, the quantum entropy
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Figure 17: Some snapshots of the ¢ depen-
dence of (a)the imaginary part of the wave
packet U(n =ny—5,¢,¢) and (b) the |¥U(n =
ng — 5,t,¢)|* in the disordered system. We
used one sample. The parameters are L = 1,
e=0.2.
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Figure 18: Some snapshots of the ¢ depen-
dence of the real part of the wave packet
U(n = ng,t,¢) in binary periodic system.
(t = 43,4* 45.) The parameters are (a)L = 1,
e =0.05and (b)L =1, e = 0.4.

vanishes during the time-evolution, Sy, = =17 pier l0g pror = 0 [28] . However, as seen in the last

subsection, the chaotic behavior in the action space of the linear oscillator can be reflected on the
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kicked Anderson system. Then we can expect that the quantum state becomes an entangled state
caused by the complex dynamical time-evolution. Accordingly, the reduced entropy of the partial
trace pred(= Trositpror becomes positive, where Tr,; means taking a trace concerning the linaer
oscilator. The similar phenomena have been observed in some composite chaotic systems such as
coupled kicked rotor [29].

6 Summary

We numerically investigated localization and delocalization of initially localized quantum wavepacket
in kicked Anderson model with coherent time-dependent perturbation. The results we obtained
in the present investigation are summarized as follows.

(1) In the kicked Anderson model(L = 0), which a diffusion occurs in a early stage of time
evolution is suppressed over a longer time scale, and MSD is eventually bounded by a certain
finite level. The packet is exponentially localized.

(2) In the case of L = 1, diffusive behavior maintains within the time scale accessible by the
numerical simulation. The diffusion process is anomalous diffusion for the small perturbation
strength € << 1, in which the MSD increases as ma(t) o< t* (o < 1). It seems that for larger than
é.(= 0.1) the MSD grows obeying the normal diffusion rule as my ~ Dt.

(3) In the case of L > 2, the diffusion process is normal diffusion my(t) ~ Dt even for small e
comparatively.

(4) In the case of the subdiffusion, the two indexes («, ) characterizing the ensemble averaged
distribution function is estimated for several cases. The relation § = 2/(2 — «) between « and
is well fit in the diffusive side, while the data deviate from the relation in the localized side.

Moreover, we performed the time-reversal experiments after random phase-change of the wave
packet in the unperturbed and the monochromatically perturbed kicked Anderson model.

(5) In the both unperturbed disordered and periodic system, the quantum state is robust
against the random phase-change of the wave packet when the strength is small. As increase of
the strength the state does not take the initial state by the backward process.

(6) In the case of L = 1, the dynamically delocalized state becomes sensitive to the random
phase-change as increase of the perturbation strength e. In this case, the difference between
disordered and periodic system is much enhanced when compared to the unperturbed cases.

We also investigated the quantum diffusion in the monochromatically perturbed case (L = 1)
by observing an effect of the initial phase change of the perturbation on the delocalized states.

(7) In the disordered system, the dynamically delocalized states are very sensitive to change
of the initial phase of the perturbation, which is quite different from the case of the Bloch state
in the periodic system. From autonomous picture, it follows that the fine structure of the initial
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phase sensitivity related to diffusion of the wave packet in the action space.

We can regard the delocalization as a kind of ”classicalization” by coupling with external small
number DOF. The number of DOF of the total system is three. We can expect that once wave
function is classicalized the diffusion of the wave packet in action space continues in Gaussian
form. The more details about relation between the initial phase sensitivity and the delocalized
state will be given in elsewhere [26].
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