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Abstract: In this paper, we propose a random frequency division multiplexing (RFDM)
method for multicarrier modulation in mobile time-varying channels. Inspired by com-
pressed sensing (CS) technology which use a sensing matrix (with far fewer rows than
columns) to sample and compress the original sparse signal simultaneously, while there are
many reconstruction algorithms that can recover the original high-dimensional signal from
a small number of measurements at the receiver. The approach choose the classic sensing
matrix of CS-Gaussian random matrix to compress the signal. However, the signal is not
sparse which makes the reconstruction algorithms ineffective. We take full account of the
great power of deep neural networks (DNN) to detect the signal as it is an underdetermined
equation. The proposed RFDM establishes a novel signal modulation and detection method
to target better transmission efficiency, and the simulation results show that the proposed
method can achieve good BER, offering a new research paradigm to improve the spectrum
efficiency of a multi-subcarrier, multi-antenna, multi-user system.
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1. Introduction

Next-generation wireless systems and standards, beyond 5G and 6G, are expected to
support a variety of services, such as vehicle-to-everything communications, autonomous
driving, remote surgery, aerial vehicles, and operations in extremely high-frequency bands.
However, the spectrum resource limitations, high propagation loss, complex network archi-
tectures, and energy consumption issues we face all require new modulation techniques
and waveforms, which are able to cope with various challenging requirements and show
robustness in high mobility scenarios.

Current systems are based on Orthogonal Frequency Division Multiplexing (OFDM)
which can achieve near-optimal performance in time-invariant frequency selective channels.
Nevertheless, due to its high PAPR (Peak-to-Average Power Ratio) and large Doppler
frequency shifts, its performance drastically decreases by inter-carrier interference (ICI).
To address this issue, Orthogonal Time Frequency Space (OTES) is designed to multiplex
information symbols in the delay-Doppler (DD) domain, effectively mitigating the effects of
channel delays and Doppler shifts [1]. The affine frequency division multiplexing (AFDM)
employs the inverse discrete affine Fourier transform to modulate symbols into a “warped”
time-frequency domain to handle channel delays and Doppler shifts [2]. The interleave
frequency division multiplexing (IFDM) proposed the interleave and Fourier transform
to enhance the channels’ statistical stability, and the low-complexity detectors are able to
ensure bit error rate (BER) performance [3].

The core of OFDM, OTFS, AFDM, and IFDM lies in constructing sparse equivalent
channel matrices that facilitate low-complexity signal detection algorithms, balancing
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optimal performance with implementation complexity. While the maximum likelihood
(ML) detector is optimal, its exhaustive search process makes it inefficient for multiple-
input-multiple-output (MIMO) systems [4]. Although the zero-forcing (ZF) and minimum
mean square error (MMSE) detectors which are widely used in MIMO systems provide
suboptimal performance compared to ML; these detectors require the computation of the
inverse of the Gram matrix of the channel. When the channel matrix has a large dimen-
sion, it will make these detectors impractical due to their high computational complexity,
which poses challenges for the system’s hardware efficiency and overall cost. Many other
low-complexity detectors have been investigated. Paper [5] proposed a highly efficient
detection technique achieved by dimensionality reduction in the channel matrix and the
BER performance is comparable to the MMSE detector. Paper [6] presented a subopti-
mal ML detector which is suitable for the flexible implementation of OFDM-IM (index
modulation) systems.

However, the new features of future communications [7], such as complex scenar-
ios with unknown channel models, high speed, and accurate processing requirements,
make traditional methods no longer suitable; embedding deep learning (DL) theories into
communication systems has attracted a lot of attentions, and researchers believe that DL
can achieve further performance improvements in complex scenarios for the following
reasons: firstly, the deep network has been proven to be a universal function approximator
with superior algorithmic learning ability. Secondly, handling large data is an essential
feature of DL because of the instinctive nature of its distributed and parallel computing
architectures. Finally, DL-based communication systems can break the artificial block
structure to achieve global performance improvement because they are trained to optimize
end-to-end performance.

There has been a lot of research on combining DL into MIMO communication, such
as channel estimation, signal transmission, detection techniques, and so on. For exam-
ple, Sun proposed a novel learn iterative search algorithm (LISA) for signal detection
in a MIMO system with the DNN. Through training, optimal parameters of the neural
networks are learned and thus near ML detection performance is obtained in both fixed
and varying channel models under quadrature phase shift keying (QPSK) modulation
than classical detectors [8]. A DL-aided Logarithmic Likelihood Ratio (LLR) correction
method is proposed for improving the performance of MIMO receivers [9], where it is
typical to adopt reduced-complexity algorithms for avoiding the excessive complexity
of optimal full-search algorithms. A DNN is trained for detecting and correcting both
over-confident and under-confident LLRs with a relatively low complexity compared to
the popular reduced-complexity receiver detector techniques.

This paper investigates a RFDM algorithm for faster transmission efficiency. It com-
presses all symbols by a rectangular matrix. This matrix is the measurement matrix of CS,
which can compress and measure signals simultaneously. Of course, the measurement
matrix needs to satisfy certain conditions, and there are many matrices that meet these
conditions; the Gaussian random matrix is one of the most commonly used measurement
matrices which can ensure the reconstruction of the original high-dimensional signal with
high probability. Meanwhile, since the signal is not a sparse signal, which is the premise of
CS, the reconstruction algorithm cannot detect the signal from a small number of measured
values. A DNN is leveraged to learn the implicit mapping function between the received
compressed signals and original transmitted signal. The major contributions of this paper
can be summarized as follows: (1) The investigated RFDM scheme compresses the original
high-dimensional signal through a Gaussian random matrix, which can transmit more data,
or the same amount of data, using fewer subcarriers or antennas. (2) A DNN detector is
proposed to recover the original high-dimensional signal directly from the low-dimensional
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data by using the pre-trained DNN network. This novel signal multiplexing and detection
method for MIMO communication systems is useful when the number of antennas or
subcarriers is limited. That is to say, the main advantage is that the amount of data to be
transmitted is reduced, or that the same subcarrier or transceiver antenna can transmit more
data. The compression rate of our experimental setting is the fixed 0.75 which is related to
the properties of measurement matrix and the accuracy of the reconstruction algorithm.

The remainder of this paper is organized as follows. The basic concept of OFDM
and the origin of our idea are introduced in Section 2; this will help us to understand the
feasibility of our solution. Section 3 describes the DNN-based RFDM algorithm which
consists of two parts: the compression of the transmitted signal and the reconstruction
of the signal based on DNN model. The schemes extending to multiple antennas are
described in Section 4. The simulation results are analyzed in Section 5. Finally, the paper
is concluded in Section 6.

2. Preliminaries
2.1. OFDM Modulation

A symbol vector s € CN*1 in the frequency domain is modulated by the inverse fast
fourier transform (IFFT) to generate a time-domain signal x,

X = Fﬁs, 1

where Fy denotes the N-point normalized FFT matrix and Fi is its conjugate transpose
matrix. Then, a cyclic prefix (CP) is added to x and transmitted over mobile time-varying
channels. After OFDM demodulation, the received signal is

y =Fx(Hx +0), )

where H is a circulant channel matrix and v ~ CN(0,071) is additive white Gaussian
noise (AWGN).

2.2. Inspirations and Beginnings

CS is a signal processing technique that reconstructs a signal from a small number of
measurements by exploiting its sparsity [10]. It relies on three principles: (1) the signal
s € CN*1 s sparse or can be represented with fewer non-zero coefficients in some specified
domains, with at most K non-zero components. (2) This sparse or approximately sparse
signal can be undersampled by a matrix A with specific properties. Since it projects the
signal in a low-dimensional subspace spanned by the rows of the sensing matrix A, A is
either randomly generated or designed based on the restricted isometry property (RIP) or
its incoherence with a representation basis [11]. Much effort has been made in the signal
processing community to design A such that the structure of the data is preserved in the
low-dimensional subspace. There are many matrices which satisfy the RIP, such as Gaussian
random matrices, Bernoulli random matrices, and so on. (3) The reconstruction algorithm
can uniquely solve the underdetermined equation by minimizing the following £p-norm:

min ||s||g s.t. z = As,

where z is the received signal [12]. The nature of CS is to recover the original high-
dimensional signal from a small number of measurements, inspired by CS principle; it
is natural to apply this idea to the communication system [13]. Then, we propose the
RFDM scheme. At the transmitter, the signal is compressed to lower dimensions and can
be reconstructed at the receiver.
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3. Random Frequency Division Multiplexing
3.1. RFDM

The proposed RFDM-based single-input-single-output (SISO) communication archi-
tecture is constructed as shown in Figure 1. A message bit sequence is digitally modulated
as s € CN*1 with the power constraint %HSH2 = 1; the elements s;,i = 1,2,...,N are
individually taken from constellation set Q, e.g., quadrature phase shift keying (QPSK) and
quadrature amplitude modulation (QAM). Following serial-to-parallel (S/P) conversion
and RFDM modulation, the obtained signal x is

x = AFES = Us, 3)

where Fy denotes the N-point normalized FFT matrix and A € CM*N(M < N) de-
notes the sensing matrix of CS, in which we use Gaussian random matrices here. And
U= AFE € CM*N denotes the random frequency (RF) transform. Then, a CP of a length
at least equal to the maximum channel delay spread is added to x. After the transmit filter,
the signal x is sent out.

RFDM Modulation

U= AF\H x " ransmit Y
Modulation =] s/p [ IFF p/s ™| Add cp Delete CP || s/P
te Filter *

={ P/S ™| Demodulation

Figure 1. A RFDM-based multicarrier communication system.

The received signal r[n] at the n-th slot is given by

P—1
r[n] =) x[n—plg[n, p] +o[n], 4)
p=0
where .
gln, p) = Y- eV EIB (pT, — 1), (5)

i=1
p=0,1,...,P—1, Pis thechannel tap,i = 1,2,..., L, L is the number of multipaths, T; is
the system sampling interval, {;, f;, T;} represent the complex channel gain, the Doppler
shift, and the delay at the i-th path. P, is the raised-cosine roll-off filter which can reduce
signal bandwidth and intersymbol interference.

3.2. DNN Detection Method

After the receiver filter and CP removal, (4) can be written as
y = Hx + v = HAFs + 0. 6)

Since the matrix A can compress the signal which will require fewer subcarriers or the
number of antenna for transmitting the same data, and the original s is not sparse, these
lead to the challenge of RFDM: developing a low-complexity detector with acceptable
accuracy. This detector consists of two parts: (1) Estimate £ according to the channel
information as £ = H™ !y = x + H'v. (2) Reconstruct the original signal § based on the
DNN, as shown in Figure 1.

DNN, as one of the well-known algorithms of DL, can automatically learn and extract
features from raw data, effectively model complex nonlinear relationships, and powerful
computational capabilities to efficiently train on large datasets, achieving better generaliza-
tion performance and enhancing the understanding and representation of data.
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Generally, a DNN consists of C layers: an input layer, C — 2 hidden layers, and an
output layer. Given an input vector d, the output of every layer can be written as follows:

dc - f(wc ' dc—l + bc)/ (7)

where d._; represents the input of the c-th layer, d. denotes its output, and W is the weight
matrix associated with the (¢ — 1)-th and c-th layers, which can be continuously updated
during the training process using the backpropagation algorithm to minimize the loss
function, allowing the network to better adapt to the training data. The weight matrices of
different layers can learn various levels of features, assisting the network in more complex
pattern recognition. b, is the bias vector and f(-) is the activation function.

Consequently, the output of DNN can be mathematically expressed as:

§=F(%0) = fOf (- fD(2), ®)

where O represents the learned parametric set and £ is the input of the network. The
parameter set © is optimized by reducing the loss function defined as the distance between
the prediction and the regression vector. We define T as the size of the dataset. The pair
{x(t), stt) }thl is utilized to train © to minimize the loss function. The mean squared error
(MSE) is adopted as the loss function to express the distance between the transmitted vector
x and the output of DNN s as:

(x(t) — AFESU))Z. 9)

1=

L(x,s) =

t=1

Although increasing the number of hidden layers, neurons, and samples increases the
training time, this DNN model can be trained offline in advance. Once the parameters © of
DNN model are obtained, the testing process is very fast. Then, the DNN-based network
can predict § from £.

It is important to note that the dataset collection process and DNN training are per-
formed without affecting the classical communication system operation. Hence, it is feasible
to collect a large dataset for capturing the dynamics in the environment because it does not
interfere with the classical system operation.

4. Rfdm-Mimo

Let us consider the RFDM scheme in a multi-antenna scenario; Figure 2 shows the
RFDM-MIMO scheme with the number of transmitting antennas N; and receiving antennas
N;. Modulated signal s through S/P and RFDM modulation is divided into N; segments,
and CP is added to each segment. After the transmit filter, signal x; is obtained and
transmitted through the channel at the j-th antenna, j = 1,..., N;. After discarding the CP,
the received signal ¥ can be rewritten as:

y=Hx+7, (10)

where yj = [le,...,yKIy]T € CNNrx1 5 — [xlT,...,xZT\]t]T € CNNix1 ' — [H{,...,HIT\,r]T €
CNNxNN: 5 — [vlT,...,vZE T € CNNrx1,
At the receiver, the complete REDM-MIMO detector is like this: (1) Estimate X accord-

ing to the channel information:
x=H y=x+H @ (11)

(2) Reconstruct the original signal § based on the pre-trained DNN, as shown in Figure 2.
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Figure 2. A RFDM-based multicarrier MIMO communication system.
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5. Numerical Results

In this section, RFDM is compared to MMSE detectors in mobile time-varying channels.
The multicarrier modulations use the same bandwidth, i.e., the system bandwidth is
1.4 MHz, the subcarrier spacing is Af = 15,000 Hz, and the vehicle speed is 120 km/h with
a maximum Doppler frequency shift 300 Hz. The number of subcarriers in the MMSE
detector is Ny = 128 and the compression ratio p = 0.75, which means that the number of
subcarriers for our RFDM is Ns = 96. The maximum number of multipath delay channel
taps L = 9, and BPSK and QPSK are employed. Furthermore, the antenna number is
considered with N; = N, = 4. Many simulation setups are from the 3GPP LTE-OFDM
system [14]. We also assume that the channel estimation is perfect at the receiver and so we
run 50,000 Monte Carlo simulations to estimate the average BER.

The sample of the training set is 50,000 to train the DNN model offline. The hidden
layer produces an output after weighting (default function ‘tansig’) the input and summing
with the deviation (default function ‘learngdm’); the hidden layer produces an input to
the output layer after activating the function (default function ‘Sigmoid’); and finally, the
hidden layer produces an output after weighting the input and summing with the deviation
and passing through the corresponding function (default function ‘purelin’). We set three
layers—the input, hidden and output layers—in our simulations for simplicity. Once the
DNN model is trained, then the receiving signal £ is passed as the input to the DNN model
to detect the original signal 8.

Figures 3 and 4 present the BER performance of the proposed RFDM and the MMSE
scheme when using BPSK and QPSK modulation, respectively. It shows that our solution
currently has a performance gap with MMSE, but when SNR exceeds 20, our bit error rate
can achieve 1073 which is still competitive, especially since MMSE uses 128 subcarriers
while we only use 96 subcarriers.

BER

MMSE
RFDM

0 5 10 15 20 25 30 35 40
SNR(dB)

Figure 3. BER comparisons of RFDM with BPSK in 4 x 4 MIMO.
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Figure 4. BER comparisons of RFDM with QPSK in 4 x 4 MIMO.

6. Conclusions

In this paper, we propose a novel RFDM scheme. Specifically, the signal is compressed
to lower dimensions at the transmitter and can be reconstructed at the receiver. This means
that we need fewer subcarriers or antennas to transmit the same amount of data. The DNN
model is trained offline to learn the mapping function between an original signal. The BER
performance of this proposed scheme is not better than the MMSE detection algorithm;
however, we think it is a good attempt when the same quantity is transmitted, although
only three quarters of the number of subcarriers of the MMSE scheme is used. It is still
very important to improve the transmission speed. We will attempt to ascertain a better
performance by avoiding the inversion of the channel matrix H, since its properties are
directly considered and incorporated into DNN samples to train a good neural network
model. There are too many training methods for neural network models, and ours used
in this paper is too simple. We must optimize or find a better model to detect the signal.
In addition, considering the properties of matrix A, the transmission scheme must be
optimized comprehensively.
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