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Abstract

Accurate bearing fault diagnosis under various operational conditions presents signifi-
cant challenges, mainly due to the limited availability of labeled data and the domain
mismatches across different operating environments. In this study, an adaptive meta-
learning framework (AdaMETA) is proposed, which combines dynamic task-aware model-
independent meta-learning (DT-MAML) with efficient multi-scale attention (EMA) modules
to enhance the model’s ability to generalize and improve diagnostic performance in small-
sample bearing fault diagnosis across different load scenarios. Specifically, a hierarchical
encoder equipped with C-EMA is introduced to effectively capture multi-scale fault features
from vibration signals, greatly improving feature extraction under constrained data con-
ditions. Furthermore, DT-MAML dynamically adjusts the inner-loop learning rate based
on task complexity, promoting efficient adaptation to diverse tasks and mitigating domain
bias. Comprehensive experimental evaluations on the CWRU bearing dataset, conducted
under carefully designed cross-domain scenarios, demonstrate that AdaMETA achieves
superior accuracy (up to 99.26%) and robustness compared to traditional meta-learning
and classical diagnostic methods. Additional ablation studies and noise interference exper-
iments further validate the substantial contribution of the EMA module and the dynamic
learning rate components.

Keywords: few-shot learning; efficient multi-scale attention; adaptive meta-learning; cross-
domain fault diagnosis

1. Introduction
With the rapid growth of modern industries and manufacturing, rotating machinery

and equipment are widely utilized in key sectors such as aerospace, automotive production,
and energy generation. Bearings, as essential components of rotating machinery and
equipment, play a crucial role in ensuring the safety, reliability, and efficiency of equipment
operations [1]. Failing to detect bearing faults promptly can lead to equipment malfunction,
causing substantial economic losses or even casualties. Therefore, the timely and accurate
detection of bearing faults is of great practical importance [2,3].

Traditional signal processing and analysis techniques have been extensively applied
in the diagnosis of faults in rotating machinery; however, these methods often struggle
to meet the increasingly complex requirements of modern equipment, particularly in
terms of accuracy and efficiency. They are especially ineffective in varying operational
conditions and noisy environments. Early machine learning models, such as K-Nearest
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Neighbors (KNNs) [4], Artificial Neural Networks (ANNs) [5], and Support Vector Ma-
chines (SVMs) [6], when combined with feature extraction techniques in signal processing,
have shown improvements and have enhanced fault identification performance [7]. How-
ever, these approaches rely heavily on manual feature engineering, which can result in
information loss and a degradation of classification performance if poor features are se-
lected. With advancements in chip technology, deeper neural network models can now be
efficiently trained. Deep learning (DL) models have the capability to automatically extract
features directly from raw signals, eliminating the need for manual preprocessing, which
results in greater robustness and improved performance [8]. These models have achieved
notable success in bearing fault diagnosis. Specifically, deep learning approaches such as
Convolutional Neural Networks (CNNs) [9,10], Recurrent Neural Networks (RNNs) [11],
and Transformers [12,13] have been widely utilized in bearing fault diagnosis due to
their robust automatic feature extraction abilities, which significantly enhance diagnostic
accuracy, particularly in complex operational conditions.

However, there are two major bottlenecks in these approaches:

(a) Sample-dependent problem: Existing methods require a large number of labeled fault
samples to achieve high accuracy [14]. In real industrial scenarios, the scarcity of
early fault samples, variable working conditions, and the high cost of labeling create
challenges in meeting data requirements, as data distribution varies significantly [15].

(b) Poor adaptability to dynamic working conditions: In variable-speed and high-noise
environments, traditional feature extraction methods struggle to capture weak fault
features. Moreover, in practical applications, equipment is typically shut down
immediately once a fault occurs, preventing the collection of sufficient samples for
model training [16]. Therefore, more effective methods are needed for diagnosing
bearing faults in real-world industries, especially for bearings operating under diverse
conditions with limited data.

To tackle the challenge of limited data, Few-shot Learning (FSL) techniques have
attracted growing interest in recent years. Luo et al. (2024) introduced an Elastic Proto-
typical Network that improves transfer diagnosis robustness under unstable rotational
speeds [17]; Jiang et al. (2024) designed a Recursive Prototypical Network with Coordinate
Attention to enhance separability in few-shot cross-condition scenarios [18]; Lin et al. (2025)
proposed a Prototype Matching-based meta-learning model tailored for constrained-data
diagnosis [19]; Li et al. (2024) developed Learn-Then-Adapt, a test-time adaptation scheme
enabling on-the-fly cross-domain adaptation without target labels [20]; Cui et al. (2024) pre-
sented a Dictionary Domain Adaptation Transformer to alleviate cross-machine distribution
shift by dictionary-level alignment [21]; Yan et al. (2023) built LiConvFormer, a lightweight
separable-multi-scale convolution plus broadcast self-attention framework for efficient
deployment [22]; Liu and Peng (2025) proposed a semi-supervised meta-learning approach
with simplifying graph convolution for variable-condition few-shot diagnosis [23]; Zhu
et al. (2024) formulated a cloud–edge test-time adaptation pipeline with customized
contrastive learning for online machinery diagnosis [24]; Li et al. (2025) introduced a
Multi-Variable Transformer-based meta-learning architecture that couples Transformer
encoders with MAML for multivariate time series [25]; and Xiao et al. (2025) provided
a comprehensive survey on domain generalization for rotating machinery, consolidating
settings, benchmarks, and open issues [26].

Meta-learning is a central strategy within FSL. It has been demonstrated that this
facilitates a rapid and effective adaptation to new tasks, with minimal data, by means of
learning efficient learning strategies. This method has demonstrated considerable benefits,
especially in the context of bearing fault detection [27]. Meta-learning approaches are
generally divided into three types: optimization-based methods, model-based methods,
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and metric-based methods [28]. Among these, optimization-based approaches are designed
to offer a globally shared initialization for all meta-tasks [29], helping the model to rapidly
achieve superior classification accuracy with only minor parameter adjustments and a
small amount of data. Traditional optimization-based methods, such as model-independent
meta-learning (MAML) [30], substantially improve the model’s ability to quickly adapt to
new tasks by setting shared initial weights during the meta-training phase [31,32].

In recent times, notable advancements have been made in applying meta-learning to
diagnosing faults in rotating machinery. For example, Wang and Liu (2025) [33] proposed
a multi-scale meta-learning network (MS-MLN), which integrates a multi-scale feature
encoder with a metric embedding strategy. This network effectively combines data from
multiple scales without the need for manual feature extraction, leading to quick general-
ization at the task level. Lin et al. (2023) [34] introduced the GMAML algorithm, which is
specifically tailored to solve the issue of small-sample cross-domain bearing fault detection
problems driven by diverse signals (such as acceleration/acoustics). The development
of the channel interaction feature encoder (MK-ECA) was based on multi-core efficient
channel attention and included a weight guidance factor (WGF) in the inner optimiza-
tion of MAML, which adaptively tunes the training strategy and substantially enhances
cross-domain generalization. Su et al. (2022) [35] proposed the DRHRML method, which
integrates Maximum Mean Discrepancy (MMD) constraints via the Improved Sparse De-
noising Autoencoder (ISDAE) for data reconstruction. This approach reduces noise and
maintains distributional consistency, achieving fast adaptation to small sample sizes and
cross-task generalization through MAML-based recursive meta-learning (RML), leading
to significant test accuracy improvements under various working conditions. Dong et al.
(2025) [36] introduced MTFL, aimed at small-sample cross-domain bearing fault diagnosis
under diverse operating conditions. In their approach, 1D vibration signals are converted
to 2D images (STI and MSMY branches), features are extracted using multi-source pre-
trained ResNet18, and multi-source, two-branch features are selected and fused using SRF.
The domain gap is narrowed through Domain Adaptation (DA) with a Learning Linear
Adaptor, and the final classification is performed with a prototype network.

Although the above methods perform well across different tasks and operating con-
ditions, the traditional MAML algorithm still has certain limitations, particularly when
applied to cross-domain tasks. the inner-loop learning rate in MAML is fixed and does
not adjust dynamically with the complexity of the task or changes in the data. This rigid
learning rate strategy limits the model’s ability to adapt and generalize in more intricate
and fluctuating task scenarios. Moreover, the varying complexity of bearing equipment
operating conditions introduces challenges for fault diagnosis, especially in relation to cross-
domain generalization. There are often notable differences in data distribution between the
source and target domains, which makes it difficult to apply models trained on the source
domain directly to the target domain, thus affecting diagnostic performance [37,38].

To address these challenges, this paper presents an adaptive meta-learning method,
AdaMETA, for analyzing vibration signals obtained from bearings under different operating
conditions. Compared to existing methods, AdaMETA provides three innovative contributions:

(a) Efficient Multi-scale Attention Feature Extraction Encoder (C-EMA): A feature extrac-
tion encoder based on efficient multi-scale attention (EMA) is introduced, capable of
more efficiently capturing key features in fault signals and enhancing feature learning
under limited sample conditions. By integrating multi-scale information, C-EMA
adaptively adjusts attention to different scale features, thereby improving the model’s
recognition accuracy across diverse fault patterns.

(b) Improved MAML Algorithm with Dynamically Adjusted Inner-Loop Learning Rate:
To address the limitations of the traditional MAML algorithm, an improved mecha-
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nism for adjusting the inner-loop learning rate is proposed. By dynamically modifying
the learning rate based on task complexity, the model can flexibly meet the learning
requirements of different tasks, thereby enhancing the generalization performance for
cross-domain tasks. This innovation not only optimizes the learning strategy but also
increases the model’s adaptability when facing diverse task types.

(c) Validation of Cross-domain Generalization Capability from Multiple Source Domains
to a Target Domain: To better align with real-world industrial applications, the
dataset is divided into four domains, with three serving as source domains and one
as the target domain. An experimental scheme is designed to test cross-domain
generalization from multiple source domains to the target domain. This experimental
setup verifies the model’s training effectiveness under multi-source domains and
assesses its cross-domain generalization ability to the target domain. The model’s
robustness and effectiveness are further evaluated through a sample-limited cross-
domain diagnostic scenario and noise interference experiments.

The remainder of this paper is structured as follows: Section 2 introduces the funda-
mental theory of Model-Agnostic Meta-Learning (MAML) and the Efficient Multi-scale
Attention Mechanism (EMA). Section 3 presents a detailed description of the proposed
method and diagnostic procedures. The reliability of the proposed method is validated
through multiple experimental sets in Section 4. Finally, Section 5 concludes the paper.

2. Theoretical Background
2.1. Meta-Learning

Meta-learning, often referred to as “learning how to learn,” is a training framework
in which a model learns from a broad range of tasks, enabling it to quickly adjust to new
tasks, even when only limited examples are available. The fundamental idea behind it is
the acquisition of meta-knowledge—generalized strategies or patterns that work effectively
across various tasks and can be easily adapted to new task requirements. In the case of
small-sample learning, meta-learning methods provide notable advantages over traditional
deep learning models, especially in contexts with sparse data. Conventional deep learning
approaches for fault diagnosis typically rely on large amounts of labeled data and assume
that the data distribution is consistent across the training (source) and testing (target)
domains. However, collecting large-scale fault data and addressing domain shifts (e.g.,
variations in operational environments, loads, or machine types) are challenging in real-
world industrial settings, leading to discrepancies between the source and target domains.
Small-sample cross-domain fault diagnosis attempts to resolve this issue by utilizing a
limited number of samples from the target domain while leveraging knowledge learned
from the source domain. Meta-learning, as a potential solution, helps in acquiring generic
representations across different tasks, thereby improving the model’s ability to generalize
effectively to new domains with limited data.

2.2. Model-Agnostic Meta-Learning

A prominent optimization-based meta-learning approach is known as Model-Agnostic
Meta-Learning (MAML), originally proposed by Finn et al. in 2017 [30]. The term “model-
agnostic” indicates that MAML does not rely on any specific neural network architecture.
Instead, it learns an optimal set of initial parameters, which can then be quickly adapted to
a variety of new tasks using gradient descent methods. The primary objective of MAML is
to identify the initial parameters θ such that the model requires only a few training steps
to achieve effective performance on new tasks. In essence, MAML explicitly trains the
initial weights to be quickly adaptable to new tasks. The optimization process involves a
two-stage iterative procedure, often referred to as the inner and outer loops:
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Inner loop (task adaptation): For each task Ti drawn from the overall task distribution
P(T), the model begins with the current parameter set θ and performs one or more gradient
updates using training data specific to that task. For instance, after one gradient update,
the parameters adapted to task Ti become:

θ′i = θ − α∇θLtrain
Ti

( fθ) (1)

where Ltrain
Ti

denotes the loss on the training dataset computed for task Ti, and α is the
learning rate of the inner loop. This allows the task-specific parameter θ′i to be fine-tuned
to better fit the training data for task Ti.

Outer loop (meta-optimization): After adaptation in the inner loop, MAML evaluates
the adapted model parameters θ′i for each task separately and calculates a “meta-loss”
using a meta-validation set for each task independently. This meta-loss measures how well
the model adapts to each specific task. Next, MAML minimizes the sum of the meta-losses
across all tasks by optimizing the initial parameter set θ. Formally, the meta-optimization
objective is:

min
θ

∑
Ti∼p(T)

Lval
Ti

(
fθ′i

)
= min

θ
∑
Ti

Lval
Ti

(
fθ−α∇θLtrain

Ti
( fθ)

)
(2)

The above equation represents the total loss after one gradient adaptation step on each
task. The gradient calculation used for optimization considers the variations introduced
during the inner-loop adaptation and thus involves the computation of a second-order
gradient. The initial parameters θ of the model are then updated as follows:

θ ← θ − β∇θ ∑Lval
Ti

(
fθ′i

)
(3)

Here, β denotes the meta-learning rate. Intuitively, this updating strategy adjusts
the parameter θ to a region in the parameter space where small changes (e.g., a single
gradient update) can lead to significant performance improvements on new tasks. The
MAML parameter optimization process is shown in Figure 1.

Figure 1. MAML parameter optimization process.

2.3. Efficient Multi-Scale Attention (EMA)

Attention mechanisms in convolutional neural networks help dynamically highlight
important features while minimizing the influence of irrelevant ones, significantly im-
proving performance in tasks such as image recognition and reconstruction [39]. Typical
attention mechanisms include channel-oriented attention (e.g., the widely used Compres-
sion and Excitation Module) and spatial-oriented attention [39], an example of which is
the Convolutional Block Attention Module (CBAM) [40], which sequentially applies both
types of attention. However, many existing channel attention techniques rely heavily on
dimensionality reduction methods, often involving global pooling or bottleneck layers,
which may inadvertently discard critical information. To address these issues, Ouyang
et al. introduced the Efficient Multi-scale Attention (EMA) module [41], designed to retain
information from each channel and efficiently model cross-channel interactions. Although
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initially proposed for lightweight image super-resolution and target detection, the core
principles of EMA are sufficiently general to be applied to any task requiring multi-scale
feature representation.

As shown in Figure 2, the specific EMA module processes feature maps simultaneously
via parallel paths while maintaining the integrity of the channel information. Given an
input feature tensor U ∈ RC×H×W , C is used to denote the number of channels, and the
EMA initially splits these channels into groups, effectively creating several sub-features,
each of which captures a unique fragment of the channel domain. In practice, the channels
are either partially reshaped into batch dimensions or split, i.e., splitting U into groups

of G, denoted by U(g)G
g=1. Each group contains Cg channels satisfying ∑ gCg = C. This

grouping approach distributes the spatial semantic information more evenly, capturing
feature representations at different scales or receptive fields in the channel dimension. These
grouped channels are then processed through parallel attention paths: in each path, global
features are extracted to compute channel-specific attention weights, adjusting the strength
of each group of features accordingly. Crucially, the EMA avoids significant dimensionality
reduction during weight computation, thus preserving the detailed information in each
channel. Mathematically, the channel attentional weights for each group g can be expressed
as w(g) ∈ RCg . The attention vectors are computed by globally pooling the sub-features
U(g) and subjecting them to a learnable transformation (e.g., a fully connected layer or a
(1× 1) convolution). Each weighted sub-feature is then represented as U′(g) = w(g) ⊙U(g),
where ⊙ denotes channel-wise multiplication.

Figure 2. The structure of the EMA module, the * symbol represents Sigmoid activation function, and
the + symbol indicates element-wise addition.
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3. The Proposed Method
3.1. Description of Cross-Domain Scenarios

Cross-Domain Learning (CDL) aims to improve the generalization ability of models
on the Target Domain by migrating knowledge between different but related data domains.
Its core challenge lies in the inter-domain distribution difference, the data distributions
of the source domain and target domain Psource(X, Y) ̸= Ptarget(X, Y), which leads to a
significant degradation in the performance of direct migration models.

Formal Definition:

• Domain: consists of the joint distribution P(X, Y) of the data space X and label space Y.
• Task: the mapping from Input X to Output Y, f : X → Y .

• Cross-domain scenario: given a source domain Ds =
{(

xs
i , ys

i
)
}Ns

i=1 and a target

domain Dt =
{(

xt
j , yt

j

)
}Nt

j=1 satisfies Ps(X, Y) ̸= Pt(X, Y), and usually Nt≪ Ns.

Small-sample cross-domain fault diagnosis of bearings can address scenarios with few
fault samples under different operating conditions, but the inter-domain differences may
contain both covariate bias and conceptual bias, making distributional alignment difficult,
and the small-sample target domains are prone to leading to overfitting of the model with
noisy or domain-specific features.

3.2. Construction of the C-EMA Feature Encoder

For small-sample cross-domain scenarios, this study proposes a hierarchical feature
encoder that integrates a novel Efficient Multi-scale Attention (EMA) module, designed to
enhance cross-scale feature integration while maintaining computational efficiency. The
network’s overall structure retains the hierarchical stacking of classical CNNs, with the
EMA module strategically placed between the convolutional and normalization layers. This
positioning allows the EMA module to directly modulate the original feature response. The
design provides the network with three key properties: capturing multi-scale cross-channel
dependencies, preserving spatial information through shallow integration, and maintaining
gradient flow via residual connectivity. Unlike traditional convolutional feature processing,
EMA adaptively enhances features in both the channel and spatial dimensions through
local and global pooling, attentional weighting, and group normalization. As illustrated in
Figure 3, the network architecture consists of four core components:

(a) A multilayer convolutional backbone;
(b) The EMA attention mechanism;
(c) A batch normalization layer;
(d) A nonlinear activation layer.

In each convolutional block (ConvBlock), a 3 × 3 convolution is performed to extract
base features, followed by adaptive rescaling of the convolutional outputs through multi-
scale attention via the EMA module. Next, Batch Normalization (BN) with the ReLU
activation function is applied to stabilize the feature distribution for the downstream layers.
The optional MaxPool operation is then used to downsample, expand the receptive field,
and reduce the feature map size. At the top layer, either global average pooling or a
linear classifier can be selected to generate the final output, depending on the specific task
requirements. The structure and details of each layer are summarized in Table 1.
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Figure 3. The structure of the C-EMA module. The * symbol represents Sigmoid activation function,
and the + symbol indicates element-wise addition.

Through the joint attention mechanism of global and local pooling, EMA effectively
integrates dependencies between distant and neighboring pixels, enhancing the network’s
capacity to identify complex failure modes and subtle variations, which is of paramount
importance. Group normalization and attentional fusion help suppress noisy activations
in the feature space, reducing distributional fluctuations caused by random batches in
small-sample scenarios. In this work, the channel number C of the feature maps input
to the EMA module is 64. We set the group number G to 4, resulting in each subgroup
containing C_g = 16 channels. This configuration strikes a balance between capturing
diverse multi-scale features and maintaining computational efficiency, which is a common
and effective practice for feature maps of this scale [41].
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Table 1. Structure and size dimensions of each layer of the C-EMA.

Layer Type Input Size Output Size Operation

ConvBlock 1 (3, 32, 32) (64, 16, 16) Convolution→EMA→BatchNorm→ReLU→Max Pooling

ConvBlock 2 (64, 16, 16) (64, 8, 8) Convolution→EMA→BatchNorm→ReLU→Max Pooling

ConvBlock 3 (64, 8, 8) (64, 4, 4) Convolution→EMA→BatchNorm→ReLU→Max Pooling

ConvBlock 4 (64, 4, 4) (64, 2, 2) Convolution→EMA→BatchNorm→ReLU→Max Pooling

Flatten (64, 2, 2) (256) Flatten to 1D vector

Linear Layer (256) (output_size) Fully connected layer, output is output_size

3.3. Dynamic Task-Aware Inner-Loop Learning Rate α

In small-sample cross-domain fault diagnosis, It is evident that there are significant
disparities in the data distributions between the source and target domains, which conse-
quently result in a decline in the performance of the model during the process of migration.
The original MAML struggles to adapt to the heterogeneity of different domain tasks.
In this paper, we propose dynamic tuning of the inner-loop learning rate (DT-MAML),
based on the core idea of gradient-sensitive dynamic adjustment. The learning rate can be
adaptively adjusted according to the task gradient paradigm:

ατ =
α

∥ ∇Lτ(θ) ∥2 +ϵ
(4)

where

∥ ∇Lτ(θ) ∥2 is the L2 norm of the gradient vector, and ϵ is a very small constant (e.g., 10−8)
to prevent numerical instability. The update rule is amended to:

θ′ = θ − ατ∇θLtrain
Ti

( fθ) (5)

The learning rate is decreased when encountering high-gradient tasks (e.g., large
cross-domain differences or complex failure modes) to prevent oscillations caused by over-
shooting parameter updates. Conversely, the learning rate is increased when encountering
low-gradient tasks (e.g., similar domains or simple failure modes) to accelerate convergence.
This method has been demonstrated to have a significant impact on the robustness of the
model with regard to unknown domain tasks.

The dynamic inner-loop learning rate mechanism naturally constrains the magnitude
of parameter updates:

∥ ∆θ ∥= ατ ∥ ∇Lτ(θ) ∥2≤
α

1 + ϵ/ ∥ ∇Lτ(θ) ∥2
(6)

Even if there are abnormal gradients (e.g., noisy samples), the update amount is still
limited to a reasonable range, which improves the stability of small-sample training and has
almost zero additional overhead, significantly improving the cross-domain small-sample
performance. The base inner-loop learning rate α is set to 0.01, which is a standard value
in MAML algorithms for rapid task adaptation [31]. This base value is then dynamically
normalized by the gradient norm as formulated in Equation (4). The pseudo-code of the
training process of the DT-MAML algorithm is shown in Algorithm 1, and the overall
architecture of the proposed method is illustrated in Figure 4.
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Algorithm 1: The training algorithm of the DT-MAML network

Require: Dataset D, number of classes N, shots K, initial meta-parameters θ, inner-loop
learning rate α = 0.01, outer-loop Adam optimizer, iterations T

Ensure: Optimized meta-parameters θ*

1: Initialize θ randomly
2: for iteration t = 1 to T do
3: Sample task batch

{
τi}n

i=1 ∆Each task is N-way K-shot
4: Initialize ∇θLmeta ← 0
5: for each task τi do
6: Sample N classes from D

7: For each class, sample K support Dspt
τi and Q query Dqry

τi
8: Clone θ′i ← θ ∆Inner-loop adaptation
9: for inner step k = 1 to Kinner do

10: Compute cross-entropy loss on support set:

Lspt
τi = − 1

NK ∑
(x,y)∈Dspt

τi

N

∑
c=1

yclog fθ′i
(x)c

11: Compute gradients : gi ← ∇θ′i
Lspt

τi

12: Compute gradient norm : ||gi||2 ←
√

∑j

(
g(j)

i

)2

13: Adjust learning rate : ατi ← α/||gi||2 + ϵ

14: Update parameters : θ′i ← θ′i − ατi gi

15: end for
16: Compute query loss:

Lqry
τi = − 1

N Q ∑
(x,y)∈Dqry

τi

N

∑
c=1

yc log fθ′i
(x)c

17: Compute meta-gradient : ∇θ Lτi
qry ← ∇θ Lτi

qry

18: Accumulate gradients : ∇θ Lmeta ← ∇θ Lmeta + 1
n ∇θ Lτi

qry

19: end for
20: Update meta-parameters : θ ← Adam(θ, ∇θ Lmeta)

21: end for
22: Return optimized meta-parameters θ∗ ← θ
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Figure 4. The overall procedure of the AdaMETA diagnostic model. The * symbol represents Sigmoid
activation function, and the + symbol indicates element-wise addition.

4. Experimental Results and Analysis
4.1. Dataset Processing
4.1.1. Overview of the CWRU Dataset

The CWRU (Case Western Reserve University Bearing Data Center) bearing failure
dataset is one of the most commonly used public datasets in the field of health monitoring
of rotating machinery [42] and is widely used for the validation of vibration signal-driven
fault diagnosis algorithms. The data are collected by piezoelectric accelerometers mounted
at the drive end (DE) and fan end (FE) with sampling frequencies of 12 kHz and 48 kHz.
The experimental platform, as shown in Figure 5, uses 2 hp three-phase induction motors,
with speeds corresponding to four load conditions (0 hp, 1 hp, 2 hp, and 3 hp) and rated
speeds of approximately 1797 rpm, 1772 rpm, 1750 rpm, and 1730 rpm, respectively. The
failure types cover Normal and three typical defects—Inner Ring (IR), Outer Ring (OR),
and Rolling Element (RE), each with three damage sizes: 0.007′′, 0.014′′, and 0.021′′, for a
total of nine failure states (see Table 2). The defects are accurately hole-made by electric
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discharge machining (EDM), which ensures the consistency of fault depth and location,
thus ensuring that the dataset has a high degree of confidence in terms of controllability of
working conditions and experimental reproducibility. The raw data are stored in the form
of time-domain vibration signals without any preliminary processing and are suitable for
the extraction of features and modeling methods in the time domain, frequency domain,
and time–frequency domain.

 

Figure 5. The bearing test device.

Table 2. CWRU dataset domain classification and load details.

Domain Number Load Gear (hp) Motor Speed (rpm) Includes
Categories

D1 0 hp ≈1797 rpm Normal + 9 Faults
D2 1 hp ≈1772 rpm Normal + 9 Faults
D3 2 hp ≈1750 rpm Normal + 9 Faults
D4 3 hp ≈1730 rpm Normal + 9 Faults

4.1.2. Experimental Data Partitioning and Small-Sample Cross-Domain Settings

To capture load-dependent distribution shifts, the CWRU data are split into four load
domains (0, 1, 2, 3 hp), each with 10 classes (1 normal, 9 faults). In cross-domain few-
shot detection, one domain is randomly chosen as the target Dt; the remaining three are
merged as the source Ds. We train fully supervised on Ds. In Dt, only K samples per
class (K ≤ 5) are used for adaptation, and the rest are used for testing, simulating scarce
target-condition data. This design preserves load-induced statistical differences and avoids
fault-type confounds, providing a clearer test of generalization and robustness.

Raw vibration signals are segmented with a 1024-sample sliding window (≈1024/fs,
covering ≥ 2 rotor cycles) and 50% overlap to augment data and limit inter-sample cor-
relation while preserving frequency resolution. After segmentation, short-time Fourier
transforms (STFTs) produce fixed-size time–frequency images that capture local transients
and global spectral patterns (see Figure 6). Compared with pure time–domain features,
these representations are more sensitive to cross-load distribution shifts and offer a stronger
basis for few-shot cross-domain diagnosis.
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Figure 6. Under 1772 ram: (a) healthy; (b–j) correspond to the original vibration signals and time–frequency
diagrams of IR, RE, and OR at damage levels of 0.007/0.014/0.021 mm, respectively.

4.2. Comparison of Algorithms in Different Cross-Domain Scenarios

This section evaluates the performance of the AdaMETA diagnostic model across
four distinct low-shot cross-domain scenarios, with the scenario details provided in Table 3.
For each sub-task, which follows the ‘10-way 5-shot’ configuration, five samples from each
class in the source domain are randomly selected to construct the task. The diagnostic
model, once trained, is tested under different load conditions in the target domain. The
results for all methods are shown in Table 4 and Figure 7.

Table 3. Description of four cross-domain scenarios.

Cross-Domain Scenario Source-Domain Target-Domain

Scenario 1 D0D1D2 D3
Scenario 2 D0D1D3 D2
Scenario 3 D0D2D3 D1
Scenario 4 D1D2D3 D0

The results show that, in comparative experiments across four typical load scenarios
(Scenario 1 to Scenario 4), the proposed method achieves the highest classification accuracy
across all test conditions with the smallest variation. Specifically, the accuracy rates for
Scenarios 1 to 4 were 98.37 ± 2.17%, 99.16 ± 1.62%, 99.26 ± 2.31%, and 98.39 ± 1.88%,
respectively, with an average accuracy of 98.8± 1.99%. The following results were obtained
through comparison.
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Table 4. Diagnostic accuracy of different methods in four cross-domain scenarios (percentage).

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average

SVM 56.72 ± 5.95 67.35 ± 7.61 63.88 ± 4.96 59.04 ± 5.05 61.75 ± 5.89
Reptile 92.23 ± 7.83 91.52 ± 10.32 90.21 ± 8.35 89.24 ± 8.27 90.8 ± 8.69
ProNet 91.82 ± 6.92 94.65 ± 7.64 94.18 ± 9.26 94.15 ± 7.15 95.2 ± 7.74
MAML 96.92 ± 3.84 95.33 ± 4.26 96.98 ± 3.72 97.02 ± 3.79 96.56 ± 3.9
GMAML 97.26 ± 3.42 98.12 ± 3.11 97.61 ± 2.74 97.73 ± 2.93 97.68 ± 3.05
Proposed
method 98.37 ± 2.17 99.16 ± 1.62 99.26 ± 2.31 98.39 ± 1.88 98.8 ± 1.99

Figure 7. Results of different methods in four cross-domain scenarios.

The comparative results demonstrate that, in the few-shot cross-domain fault diagnosis
knowledge transfer setting, meta-learning frameworks significantly outperform traditional
machine learning and conventional deep learning methods. Using Support Vector Machine
(SVM) as a benchmark, the average diagnostic accuracy across the four load scenarios is
only 61.75%, with the best performance in Scenario 2 at 67.35%. In contrast, under the same
conditions, the four meta-learning models—Reptile, ProNet, MAML, and GMAML—achieved
average accuracies of 90.8%, 95.2%, 96.56%, and 97.68%, respectively. This performance gap
arises because meta-learning algorithms emphasize cross-task transfer and rapid adaptation
during training, rather than overfitting to individual samples, enabling efficient and robust
fault identification even in cases where target-domain samples are scarce.

Compared with typical meta-learning baselines such as Reptile, ProNet, and MAML,
the proposed method achieves higher fault identification accuracy across four cross-load
transfer scenarios. In these scenarios, the average accuracy improved by 8.0% over Reptile,
3.60% over ProNet, and 2.24% over MAML. Compared to the latest GMAML method,
the proposed method improved by 1.12%. These gains stem from the method’s ability
to efficiently extract shared diagnostic priors across multiple source-domain tasks and
leverage a rapid adaptation mechanism to fully exploit the information potential of sparse
target-domain samples, significantly enhancing cross-domain generalization. As illustrated
in Figure 8, the 3D confusion matrix presents the specific classification results of the various
methods in Scenario 2, demonstrating that the proposed method accurately identifies
samples across categories.



Entropy 2025, 27, 1063 15 of 24

Figure 8. Confusion matrix of comparison methods in Scenario 2: (a) SVM; (b) Reptile; (c) ProNet;
(d) MAML; (e) GMAML; (f) proposed method.

4.3. Ablation Experiments of the Proposed Method

To rigorously assess the contribution of each component to overall performance, this
study designed ablation experiments evaluating four model combinations across four
scenarios; the results are shown in Figure 9, and the specific accuracy is shown in Table 5.
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Figure 9. The results of the ablation experiments for various methods across four different scenarios.

Table 5. Diagnostic accuracy of different methods in the “10-way 5-shot” scenario in Scenario
2 (percentage).

Method Scenario 1 Scenario 2 Scenario 3 Scenario 4 Average

2DCNN+MAML 95.36 ± 6.56 94.72 ± 7.23 92.16 ± 6.29 94.81 ± 6.51 94.26 ± 6.65
2DCNN+DT-MAML 96.09 ± 4.67 95.38 ± 5.64 93.16 ± 4.36 95.48 ± 4.39 95.21 ± 4.77
2DCNN+EMA+MAML 97.58 ± 4.69 97.25 ± 4.32 96.70 ± 4.21 97.66 ± 3.84 97.29 ± 4.26
2DCNN+EMA+DT-MAML 98.37 ± 2.17 99.16 ± 1.62 99.26 ± 2.31 98.39 ± 1.88 98.9 ± 1.99

The experimental data revealed significant performance differences across scenar-
ios. In Scenario 1, 2DCNN+EMA+DT-MAML performed best, with an accuracy of
98.37 ± 2.17%, significantly outperforming the other methods. A similar trend was ob-
served in Scenario 2, where 2DCNN+EMA+DT-MAML attained 99.16 ± 1.62% accuracy,
again exceeding the other combinations. In Scenarios 3 and 4, 2DCNN+EMA+DT-MAML
continued to perform strongly, achieving 99.26 ± 2.31% and 98.39 ± 1.88% accuracy, re-
spectively, and remaining significantly higher than the models that did not include EMA
or DT.

Further analysis of average performance showed that the 2DCNN-based model com-
bining EMA and DT (i.e., 2DCNN+EMA+DT-MAML) achieved an average accuracy of
99.04± 1.99% across the four scenarios, significantly outperforming the other combinations.
This result confirms the importance and effectiveness of EMA and DT in improving the
model’s generalization and robustness. Additionally, compared with using DT or EMA
alone, their joint use produced a synergistic effect, further improving model performance.

In summary, these ablation experiments clearly demonstrate the key role of EMA
and DT-MAML in enhancing the performance of the proposed method and validate the
effectiveness of their joint application.
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4.4. Effect of Dynamic Inner-Loop Learning Rate α on Diagnostic Performance

To evaluate the impact of the dynamic inner-loop learning rate α on the model’s
convergence performance, this study conducted three comparative experiments: fixed α,
fixed α combined with the EMA module (fixed α + EMA), and fixed α + EMA combined
with dynamic α (fixed α + EMA + dynamic α, i.e., the method proposed in this paper). The
detailed information is shown in Table 6. The experimental results, as shown in Figure 10,
demonstrate that the dynamic α method (blue line) rapidly reduces the loss value to 1.0
after only 15 iterations, approximately 40% faster than the fixed α+EMA method (green
line), highlighting the significant role of dynamic α in accelerating convergence during the
early stages of training.

Table 6. Parameter settings for different control groups.

Comparison Group Definition Learning Rate Strategy Attention Module Dataset Partitioning

Baseline Standard MAML Fixed α (0.01) None CWRU Four Domains
Proposed Our full model Dynamic α EMA CWRU Four Domains
Ablation Ablation of dynamic α Fixed α (0.01) EMA CWRU Four Domains

Figure 10. Loss curves for the three methods after 300 iterations.

Notably, the fixed α + EMA method exhibits noticeable loss fluctuations and oscilla-
tions between 15 and 65 iterations (red region), reflecting instability in the optimization
process due to task conflicts, which limits the model’s rapid convergence early on. In
contrast, the model using a fixed α (orange line) did not exhibit oscillations but reached a
plateau after 200 iterations, with the loss value stabilizing around 0.3 and failing to decrease
further. This suggests that a fixed learning rate lacks an effective adjustment mechanism,
preventing optimization in the later stages of training.

In contrast, the dynamic α scheduling strategy effectively mitigates these issues,
avoiding oscillations while continuously driving model optimization in the later stages of
training, ultimately reducing the loss value to a minimum of 0.1. These results demonstrate
the critical role of dynamic learning rate α scheduling in improving the model convergence
speed, avoiding oscillations, and driving optimization in the later stages of training, which
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positively impacts the model’s generalization performance. The experimental results
confirm the significant value of dynamic learning rate α in cross-domain fault diagnosis
tasks from both theoretical and practical perspectives.

4.5. Comparison of Algorithm Effect in Different Noise Environments

In order to verify the robustness and generalization ability of the proposed small-
sample cross-domain bearing fault diagnosis method in real industrial environments,
this study further carried out experimental analyses under noise interference conditions.
Specifically, Gaussian white noise of different intensities was artificially added to the
bearing vibration signals to simulate the sensor measurement errors and environmental
disturbances in the real production environment. Gaussian white noise is a random
signal with uniform spectrum and obeys Gaussian distribution, and its probability density

function is defined as: f (x) = 1√
2πσ

e−
(x−µ)2

2σ2 , where µ denotes the mean of the noise and σ2

denotes the variance.
In the experiments, the diagnostic accuracy of the proposed method is compared

and analyzed with four classical methods, namely, Reptile, ProNet, RelationNet, and
MAML, in multiple cross-domain scenarios using different signal-to-noise ratios (SNRs)
from −6 dB to 6 dB. The experimental results are shown in Figure 11. As the noise intensity
increases (i.e., the SNR value decreases), the accuracy of each diagnostic method tends
to decrease. However, the method proposed in this paper consistently exhibits stronger
noise immunity and is able to maintain the highest diagnostic accuracy under all noise
levels with a slower and more stable decreasing trend. This indicates that the method
proposed in this paper can effectively suppress noise interference, demonstrates significant
robustness and generalization performance, and is more suitable for the complex and
changing environments in real industrial scenarios.

Figure 11. Accuracy rate after 1000 iterations of different methods with different signal-to-noise ratios
in four scenarios: (a–d) Scenarios 1–4.
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4.6. T-SNE Visualization

Figure 12 presents the t-SNE results for six methods applied to small-sample cross-
domain fault diagnosis of bearings. Each sub-figure shows a different method with data
points colored by class. (a) shows the results for SVM, with widely spread data points
and some class overlap, indicating difficulty in handling the task. (b) shows the results
for Reptile, with more distinct clusters but still some class mixing, suggesting better
performance than SVM but challenges with small samples. (c) and (d) show the results
for Prototypical Networks (ProtoNet) and Relation Networks (RelationNet), both showing
more compact clusters and reduced overlap, though some intersections remain. (e) shows
the results for MAML, with better separation and less overlap, indicating strong adaptability
to small-sample cross-domain tasks. (f) shows the results for the proposed method, which
achieves the best clustering with minimal overlap, demonstrating superior performance in
handling small-sample cross-domain fault diagnosis. Overall, while traditional methods
such as SVM struggle with class separation, newer meta-learning approaches, especially the
proposed method, significantly improve the handling of small-sample cross-domain tasks.

Figure 12. Visualization of feature maps for six methods in Scenario 2: (a) SVM; (b) Reptile; (c) ProNet;
(d) MAML; (e) GMAML; (f) proposed method.



Entropy 2025, 27, 1063 20 of 24

4.7. Comparison of Attention Mechanisms

To validate the superiority of the Efficient Multi-scale Attention (EMA) module in
few-shot cross-domain diagnostic tasks and address the reviewers’ suggestions, this section
presents comparison experiments with mainstream attention mechanisms. Under the
identical AdaMETA framework, network architecture, and training settings, we replace the
C-EMA module with two widely used and classical attention mechanisms for comparison:

Squeeze-and-Excitation Network (SENet) [43]: A classic channel attention mecha-
nism that performs squeezing via global average pooling and constructs inter-channel
dependencies using fully connected layers.

Convolutional Block Attention Module (CBAM) [40]: A hybrid attention mechanism
that sequentially applies channel attention followed by spatial attention.

The experiments are conducted in the most representative cross-load Scenario 2 (source
domains: D0, D1, D3 → target domain: D2), with the task setting of 10-way 5-shot. All
comparison methods employ the same dynamic learning rate strategy (DT-MAML) to
ensure fairness. The comparison results are shown in Table 7.

Table 7. Performance comparison of different attention mechanisms in cross-domain diagnostic tasks
(Scenario 2, 10-way 5-shot).

Attention
Mechanism Average Accuracy (%) ∆Params (M) ∆FLOPs (G)

SENet 96.42 0.016 0.011
CBAM 97.08 0.033 0.018
EMA 98.8 0.005 0.007

Note: ∆Params and ∆FLOPs denote the increase relative to the baseline model without attention mechanisms.
Input size is (64, 8, 8).

The analysis of Table 7 leads to a clear conclusion: the EMA module we adopted achieves
the best diagnostic performance while introducing the lowest computational overhead.

Performance Advantage: The accuracy and stability of EMA are significantly higher
than those of SENet and CBAM. We attribute its advantage primarily to the fact that EMA
does not involve dimensionality reduction and employs multi-scale grouping. SENet uses
fully connected layers for dimensionality reduction in channel attention, which may lead to
information loss. In contrast, the EMA module avoids any form of dimensionality reduction,
preserving the integrity of channel information to the greatest extent. Additionally, by
processing features through grouping and integrating multi-scale receptive fields, EMA is
more flexible in capturing multi-scale patterns in fault signals than the single-scale CBAM.

Efficiency Advantage: As shown in Table 7, the additional parameter count (∆Params)
and computational load (∆FLOPs) of the EMA module are much lower than those of CBAM
and significantly lower than SENet. This advantage stems from EMA’s compact group
structure and parallel path design, which achieves powerful attention effects through
efficient intra-group cross-channel interaction, without requiring complex submodules
(such as the spatial attention in CBAM) or fully connected layers (such as SENet).

In conclusion, this comparison experiment robustly demonstrates, from both perfor-
mance and efficiency perspectives, that the EMA module is a more competitive choice than
SENet and CBAM for the few-shot cross-domain bearing fault diagnosis task in this paper,
achieving the best balance between performance and complexity.

4.8. Cross-Sensor Location Generalization Capability Verification Experiment

To further validate the generalization ability of the AdaMETA framework under
different distribution shifts, this section presents a novel and more challenging experiment:
fault diagnosis across sensor locations. This experiment simulates a common industrial
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scenario, where a model trained at one location (e.g., the drive end) is required to effectively
diagnose faults at a different location (e.g., the fan end) with only a few samples.

4.8.1. Experimental Setup and Data Partitioning

This experiment is based on the CWRU dataset, utilizing the vibration data collected
simultaneously from both the drive end (DE) and fan end (FE). Although the same bearing
system is monitored, inherent differences in vibration signals arise due to variations in the
mechanical sensor mounting positions, including differences in signal propagation paths,
attenuation characteristics, and signal-to-noise ratios. These variations result in significant
data distribution shifts, providing an ideal and realistic “cross-domain” validation platform.

Source Domain (Ds): The data collected from the drive end (DE) under four different
load conditions (0, 1, 2, 3 hp) are selected. This forms a diverse source domain designed to
help the model learn fault features at the drive end that are independent of load conditions
and can generalize across the drive end.

Target Domain (Dt): The data collected from the fan end (FE) under the same four load
conditions are selected. The key setup here is that, in the target domain, we simulate an
extreme small-sample scenario, where only five samples (i.e., 5-shot) are provided for each
fault category (10 categories in total) to adapt the model. The remaining fan end samples
are used for testing.

Task Construction: We follow the 10-way 5-shot meta-learning task format as outlined
in Section 4.1.2. Each training task is randomly sampled from the diverse loads in the source
domain (DE), while testing is conducted on the small sample set from the target domain
(FE) for adaptation and evaluation. The data preprocessing pipeline (1024-sample-length
sliding window and STFT converted to time-frequency spectrograms) is consistent with
the main experiment to ensure fairness in comparisons.

This “DE -> FE” transfer setup is significantly more challenging than the previous
cross-load transfer. It not only involves load variation but also introduces more fundamental
signal characteristic changes due to the physical location difference of the sensors.

4.8.2. Cross-Location Diagnostic Results and Analysis

We compared the proposed AdaMETA method with a series of baseline methods in
this new scenario, and the results are shown in Table 8.

Table 8. Accuracy (%) of different methods on cross-location (DE→FE) few-shot diagnosis task
(10-way 5-shot).

Method Accuracy (Average ± Standard Deviation)

SVM 46.91 ± 6.45
Reptile 85.34 ± 7.12
ProNet 88.72 ± 7.83
MAML 91.15 ± 5.71
GMAML 94.88 ± 4.24
Proposed method 97.63 ± 3.29

The analysis of Table 8 leads to the following conclusions:

(a) Task Challenge: The average accuracy of all methods shows a significant decline
compared to the cross-load experiment in Section 4.2. This confirms that the dis-
tribution differences caused by cross-sensor locations are more severe than simple
load variations.

(b) Outstanding Generalization of AdaMETA: The proposed AdaMETA method still
achieves the best performance in this new scenario, with an accuracy of 97.63%, which
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is significantly higher than the other comparison methods. Compared to the strong
baseline GMAML, our method provides an improvement of approximately 2.75%.

(c) Stability Demonstration: AdaMETA also achieves the lowest standard deviation
(3.29%), indicating that our method exhibits stronger robustness and stability when
facing complex distribution shifts caused by location changes, making it less sensitive
to task random sampling.

5. Conclusions
In conclusion, this paper has presented AdaMETA, an adaptive meta-learning frame-

work that effectively addresses the challenge of few-shot bearing fault diagnosis under
varying operational conditions. By integrating an Efficient Multi-scale Attention (EMA)
module for enhanced feature extraction and a novel dynamic task-aware mechanism
(DT-MAML) for adaptive inner-loop optimization, the framework achieves robust cross-
domain generalization.

Comprehensive experimental evaluations on the CWRU dataset demonstrate the
superiority of AdaMETA, which attained a peak accuracy of 99.26% in cross-load scenarios
and exhibited strong performance in the newly added cross-sensor location task. Ablation
studies and noise robustness tests further confirmed that the synergistic design of the EMA
module and the dynamic learning rate strategy are pivotal to the model’s high accuracy
and stability.

Overall, AdaMETA provides a powerful and practical solution for fault diagnosis in
data-scarce industrial environments. Future work will focus on validating the framework
on more diverse industrial datasets and extending it to address more complex fault patterns,
such as compound faults and evolving fault severities.
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