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Abstract: Multimedia recommendation systems aim to accurately predict user preferences
from multimodal data. However, existing methods may learn a recommendation model
from spurious features, i.e., appearing to be related to an outcome but actually having
no causal relationship with the outcome, leading to poor generalization ability. While
previous approaches have adopted invariant learning to address this issue, they simply
concatenate multimodal data without proper alignment, resulting in information loss or
redundancy. To overcome these challenges, we propose a framework called M3-InvRL,
designed to enhance recommendation system performance through common and modality-
specific representation learning, invariant learning, and model merging. Specifically, our
approach begins by learning modality-specific representations along with a common
representation for each modality. To achieve this, we introduce a novel contrastive loss that
aligns representations and imposes mutual information constraints to extract modality-
specific features, thereby preventing generalization issues within the same representation
space. Next, we generate invariant masks based on the identification of heterogeneous
environments to learn invariant representations. Finally, we integrate both invariant-
specific and shared invariant representations for each modality to train models and fuse
them in the output space, reducing uncertainty and enhancing generalization performance.
Experiments on real-world datasets demonstrate the effectiveness of our approach.

Keywords: multimedia recommendation; model fusion; multimodal representation

1. Introduction
Recommendation systems is a useful tool to address information overload [1–3].

Multimedia recommendation systems (MRS) utilize user-item interactions and multimodal
features such as text, images, audio, and videos to provide content recommendations
based on user preferences [4–7]. They play a crucial role in platforms like e-commerce [8],
social media [9], and video sharing [10], enhancing recommendation accuracy by capturing
user preferences at the fine-grained level [4,11,12]. Early methods, such as VBPR [13] and
DeepStyle [14], integrated multimodal information into traditional collaborative filtering
paradigms but overlooked high-order user-item interaction connectivity [15]. Recent
approaches, including MMGCN [16], GRCN [17], LATTICE [5], and DualGNN [18], employ
graph convolution network (GCN) to better represent user-item interactions and improve
recommendation performance [19,20].

Despite progress, many multimedia recommendation methods face out-of-distribution
(OOD) generalization issues, where models trained on one data distribution perform
poorly when applied to data from a different distribution [21–25]. For instance, as shown
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in Figure 1, the user likes dinosaur movies, especially Jurassic Park, but if the movie is rec-
ommended based on the director, Spielberg, the user’s true preference for dinosaur themes
is ignored. In this case, the association of Spielberg’s label with the user’s preferences is
misleading, resulting in inaccurate recommendations. In other words, the Spielberg is the
spurious texture feature, and the dinosaur is the causal texture feature.

Figure 1. Schematic diagram of spurious correlation in MRS.

To address these issues, invariant representation learning (IRL) has been proposed,
aiming to learn features consistent across different environments [26], such as invariant risk
minimization (IRM) [27–29]. However, in multimedia recommendation systems, methods
like InvRL [30] and PaInvRL [31] may fail to fully align and interact between modalities,
limiting recommendation performance.

Aligning modality-specific information is crucial for effective recommendations. How-
ever, simply aligning all modalities in a shared space is insufficient, as different modalities,
such as audio, text, and images, capture various aspects of user preferences [32]. For ex-
ample, in recommending an action movie, intense sound effects may indicate a preference
for a tense atmosphere, text descriptions might reveal interest in the storyline, and posters
or images could highlight an affinity for visual elements. Thus, integrating modality-
specific information can prevent generalization issues associated with a single shared
space. Another challenge associated with the alignment of modality-specific information is
determining the contribution of each modality to the final prediction. To address this, a
weighted fusion method is proposed, allowing the flexible adjustment of modality weights
to ensure effective integration without over-reliance on any single modality.

In this paper, we propose the invariant representation learning in multimedia rec-
ommendation with modality alignment and model fusion framework (M3-InvRL), which
integrates multimodal representation, invariant learning, and model merging. Our ap-
proach introduces a novel contrastive representation learning method that decomposes
each modality into common and specific components, extracting invariant features through
environment identification and mask generation. These features are then merged and
predicted for each modality, followed by weighted model merging in the output space. The
main contributions of this paper are summarized as follows:

• We propose to learn both shared and modality-specific representations to mitigate
the generalization issues of relying on a single shared space. By aligning individ-
ual modality representations with the complete set of modalities, the framework
effectively integrates and complements information across modalities.

• We introduce a new multimedia recommendation framework, M3-InvRL, which maps
modality features into shared and specific spaces to learn invariant representations for
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each component. We utilize model merging to fully leverage all available invariant
information, adaptively adjusting the weights of different modality predictors to
enhance the model’s generalization ability.

• We conduct extensive experiments on two real-world datasets to demonstrate the
effectiveness of our proposed framework.

2. Related Work
2.1. Collaborative Filtering for Recommendation

Collaborative filtering (CF) is a foundational approach in recommendation systems,
modeling the similarity between items and users to recommend similar items to similar
users [33]. The core model in CF is matrix factorization (MF) [34], where each user and item
is assigned a latent embedding, and similarity is assessed via the inner product of these
embeddings. NCF [35] introduces neural networks to model similarities and proves that MF
is a special case of NCF. NGCF [36] encodes high-hop neighbor information among users
and items into embeddings using graph convolutional network (GCN). LightGCN [37]
simplifies NGCF by removing feature transformations and nonlinear activations in the
original NGCF architecture that are unsuitable for CF tasks. UltraGCN [38] further enhances
efficiency by bypassing infinite layers of message passing in NGCF and LightGCN. We
adopt UltraGCN as our backbone due to its simplicity and efficiency.

2.2. Multimedia Recommendation

Multimedia recommendation systems utilize multimodal information, such as vi-
sual, acoustic, and textual data, to enhance performance by better capturing user
preferences [14,39,40]. Early works like VBPR integrated visual and item ID embeddings
into a unified item embedding for further training [13]. DVBPR [41] extends the idea
of VBPR by proposing an end-to-end architecture for jointly learning image representa-
tions and user-item embeddings. Later approaches introduced attention mechanisms to
adaptively select multimodal features [42,43]. For instance, VECF [44] learns attention to
sub-areas of images to make better image representations. UVCAN [45] uses attention mech-
anisms to learn multimodal information from both user and item perspectives. MAML [46]
models each user’s attention to different aspects of an item by extracting multimodal
features using an attention neural network. Recently, graph neural networks have been em-
ployed to model higher-order user-item interactions. MMGCN [16] learns modal-specific
representations to better capture user preferences via the message-passing idea of GNN.
LATTICE [5] constructs item–item graphs to improve item embeddings. However, these
methods may fail when facing a distribution shift between training and test data, resulting
in sub-optimal test performance.

2.3. Invariant Representation Learning

Invariant representation learning seeks to develop representations vital for down-
stream tasks, particularly by addressing distribution shifts between training and test data
through consistent representations across diverse environments, thus improving gener-
alization [47]. Invariant risk minimization (IRM) [27] is a seminal approach, with exten-
sions in information theory [48,49], regularization [29,50], and sparsity [51]. Methods like
EIIL [52] and HRM [53] automatically partition environments when labels are unavailable.
Another approach involves constructing unbiased losses and optimizing models accord-
ingly [54–57], including propensity score-based [58], doubly robust [59–63], and data fusion
debiasing methods [64,65]. In this work, we capture invariant features using soft masks
from heterogeneous environments and different modalities.
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3. Preliminaries
In our multimedia recommendation model, the data mainly consists of two parts: users

u and items i, which are represented by sets U and I , respectively. An interaction between
a user and an item is represented as (u, i) ∈ U × I , where rui represents the result of the
interaction. If the interaction is positive, rui = 1; otherwise, it is 0. The modal information
for item i is represented as

{
xi

M+1 =
(
xi

1, · · · , xi
M
)}N

i=1, where each xi
m ∈ Rdm corresponds

to a specific modality m. The parameter dm denotes the dimension of each modality. The
multi-modal recommendation aims to learn a model Γ

(
u, i, xi

M+1 | Θ
)
, where Θ denotes

the parameters of the recommendation model Γ, to predict users’ true preferences.

arg min
Θ

L
(

Γ
(

u, i, xi
M+1 | Θ

)
| Rtr

)
, (1)

where L(·) denotes the recommendation loss, and Rtr denotes the training set, with both
positive samples R+ = {(u, i) : ru,i = 1} and negative samples R− = {(u, i) : ru,i = 0}.
For easy reading, we provide the descriptions of all used variable in Table 1.

Table 1. List of all variables used in this paper and their corresponding descriptions.

Variable Description

u, U User u in the recommendation system, and U is the set of all users.
i, I Item i in the recommendation system, and I is the set of all items.

rui
Binary interaction: rui = 1 if user u positively interacts with item i, 0
otherwise.

R Set of all user-item interactions, where R+ denotes positive samples
(rui = 1), and R− denotes negative samples (rui = 0).

xi
m Feature of item i for modality m, m ∈ {1, . . . , M}.

dm Dimension of the feature vector for modality m.
Γ(·) Recommendation model predicting user preferences.
Θ Parameters of the recommendation model Γ.

fr(·) Base encoder for the r-th modality, r = 1, . . . , M + 1.
hr Representation generated by fr(·) for the r-th modality.

g(·) Shared head mapping representations to a common space Z .
zm, zM+1 Shared representations for modality m and all modalities, respectively.

km(·) Specific head generating modality-specific representations.
vm Modality-specific representation for modality m.

sm,n(i, j) Similarity score between modality m (sample i) and modality n (sample j).
Lcom(B), LMI Common loss across modalities and mutual information loss.

Φi
r, Ψi

r Invariant and variant representations for modality r of item i.
m Invariant mask in [0, 1], used to generate invariant representations.

Qm Combined invariant representations for modality m, Qm = [Φm; ΦM+1].
Γ∗

m(·) Final recommendation model for modality m, trained on Qm.
λm Entropy-based uncertainty for the m-th modality.
ωm Importance weight for the m-th modality.
Yavg Final prediction by aggregating all predictors.

4. Methods
In this section, we introduce the overall framework of M3-InvRL, as illustrated in

Figure 2, which includes multimedia representation learning, invariant learning, and
model merging.
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Figure 2. Overall framework of M3-InvRL includes multimedia representation, invariant representa-
tion, and model merging.

4.1. Multimodal Representation for Recommendation

In this section, we first describe the modal-specific representation and one common
representation for each modality. We introduce a novel contrastive loss that aligns the
representation and imposes mutual information constraints to extract modality-specific
features, preventing generalization issues within the same representation space. Next, we
discuss the details of our method.

We use base encoders fr to generate d-dimensional representations hr = fr(xr; ζr)

for r = 1, . . . , M + 1, where hM+1 represents the intermediate representation of x1:M.
The shared head g maps these to a common space Z , generating shared representations
zm = g(hm; θ) for each modality and complete common representation zM+1 = g(hM+1; θ)

for all modalities. Specific heads km generate modality-specific representations
vm = km(hm; ηm) for m = 1, . . . , M.

We define sim(u, v) as the similarity measure between vectors u and v, such as cosine
similarity sim(u, v) = u·v

∥u∥∥v∥ . The similarity is scaled by a learnable temperature hyperpa-
rameter τ to yield the similarity score, where a larger τ reduces the distinction between
similar and dissimilar samples, and a smaller τ enhances this difference. In our paper, τ

helps balance the influence of positive and negative sample pairs.

sm,n(i, j) = exp(sim(zi
m, zj

n)/τ), (2)

where zi
m and zj

n are the representations of the mth and nth modalities corresponding to
the ith and jth samples from a mini-batch B, respectively.

We define (zi
m, zi

M+1) for i = 1, · · · , B as positive pairs, the remaining pairs are the
negative pairs,

Ωm(i) = ∑
i ̸=j

(sm,M+1(i, j) + sm,m(i, j) + sM+1,M+1(i, j)) (3)

is the sum of similarities among negative pairs that correspond to the positive pair(
zi

m, zi
M+1

)
, and the contrastive loss for the same pair of samples is

lm(i) = − log
sm,M+1(i, i)

Ωm(i)
. (4)

We combine the loss terms for each modality m = 1, · · · , M and obtain the com-
mon loss

Lcom(B) =
M

∑
m=1

B

∑
i=1

lm(i). (5)



Entropy 2025, 27, 56 6 of 15

Aligning all modalities in a single shared space can lead to generalization issues and
loss of unique modality-specific information. To preserve the distinctiveness of modality-
specific representation vm(x) relative to modality-shared features zm(x), the goal is to
minimize the mutual information

LMI =
M

∑
m=1

CLUB(vm(x), zm(x)), (6)

where CLUB(V, W) is the estimator for the contrastive log-ratio upper bound of mutual
information between two random variables V and W [66].

4.2. Invariant Learning for Recommendation

Invariant learning [28,67] encourages models to concentrate on stable representations
across different environments. Within our multimodal framework, it is applied to modality-
specific representation vm and complete common representation zM+1 to learn invariant
representations {Φr}M+1

r=1 .
Environment Identification. We take historical user-item interactions as input and

partition them into a set of environments E , which supports the generation of invariant
masks for the subsequent stages of learning.

During the environment identification stage, we aim to learn environment-specific
representations er ∈ E by training a recommendation model Γ(er)(u, i, Ψi

r|Θer ) for each
environment er. Here, Ψi

r denotes variant representations with item i and Θer represents
the model’s parameters in the environment er:

arg min
Θer

L
(

Γ(er)

(
u, i, Ψi

r | Θer

)
| Rtr

er

)
, (7)

where the variant representations Ψi
r are obtained by initializing the invariant mask. We

employ UltraGCN [38] as the recommendation model and drive the representations through
a graph-based loss function L to encode the user-item graph.

Once the environment-specific representations are learned, the user-item interactions
are assigned to the corresponding environments by maximizing the recommendation model
output for each interaction:

Rer = arg max
er∈E

Γ(er)(u, i, Ψi
r|Θer ). (8)

The environment-specific interaction sets {Rer |er ∈ E} are then used to guide the
invariant representation learning.

Invariant Representation Learning. We minimize Lmask
r by optimizing the mask m.

To constrain that each mi in the mask is between [0, 1], we use the softmax function.
Followed with the prediction model Γmask

r converging, the invariant representations

Φi
r = mi

r ⊙ vi
r, r = 1, · · · , M,

Φi
r = mi

r ⊙ zi
r, r = M + 1, (9)

and variant representations

Ψi
r = (1 − mi

r)⊙ vi
r, r = 1, · · · , M,

Ψi
r = (1 − mi

r)⊙ zi
r, r = M + 1. (10)
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4.3. Model Merging for Recommendation

In multimodal fusion, a key challenge is that the contribution of each modality to the
final prediction is uncertain. To address this, we apply a weighted fusion strategy that
adjusts the importance of each modality based on its uncertainty.

Our approach concatenates the invariant representation ΦM+1 in the common space
and the model-specific invariant representation Φm to obtain the combined modality feature
Qm, defined as

Qm = [Φm; ΦM+1]. (11)

Thus, we learn the final recommendation model Γ∗
m(u, i, Qm|Θ∗

m) based on the com-
bined representation Qm in each modality. The learning objective in Equation (1) can be
rewritten as

arg min
Θm

L(Γ∗
m(u, i, Qm|Θ∗

m | Rtr). (12)

When one modality exhibits higher uncertainty in its predictions, it becomes more
prone to making incorrect predictions. Consequently, we leverage the prediction uncer-
tainty as a proxy to gauge the importance of each modality.

λm = −pT
m log pm, (13)

where pm = softmax(Γ∗
m(u, i, Qm|Θ∗

m)).
A higher entropy λm indicates lower confidence in the prediction, leading to a smaller

importance weight during the model merging process. Based on this, we calculate the
importance weight for a mth modality predictor as

ωm =
exp(maxm=1,··· ,M λm − λm)

∑M
i=1 exp(maxm=1,...,M λm − λi)

. (14)

The final prediction is obtained by aggregating the outputs of all predictors. We
use a weighted sum to combine the predictions, ensuring that the weights sum to one.
Specifically, the final result Yavg is given by

Yavg =
M

∑
m=1

ωmΓ∗
m(u, i, Qm|Θ∗

m). (15)

5. Results
5.1. Datasets

Following previous work [17,30,31,68], we conducted experiments using two publicly
available multimedia datasets: Tiktok (https://github.com/nickwzk/InvRL, accessed
on 10 October 2022) and Movielens (https://github.com/nickwzk/InvRL, accessed on
10 October 2022). The Tiktok dataset contains short micro-videos, while the Movielens
dataset consists of user movie viewing histories. Both datasets include multimedia rep-
resentations extracted from visual, acoustic, and textual content. The representations of
the Tiktok dataset are extracted and provided officially. The visual, acoustic, and tex-
tual representations of the Movielens dataset were extracted by [16] with pre-trained
ResNet50 for visual representations, VGGish [69] for acoustic representations, and [70]
for textual representations. Note that there are many widely used datasets such as Kwai
(https://github.com/nickwzk/InvRL, accessed on 10 October 2022) included in previous
work. However, since such datasets only contain one modality, we excluded this dataset

https://github.com/nickwzk/InvRL
https://github.com/nickwzk/InvRL
https://github.com/nickwzk/InvRL
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from our experiment. The summary statistics of the Tiktok and Movielens datasets are
shown in Table 2.

Table 2. The statistics of datasets. dV , dA, and dT denote the dimensions of visual, acoustic, and
textual modalities. # means “the numbers of”.

Dataset #Interactions #Items #Users Sparsity dV dA dT

Movielens 1,239,508 5986 55,485 99.63% 2048 128 100
Tiktok 726,065 76,085 36,656 99.99% 128 128 128

5.2. Experiment Details

We adopted Adam [71] as the optimizer and implemented our models using PyTorch
1.11.0, running on an NVIDIA V100 GPU. The batch size was set to 512, and the number of
environments was selected from {5, 10, 15, 20, 25}. The learning rate was tuned within the
set {0.01, 0.001, 0.0001}. For the regularization parameters, λcom was chosen from {0.1, 1, 2,
5, 10} and λMI from {0.01, 0.1, 1, 10}. Additionally, γ and ρ were selected from {0.01, 0.1, 0.5,
1, 5}, while κ and ν were chosen from {0.1, 1, 5}. The temperature hyperparameter τ was
tuned within the range {0.1, 0.5, 1, 5, 10}. The iteration parameter T was initially set to 5,
and training was conducted for 200 epochs.

5.3. Baselines

We evaluated our model against several state-of-the-art multimedia recommendation
methods. The M-CF models, including VBPR [13], CB2CF [72], and DUIF [73], integrate
multimedia content into traditional collaborative filtering approaches. G-NCF models,
such as DisenGCN [74], MacridVAE [75], and NGCF [36], employ neural networks to cap-
ture complex user-item interactions. M-NCF models, including HUIGN [68], GRCN [17],
and MMGCN [16], specialize in neural CF for multimedia content. InvRL models, such as
InvRL [30], introduce invariant learning. UltraGCN [38] served as the backbone, simplify-
ing graph CF through regularization and improving efficiency.

5.4. Evaluation Metrics

We used three widely-used evaluation metrics: Precision@K (P@K), Recall@K (R@K),
and NDCG@K (N@K), to measure the ranking performance of our proposed method. Pre-
cision@K calculates the average of the proportion of the corrected recommended items
among the top K predicted items for each user. Recall@K calculates the average of the
proportion of the corrected recommended items among the sum of the corrected recom-
mended items and the wrongly missed items in the top K predicted items for each user.
NDCG@K, short for normalized discounted cumulative gain at K, measures the order of
the corrected recommended items in the top K predicted items. Higher values of the three
metrics indicate better ranking performance of our proposed method. In our experiments,
K was set to 10.

5.5. Overall Performance

We report the performance of various methods on both Tiktok and Movielens datasets
in Table 3, where the best-performing method is bolded for each metric. We have the
following observations.

Firstly, multi-modality-based methods outperform single-modality-based methods,
emphasizing the critical role of integrating multi-modality information to enhance recom-
mendation performance. M3-InvRL achieves the most competitive performance among all
the methods.
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Secondly, compared to the Naive-UltraGCN, the incorporation of InvRL on UltraGCN
(InvRL) enhances the recommendation performance through the introduction of invariant
representation learning. On the other hand, our proposed M3-InvRL further enhances the
recommendation performance on InvRL. On the Movielens dataset, M3-InvRL outperforms
InvRL by 4.65% in Precision@10, 6.11% in Recall@10, and 0.89% in NDCG@10. On the
Tiktok dataset, M3-InvRL surpasses InvRL with a 3.13% increase in Precision@10, 3.49%
increase in Recall@10, and 3.79% increase in NDCG@10. We can conclude that unlike
InvRL’s direct concatenation of representations, M3-InvRL achieves higher performance by
aligning modalities through multimodal contrastive representation learning and applying
model merging in each modality prediction model.

Table 3. Performance comparison across datasets using Precision@10, Recall@10, and NDCG@10.
The best result is bold. The second best result is underlined.

Category Methods
Movielens Tiktok

P@10 R@10 N@10 P@10 R@10 N@10

M-CF
VBPR 0.0512 0.1990 0.2261 0.0118 0.0628 0.0574
DUIF 0.0538 0.2167 0.2341 0.0087 0.0483 0.0434

CB2CF 0.0548 0.2265 0.2505 0.0109 0.0642 0.0613

G-NCF
NGCF 0.0547 0.2196 0.2342 0.0135 0.0780 0.0661

DisenGCN 0.0555 0.2222 0.2401 0.0145 0.0760 0.0639
MacridVAE 0.0576 0.2286 0.2437 0.0152 0.0813 0.0686

M-NCF
MMGCN 0.0581 0.2345 0.2517 0.0144 0.0808 0.0674
HUIGN 0.0619 0.2522 0.2677 0.0164 0.0884 0.0769
GRCN 0.0639 0.2569 0.2754 0.0195 0.1048 0.0938

UltraGCN
Naive-UltraGCN 0.0624 0.2547 0.2691 0.0183 0.0981 0.0878

UltraGCN + InvRL 0.0645 0.2615 0.2815 0.0192 0.1062 0.0922
M3-InvRL(Ours) 0.0675 0.2775 0.2840 0.0198 0.1099 0.0957

%Improvement over Naive-UltraGCN 8.17% 8.95% 5.55% 8.20% 12.03% 9.00%
%Improvement over UltraGCN + InvRL 4.65% 6.11% 0.89% 3.13% 3.49% 3.79%

5.6. Performance Comparison with Different Values of K

To highlight the improvements of M3-InvRL, we conducted a comparative analysis
between M3-InvRL and its backbone model, UltraGCN, by evaluating their top-K scores.
Figure 3 illustrates the curves for NDCG, prediction, and recall scores on the TikTok
dataset.

M3-InvRL consistently outperforms Naive-UltraGCN and UltraGCN + InvRL across
all three metrics. Specifically, in Precision@K, M3-InvRL demonstrates higher accuracy and
maintains superior prediction scores across various K values, indicating its effectiveness in
identifying the most relevant items at the top of the recommendation list. In Recall@K, M3-
InvRL achieves higher recall, particularly as K increases, showcasing its ability to retrieve
more relevant items in scenarios where maximizing relevant item retrieval is essential. Fi-
nally, in NDCG@K, which considers both the relevance and ranking of recommended items,
M3-InvRL not only identifies relevant items but also ranks them more effectively, leading
to significant performance improvements over other approaches. These consistent enhance-
ments across different evaluation metrics underscore the robustness and effectiveness of
M3-InvRL in delivering high-quality recommendations.
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Figure 3. The comparison among Naive-UltraGCN (UltraGCN), UltraGCN + InvRL (InvRL) and
M3-InvRL on Tiktok datasets with respect to Precision@K, Recall@K, NCDG@K.

5.7. Effect of Lcom and LMI

In this section, we examine the impact of the common loss Lcom and the mutual
information loss LMI on the model’s performance. We do this by removing each loss during
the training process of M3-InvRL. For comparative purposes, we evaluate the following
three models: M3-InvRL without the common loss Lcom (denoted as M3-InvRL w/o Lcom),
M3-InvRL without the mutual information loss LMI (denoted as M3-InvRL w/o LMI), and
the original M3-InvRL model. The experimental results are presented in Table 4.

Our observations indicate that removing the common loss Lcom leads to a perfor-
mance decline across both datasets. This highlights the crucial role of aligning common
representations in multimodal representation learning. Similarly, the removal of the mutual
information loss LMI negatively affects the model’s performance. This suggests that relying
on a single shared representation space may restrict the model’s generalization capabilities,
underscoring the importance of LMI in effectively capturing modality-specific features.

Furthermore, we note that the performance drop in M3-InvRL w/o Lcom is more
pronounced than in M3-InvRL w/o LMI. This demonstrates that common representations
are pivotal in determining user preferences, while modality-specific representations play a
significant supplementary role.

Table 4. Performance comparison with different loss components. The best result is bold. The second
best result is underlined.

Movielens Tiktok

P@10 R@10 N@10 P@10 R@10 N@10

M3-InvRL w/o Lcom 0.0642 0.2648 0.2792 0.0190 0.1030 0.0925
M3-InvRL w/o LMI 0.0667 0.2753 0.2836 0.0194 0.1093 0.0931

M3-InvRL 0.0675 0.2775 0.2840 0.0198 0.1099 0.0957

5.8. Different Model Merging Strategy

To validate the effectiveness of our proposed model merging strategy, we conducted
experiments using three additional weighting methods: equal weighting (E-weight), loss-
based weighting (L-weight), and attention mechanism-based weighting (A-weight). In the
equal weighting strategy, each modality model is assigned an equal weight of 1/3. The
loss-based weighting strategy builds upon this by assigning weights based on the ratio of
each modality’s loss to the total loss across all modalities, thereby giving more importance
to modalities that contribute less error. The attention mechanism-based weighting further
enhances the approach by dynamically adjusting weights according to the relevance of
each modality’s information.

As shown in Table 5, the loss-based strategy performs almost identically to equal
weighting, indicating that merely acknowledging the differences between modalities does
not improve overall performance. However, the attention mechanism strategy significantly
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enhances model performance compared to both the loss-based and equal weighting strate-
gies. This suggests that by dynamically adjusting weights based on the importance of each
modality in varying contexts, the merging mechanism can improve model performance.
Furthermore, the M3-InvRL model achieves the best performance across all metrics. By
employing entropy-based weights as a proxy for model uncertainty, M3-InvRL dynamically
and accurately allocates weights, effectively leveraging the strengths of each modality and
reducing uncertainty. This leads to superior overall performance, as demonstrated by the
experimental results.

Table 5. Performance comparison on different weight strategies. The best result is bold. The second
best result is underlined.

Movielens Tiktok

P@10 R@10 N@10 P@10 R@10 N@10

E-weight 0.0652 0.2731 0.2829 0.0192 0.1080 0.0911
L-weight 0.0648 0.2719 0.2817 0.0193 0.1073 0.0937
A-weight 0.0670 0.2761 0.2834 0.0195 0.1105 0.0955
M3-InvRL 0.0675 0.2775 0.2840 0.0198 0.1099 0.0957

5.9. Study on the Number of Environments

To assess how the number of environments impacts the performance of M3-InvRL
compared to InvRL, we conducted experiments on the Tiktok and Movielens datasets
with varying numbers of environments. As illustrated in Figure 4, M3-InvRL consistently
surpasses InvRL in NDCG@10 across different environment counts. A key advantage of
M3-InvRL is its use of weighted averaging after adapting to each modality’s environment,
which reduces the model uncertainty and enhances flexibility. In contrast, InvRL simply
concatenates modes as a representation to learn invariant representations. By learning
invariant representations separately from specific and common complete representations,
M3-InvRL facilitates easier differentiation between environments. In the Tiktok dataset,
using approximately 10 environments yields the best performance, as this number allows
M3-InvRL to effectively distinguish between variant and invariant information, thereby
enhancing recommendation quality. For the Movielens dataset, the performance improves
with an increasing number of environments, suggesting that a larger number of environ-
ments is more suitable for this dataset.

Figure 4. Experimental comparison of different environment numbers |E |.
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6. Discussion
In this work, we propose an invariant representation learning framework (M3-InvRL)

to enhance the generalization ability of multimedia recommendation systems, particularly
in the presence of distribution shifts between training and testing data. Our method
achieves up to an 8.95% improvement in ranking performance on the Movielens dataset and
a 12.03% improvement on the Tiktok dataset over the Naive-UltraGCN model. Compared
to the UltraGCN + InvRL method, our approach yields up to a 6.11% improvement on the
Movielens dataset and 3.79% on the Tiktok dataset. These improvements stem from three
key components of our framework.

The first component involves the separation of common and modality-specific repre-
sentations. For each modality, we use different heads to transform the original representa-
tion into common and modality-specific parts. A common loss and a mutual information
loss are then combined to enhance the representation capabilities of the common represen-
tation and the distinctiveness of the modality-specific representation relative to the shared
representation. This separation guides the model to learn more representative features for
downstream tasks. Experiments demonstrate that both types of representations contribute
to the model’s performance. The second component is invariant representation learning
applied to both common and modality-specific representations. This approach endows
our model with the ability to maintain robustness when faced with distribution shifts
between training and testing data. The third component involves model merging through
an ensemble of modality-level predictions. Unlike existing works [30] that train a single
model on concatenated features from multiple modalities, we train a distinct model for
each modality to capture modality-specific information and merge the results based on
their importance to overall performance. This enables our model to learn and adjust its
focus on relevant information.

Despite the advantages of our proposed method, there are still improvements that can
be made in the future. The first one is the determination of the number of environments.
In this work, we predefined the number of environments, but optimal numbers vary
across datasets. Developing an adaptive method to automatically determine the number of
environments would be beneficial. Second, we may enhance the efficiency of our method,
as dividing it into three consecutive parts may increase the training costs. An end-to-end
approach that integrates these components could significantly improve the efficiency in
the future.

7. Conclusions
Our M3-InvRL framework enhances the generalization ability of multimedia recom-

mendation systems in the presence of distribution shifts between training and testing data.
Specifically, our approach learns both shared and modality-specific invariant representa-
tions. By utilizing modal-specific and common representations, invariant learning, and
adaptive model merging techniques, our method effectively addresses issues related to
spurious feature learning and misalignment.
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