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Abstract: In this paper, we apply a machine-learning approach to learn traveling solitary waves across
various physical systems that are described by families of partial differential equations (PDEs). Our
approach integrates a novel interpretable neural network (NN) architecture, called Separable Gaussian
Neural Networks (SGNN) into the framework of Physics-Informed Neural Networks (PINNs). Unlike
the traditional PINNs that treat spatial and temporal data as independent inputs, the present method
leverages wave characteristics to transform data into the so-called co-traveling wave frame. This
reformulation effectively addresses the issue of propagation failure in PINNs when applied to
large computational domains. Here, the SGNN architecture demonstrates robust approximation
capabilities for single-peakon, multi-peakon, and stationary solutions (known as “leftons”) within
the (1+1)-dimensional, b-family of PDEs. In addition, we expand our investigations, and explore not
only peakon solutions in the ab-family but also compacton solutions in (2+1)-dimensional, Rosenau-
Hyman family of PDEs. A comparative analysis with multi-layer perceptron (MLP) reveals that SGNN
achieves comparable accuracy with fewer than a tenth of the neurons, underscoring its efficiency and
potential for broader application in solving complex nonlinear PDEs.

Keywords: traveling waves; solitons; peakons; compactons; separable gaussian neural networks;
physics-informed neural networks

1. Introduction

Physics-informed Neural Networks (PINNs) [1,2] have emerged as a promising data-
driven approach to solving partial differential equations (PDEs) by synthesizing data and
physical laws. Moreover, they have received considerable traction because they can be effi-
ciently adapted to solving PDEs defined on domains with arbitrary geometry. Remarkable
results with PINNs have been achieved across multiple domains and physical situations,
such as heat transfer [3], Navier-Stokes [4] and Euler equations [5], nonlinear dynamical
lattices [6,7], and medical image processing [8], to name a few.

However, many examples of PINNs are limited to “toy” problems situated in low-
dimensional spaces with small spatio-temporal, i.e., computational domains. It has been
observed that PINNs often converge to incorrect or trivial solutions across a broad spectrum
of problems [9–11] (see also [6] for a case where they fail to respect symmetries). This issue
becomes more pronounced in problems with larger domains, where a phenomenon known
as propagation failure [12] frequently occurs. This challenge arises because PINNs utilize
an unsupervised learning scheme to solve PDEs by minimizing the residual errors of the
underlying governing equations. The presence of propagation failure does not ensure
convergence to a faithful solution of the physical system at hand, as numerous trivial
solutions can also exhibit zero residuals. Therefore, as the learning process attempts to
extend the solution from the initial and/or boundary conditions to the interior points,
it often becomes “trapped” in regions of solution spaces that contain trivial solutions
only. This phenomenon is particularly common when PINNs are applied to solve problems

Entropy 2024, 26, 396. https://doi.org/10.3390/e26050396 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e26050396
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5417-4431
https://doi.org/10.3390/e26050396
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e26050396?type=check_update&version=3


Entropy 2024, 26, 396 2 of 19

with large domains. Indicatively, Figure 1 highlights this issue in the Camassa-Holm (CH)
equation [13] for a single-peakon solution (Note that the loss function of this example is
modified from [14], removing the termination condition at t = T).

Figure 1. Inference of the spatio-temporal evolution of a peakon in the Camassa-Holm (CH) equation
by PINNs. Panels (a,b) correspond to ground truth, whereas panels (c,d) to the NN approxima-
tion. For small domains, e.g., [−5, 5]× [0, 1] (panel (c)), PINNs are able to roughly capture the correct
solution. However, the propagation failure of PINNs occurs when a large spatio-temporal domain,
e.g., [−30, 30]× [0, 10] is utilized, see, panel (d). In this case, PINNs converge to a trivial solution.

To address the pathologies of PINNs, multiple methods have been developed includ-
ing ones that consider embedding Fourier features [15], adaptive sampling [12,16], and
those respecting causality [17]. In fact, besides the physical laws embodied in PDEs them-
selves, the mathematical properties of their solutions can be leveraged too. For example,
traveling waves (TWs) to PDEs are solutions of the form u(x ± ct), where c is their speed
(the “−” and “+” signs correspond to TWs moving, i.e., traveling to the right and left,
respectively). However, a few efforts have been devoted to embedding such mathematical
properties of solutions into PINNs (see, [6] for the development of symmetry-preserving
PINNs) such that the output of neural networks (NNs) will automatically respect the
corresponding features of the solution. This is expected to improve the efficiency in training
and increase the opportunity for NNs to converge to correct solutions.

In this paper, we aim to enhance PINNs by pursuing this route. More specifically, we
will focus on seeking TW solutions to nonlinear PDEs using PINNs with input transformed
into a frame that co-moves with the solution, i.e., co-traveling frame. This idea has been
explored in the recent work in [18] in which the characteristics of hyperbolic PDEs are
encoded in the network by adding a characteristic layer. Herein, we will use this structure
to learn TWs, i.e., solitary waves in multiple families of one and two-dimensional nonlinear
PDEs. Those include the b- and ab-families of peakon equations [19,20] which contain the
(completely integrable) Camassa-Holm (CH) and Degasperis-Procesi equations [13,21] (see,
also [22]), and the Rosenau-Hyman compacton equations [23] (see, also [24]). In addition,
a novel interpretable NN—Separable Gaussian Neural Networks (SGNNs) [25]—will be
employed to extract solution forms in the sense of generalized Gaussian radial-basis
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functions. The description of this network will be deferred to Section 2, along with the
discussion about its advantages.

The rest of the paper is organized as follows. In Section 2, we introduce the archi-
tecture of SGNN with its input transformed to a co-traveling frame. Our aim here is to
integrate the mathematical description of TWs into the framework of PINNs in order to
reliably identify TWs to physically relevant PDEs. In Sections 3 and 4, we demonstrate
the applicability of the method to the study of peakons in the b- and ab-families of peakon
equations, respectively. Then, we extend this approach in Section 5 to identify 2D com-
pacton configurations. We mention in passing that the architecture can easily predict such
higher-dimensional solutions which have not been studied in the realm of PINNs, to the
best of our knowledge. At last, we perform an extensive comparison of the two different
architectures of PINNs with different network structures in Section 6, where the advantages
and disadvantages of SGNN are discussed. We conclude our findings in Section 7, and
present future research directions.

2. Methods
2.1. Architecture of SGNN for Traveling Waves

Inspired by [18], a d-dimensional (in space) TW is mapped into a frame that co-moves
with it by performing the following coordinate transformation

ζi = xi − cit, i = 1, 2, . . . , d, (1)

where ci is its (constant) velocity in the i-th dimension. Under such a transformation, a TW
becomes a stationary wave in the co-traveling frame. As shown in Figure 2, the coordinates
ζi (i = 1, 2, . . . , d) become the input of the SGNN. The coordinates are then divided
according to their dimensions, and sequentially fed to the feedforward layers. This results
in a number of layers that is equal to the number of spatial dimensions. The neurons of
each layer we consider are expressed in terms of generalized univariate Gaussian functions

φ(ζi, µ, σ) = exp
(
−|ζi − µ|α/σ2

)
, (2)

where α ∈ R− {0}. When α = 2, φ is the regular univariate radial-basis Gaussian func-
tion. In this paper, we will adopt α = 1 for peakon solutions, and α = 2 for other solutions.

The first hidden layer of SGNN receives a single input: the partial coordinate ζ1. Sub-
sequent hidden layers take two inputs - the output from the preceding hidden layer, and a
coordinate in the traveling frame. The network culminates in a dense output layer, which
aggregates the outputs from the final hidden layer. The mathematical representation of
SGNN [25] is defined in the form

N (1)
i = φ

(1)
i (ζ1, µ

(1)
i , σ

(1)
i ), 1 ≤ i ≤ N1, (3)

N (ℓ)
i = φ

(ℓ)
i (ζℓ, µ

(ℓ)
i , σ

(ℓ)
i )

Nl

∑
j=1

W(ℓ)
ij N (ℓ−1)

j , 2 ≤ ℓ ≤ d, 1 ≤ i ≤ Nl , (4)

ū(x) = N (x) =
Nd

∑
j=1

W(d)
j N (d)

j , (5)

where N (l)
i represents the output of the i-th neuron of the l-th layer, Nl stands for the

number of neurons of the l-th layer, and ū is the output of SGNN. When d > 2, the weights
of the output layer are set to 1.

Thanks to the separable property of Gaussian radial-basis functions, the forward
propagation of such univariate Gaussian functions yields the summation of multiple
chains of univariate Gaussian functions, equivalent to the summation of high dimensional
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Gaussian radial-basis functions. In other words, the output of an SGNN equals the output
of a Gaussian-Radial-Basis-Function Neural Network (GRBFNN) [26] in the form of

ū(x) = ∑
j=1

WjGj, (6)

where Gj is a d-dimensional Gaussian radial-basis function.

Traveling 

Frame
Input

Layer

u

Hidden Gaussian Layers

Figure 2. The architecture of SGNN with input transformed into the co-traveling frame whose
coordinates (in vector form) are ζ = x − ct, where c represents the velocity of the wave. Different
from multi-layer perceptron (MLP), the transformed input is then split and fed sequentially to hidden
layers of an SGNN that consist of univariate functions. The multiplication and addition of such
univariate functions in feedforward propagation can eventually lead to the summation of a set of
multivariate functions used to approximate the solution of a PDE.

The SGNN offers several advantages. Firstly, it is interpretable. The parameters of a
neuron depict its local geometrical information (center and width). Without the composition
of nonlinear activation functions, a human-interpretable explicit output form of Equation (6)
can be obtained, in the sense of Gaussian radial-basis functions. Secondly, SGNN is easier to
tune than MLP. This is because the depth of SGNN is identical to the number of dimensions;
therefore, the only tunable hyperparameter is the width of each layer. Lastly, it can achieve
several-order-of-magnitude more accurate results than MLP when approximating complex
functions. The interested reader can consult [25] for detailed comparisons between SGNN
and MLP.

2.2. Physics-Informed Machine Learning

The SGNN is adopted to approximate the solution u(x, t) of PDEs in the form

ut +F [u, ux, uxt, uxx, . . . ] = 0, (7)

which is subject to boundary and initial conditions (abbreviated hereafter as BCs and
ICs, respectively)

B[u] = 0, (8)

u(x, 0) = f (x). (9)

The loss function is defined as

L = λrLr + λbcLbc + λicLic, (10)
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where

Lr =
1

Nr

Nr

∑
i=1

∣∣∣R(xi
r, ti

r)
∣∣∣2, (11)

Lbc =
1

Nbc

Nbc

∑
i=1

∣∣∣B[u](xi
bc, ti

bc)
∣∣∣2, (12)

Lic =
1

Nic

Nic

∑
i=1

∣∣∣u(xi
ic, 0)− f (xi

ic)
∣∣∣2, (13)

and λr, λbc, λic are scaling factors. Here, Lr, Lbc, and Lic represent the MSE (mean-squared
error) of PDEs, BCs, and ICs, respectively. The collocation points denoted as {xi

r, ti
r} and

{xi
bc, ti

bc} are randomly sampled in the domain and on the boundary, respectively. In
addition, {xi

ic} are spatial points sampled at t = 0. Throughout this paper, λr is fixed to 1.

2.3. Training Scheme

In the 1D problems presented next, we employ a two-stage training process, initially
using the ADAM optimizer [27] followed by the L-BFGS algorithm [28]. This approach
allows us to leverage the L-BFGS algorithm’s capability to enhance convergence accuracy
after the preliminary optimization with ADAM. In contrast, and for the 2D problems
at hand, we solely rely on the ADAM optimizer due to the computational demands of
running L-BFGS with larger datasets. The training dataset is randomly sampled using the
’Sobol’ method, which empirically can yield better results [16]. The validation dataset is
created through a method of even partitioning across the domain and boundaries, ensuring
comprehensive coverage and testing of the model’s predictive capabilities. Throughout the
training phase, the SGNNs’ weights are initialized based on a uniform random distribu-
tion. Additionally, the initial centers of the univariate Gaussian neurons are distributed
evenly across the respective dimensions, with their initial widths defined by the distance
between adjacent centers.

3. Peakons in b-Family

The first model-PDE we consider in this work is the well-known b-family of peakon
equations:

ut − uxxt + (b + 1)uux = buxuxx + uuxxx, (14)

that was introduced in [19]. It has been proposed as a model for the propagation of shallow
water waves [19] with the parameter b related to the Kodama transformation group of
shallow water water equations [29,30]. Moreover, Equation (14) contains two completely
integrable models for b = 2 and b = 3, known as the Camassa-Holm equation [13,31] (see,
also [22]) and Degasperis-Procesi equation [21], respectively.

The striking feature of the b-family of Equation (14) is that it possesses explicit
single-peakon

u(x, t) = ce−|x−ct|, (15)

and multi-peakon solutions

u(x, t) =
N

∑
j=1

pj(t)e
−|x−qj(t)|, (16)

for all values of b, where qj and pj are the position and amplitude of j-th peakon with N
representing the number of peakons, i.e., j = 1, . . . , N. The peakon solution of Equation (15)
(and similarly, its multi-peakon version) is not differentiable at its center, rendering its
analytical and numerical study (from the PDE point of view) an extremely challenging
task (see [32] for the spectral stability analysis of peakons). It should be noted in passing
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that alongside the existence of peakon solutions, the b-family possesses explicit stationary
solutions known as “leftons” [32] (and references therein) given by

u = A(cosh(γ(x − x0)))
− 1

γ , γ = − b + 1
2

, (17)

where A and x0 are their amplitude and center, respectively. These solutions also emerge
numerically upon propagating Gaussian initial data to Equation (14) for b < −1. Even
more, the propagation of Gaussian initial data to the b-family with −1 < b < 1 results in
the emergence of self-similar solutions known as “ramp-cliffs”, see [32], and references
therein for details.

Having introduced the model of interest, we will use the SGNN to approximate both
one-peakon and multi-peakon solutions in the next section.

3.1. Single Peakon
3.1.1. Camassa-Holm (b = 2)

We first inspect a one-peakon/one-antipeakon solution in the Camassa-Holm (CH)
equation. The computational domain we consider is Ω = {(x, t) : [−20, 20]× [0, 10]}. We
adopt periodic BCs, and ICs of the form u(x, 0) = e−|x| (i.e., c = 1). For our analysis, we
employ a one-layer SGNN with 60 neurons. As both centers and widths are trainable, the
total number of trainable parameters is 180.

The data collection process involves the sampling of 212 = 4096 points within the
specified domain. Additionally, we use the ’Sobol’ sampling scheme to gather 29 = 512
boundary points, and another 512 spatial points satisfying the initial condition. It should be
noted that the number of samples is larger than the number reported in the literature. This
increase in sample size is attributed to the comparatively larger domain size in our analy-
sis. We train SGNN for 5000 epochs using ADAM [27], followed by L-BFGS [28] to refine
the results. The dataset is divided into 8 mini-batches. The learning rate of ADAM is 1e − 2
for the first 100 epochs, and 1e − 3 for the rest. We report that the mean-squared loss is
8.43e − 3 when training finishes. It should also be noted that this value is scaled by a
relatively large scaling factor (λic = 1000) that is selected using trial and error. On the other
hand, the mean-squared validation error is much smaller, with a value of 7.21e − 6. The
maximum absolute validation error is 3.90e − 2. As illustrated in Figure 3b, the inferred
peakon solution with c = 1.0 accurately approximates the exact solution with the error
getting maximized at the crest of the peakon. The good agreement is also demonstrated
in Figure 3c, where the “x” markers stand for the exact solution [cf. Equation (15)], and
line for the predicted solution by SGNN at two different instant of times (see, the legend in
the figure).

A case corresponding to an anti-peakon solution with c = −1.0 is represented in
Figure 4. The prediction by SGNN yields a mean-squared loss of 1.94e − 11. This means
that the inference of SGNN precisely matches the exact solution. The largest error occurs
on the characteristic curve x + t = −10, with the magnitude level of 1e − 5.

3.1.2. Other Values of b

We next investigate the emergence of peakons using SGNN for different values of
b. Indeed, Figure 5a presents a peakon solution predicted by SGNN with b = 0.8 and
c = 1.5. While the temporal domain remains as [0, 10], the spatial domain is enlarged to
[−30, 30] in order to accommodate the rise of velocity, and thus the peakon “fits” in the
computational domain over its propagation. As shown in Figure 5b, the prediction matches
very well with the exact solution. The mean-squared validation error is 4.09e − 6, and the
maximum absolute error is 0.0274. The maximum absolute error appears at the region
where the u(x, t) reaches its peak value. The training loss after 5000 epochs is reduced to
9.18e − 2. The waveforms at t = 0 and t = 10 are depicted in Figure 5c, where lines repre-
sent SGNN’s prediction, and “x” markers represent the exact solution, respectively. The
predicted peakon solution with b = −1, c = 0.8 is presented in Figure 6. Likewise, a good
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agreement between inference by SGNN and the exact solution u(x, t) = 0.8e−|x−0.8t| is
achieved, with a training loss of 3.1e − 2, a mean-squared validation loss of 3.5e − 5, and a
maximum absolute validation loss of 5.92e − 3.

Figure 3. A one-peakon solution in the CH equation (b = 2) with c = 1. (a): ū(x, t) inferred by SGNN;
(b): error e(x, t) = u(x, t)− ū(x, t); (c): ū(x, t) at two time instants. In (c), “x” markers represent the
exact solution while lines represent the prediction by SGNN. The training loss is 8.43e − 3, with
λic = 1000, λbc = 1. Validation error: ∥e∥∞ = 3.90e − 2, ∥e∥2 = 7.21e − 6.

Figure 4. Same as Figure 3 but for an one-antipeakon solution in the CH equation (b = 2) with c = −1.
(a): ū(x, t) inferred by SGNN; (b): error e(x, t) = u(x, t)− ū(x, t); (c): ū(x, t) at two time instants. In
(c), “x” represents the exact solution while lines represent the prediction by SGNN. The training loss
is 1.94e − 11, with λic = 1000, λbc = 1. Validation error: ∥e∥∞ = 1.02e − 5, ∥e∥2 = 9.59e − 13.
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Figure 5. Same as Figure 4 but for a one-peakon solution of the b-family with b = 0.8 and c = 1.5.
(a): ū(x, t) inferred by SGNN; (b): error e(x, t) = u(x, t)− ū(x, t); (c): ū(x, t) at two time instants. In
(c), “x” represents the analytical solution while curves represent the prediction by SGNN. The training
loss is 9.18e − 2, with λic = 1000, λbc = 1. Validation error: ∥e∥∞ = 2.74e − 2, ∥e∥2 = 4.09e − 6.

Figure 6. Same as Figure 5 but with b = −1.0 and c = 0.8. (a): ū(x, t) inferred by SGNN; (b): error
e(x, t) = u(x, t)− ū(x, t); (c): ū(x, t) at two time instants. The format in panel (c) is the same as in
panel (c) of Figure 5. Here, the training loss is 3.10e − 2, with λic = 10, 000, and λbc = 1. Validation
error: ∥e∥∞ = 5.92e − 3, ∥e∥2 = 3.50e − 5.

3.1.3. Interacting Peakons

Having discussed the prediction of single-peakon (and anti-peakon) solutions in the
b-family, we now turn our focus to cases involving two-peakon configurations in the
CH equation (b = 2), thus emulating their interactions. In particular, we focus on the
following three specific scenarios: (1) peakons traveling along the same direction with
identical speed, (2) peakons traveling in the same direction but at different velocities, and
(3) peakons moving in opposite directions. Given that peakons can travel at varying speeds
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and in distinct directions in space (i.e., either left or right), we employ multiple SGNNs to
approximate these peakons, allocating one SGNN per peakon. The sum of such SGNNs
produces the NN-solution of Equation (14), and the NN structure in this case is shown in
Figure 7. During the training stage, the loss functions associated with the PDE and BCs
are identical to those in Equations (11) and (12). However, it is necessary to modify the
loss function of ICs such that the output of each SGNN at t = 0 accurately reflects the
corresponding peakon solution at t = 0.

Traveling 

Frame

u

SGNN

SGNN

SGNN

Traveling 

Frame

Traveling 

Frame

c
1

c
2

c
n

Figure 7. The NN architecture used for the study of multi-peakon configurations.

We inspect the response from t = 0 to t = 10, within a spatial domain [−30, 30]. Two
one-layer SGNNs with 40 neurons are used. Each training dataset is generated by randomly
sampling 213 = 8192 collocation points within the domain, and 210 = 1024 points on
the boundary. The dataset is then divided into 8 mini-batches. The results are obtained
with 5000 training epochs by ADAM, followed by refinement by L-BFGS (as before). The
validation set is generated by uniformly sampling a 50 × 100 grid in the domain including
BCs and ICs.

In Figure 8, two peakons traveling towards the right with identical speed c = 1 are
presented. The ICs employed here are u(x, 0) = e−|x+2| + e−|x−2|, which forms a bi-nominal
shape. The training error is 4.27e − 3, with scaling factors λic = λbc = 100. As shown in
Figure 8a, the peakons maintain their distance during propagation. Moreover, it can be
discerned from Figure 8b that SGNN is capable of making very good predictions of such
configurations. Indeed, the mean-squared and maximum absolute errors are 2.99e − 5
and 5.22e − 2, respectively for this case. The good agreement between SGNN and exact
solutions is further demonstrated in Figure 8c, where “x” makers are for exact solutions
and solid lines are predictions by SGNN.

The complementary case corresponding to the interaction of two anti-peakons travel-
ing at different speeds is presented in Figure 9. In particular, we consider a configuration
involving two anti-peakons: one centered at x = −5 with speed 0.8, and another one whose
center is (symmetrically) placed at x = 5 and travels with velocity of −2.2. The respective
IC that describes this configuration is u(x, 0) = −0.8e−|x+5| − 2.2e−|x−5|. The training error
is 0.0188, with scaling factors λic = λbc = 100. On the validation dataset, the mean-squared
error is 2.99e − 5. In addition, the maximum absolute error is 5.22e − 2, which is reflected
in Figure 9b. The interactions of these two anti-peakons are shown in Figure 9a. The second
anti-peakon (in darker red), possessing a higher velocity, will eventually overtake the
first one (in orange), despite initially lagging behind. A good agreement between SGNN
prediction and exact solution is demonstrated in Figure 9c. The second one catches the first
one at t = 7.14, where their peaks add up, as shown in Figure 9d.

Finally, Figure 10 shows a more realistic scenario: the (elastic) collision between a
peakon and an anti-peakon. In this case, the IC considered is given by u(x, 0) = −e−|x−2| +
e−|x+2|, where the training error is 6.12e − 3, with scaling factors λic = λbc = 100. The
mean-squared validation error is 2.11e − 5 while the maximum absolute validation error is
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5.54e − 2, as illustrated in Figure 10b. As expected, the peakon (light red) and anti-peakon
(in darker red) move towards each other with same velocity as shown in Figure 10a until
they collide at t = 2. Indeed, Figure 10d showcases the predicted solution at the time
of collision where the waveforms cancel each other. Then, at later times, i.e., t > 2, the
anti-peakon and peakon re-emerge, and they can maintain their shape after collision, as
shown in Figure 10c.

Figure 8. Two peakons with identical traveling speed (c = 1) in the CH equation. (a): ū(x, t) inferred
by SGNN; (b): error e(x, t) = u(x, t)− ū(x, t); (c): ū(x, t) at two time instants. In (c), “x” represents
the exact solution while lines represent the prediction by SGNN. The training loss is 4.27e − 3, with
λic = λbc = 100. Validation error: ∥e∥∞ = 5.22e − 2, ∥e∥2 = 2.99e − 5.

Figure 9. Same as Figure 8 but for the case corresponding to the interaction of two anti-peakons
(c1 = −0.8, c2 = −2.2) in the CH equation. (a): ū(x, t) inferred by SGNN; (b): error e(x, t) =

u(x, t)− ū(x, t); (c): ū(x, t) at two time instants; (d): ū(x, t) when two peakons collide. The format
of panel (c) is the same as the one in Figure 8. The training loss is 1.88e − 2, with λic = λbc = 100.
Validation error: ∥e∥∞ = 9.0e − 2, ∥e∥2 = 9.12e − 5.
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Figure 10. Same as Figure 9 but for the case corresponding to the “head-on” collision of a peakon
and an anti-peakon (with c1 = c2 = −1) in the CH equation. (a): ū(x, t) inferred by SGNN; (b): error
e(x, t) = u(x, t) − ū(x, t); (c): ū(x, t) at two time instants; (d): ū(x, t) when two peakons collide.
The format of panel (c) is the same as the one in Figure 8. The training loss is 6.12e − 3, with
λic = λbc = 100. Validation error: ∥e∥∞ = 5.54e − 2, ∥e∥2 = 2.11e − 5.

Figure 11. Same as Figure 10 but for a stationary solution, i.e., “lefton” of the b-family with b = −2.0.
(a): ū(x, t) inferred by SGNN; (b) e(x, t) = u(x, t) − ū(x, t); (c) u(x, t) at two time instants. The
format of panel (c) is the same as the one in Figure 9. The training loss is 0.054, with λic = 1,000,
λbc = 1. Validation loss: ∥e∥∞ = 1.12e − 2, ∥e∥2 = 4.62e − 6.

3.1.4. Lefton Solutions

The last case that we consider using SGNNs is the lefton regime, i.e., b < −1 whose
explicit solution form is given by Equation (17). Herein, we study such solutions at b = −2.
For our training dataset, we randomly select 212 = 4096 points within the domain alongside
an additional 29 = 512 points, subsequently dividing this dataset into 8 mini-batches. The
chosen time domain is set at t ∈ [−10, 10], and the spatial domain at x ∈ [−20, 20]. As
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depicted in Figure 11, there is a high degree of concordance between the SGNN predictions
and the exact solutions. The training loss, adjusted by scaling factors λic = 1000 and
λbc = 1, is recorded at 0.054. The mean-squared error for the validation loss stands at
4.62e − 6, with the maximum absolute validation loss reaching 1.12e − 2.

4. Peakons in ab-Family

In this section, we turn our focus on the applicability of SGNN to the so-called ab-
family [20]

ut + u2ux − au3
x + D−2∂x

[
b
3

u3 +
6 − 6a − b

2
uu2

x

]
+ D−2

[
2a + b − 2

2
u3

x

]
= 0 (18)

of peakon equations where D−2 stands for the nonlocal operator (1 − ∂2
x)

−1. The ab-family
is a generalization of the b-family [cf. Equation (14)] in the sense that it corresponds to
cubic (in its nonlinearity) CH-type equations unlike the quadratic CH-type equations of the
b-family [20]. Interestingly, the ab-family admits the one-peakon solution taking the form

u(x, t) = ±
√

ce−|x−(1−a)ct|. (19)

For the applicability of SGNN, we inspect the peakon solution in the spatial domain
x ∈ [−20, 20] and time domain t ∈ [0, 10]. A SGNN with 80 neurons is used to approximate
the one-peakon solution in the ab-family. To generate the training dataset, we randomly
generate 213 = 8192 collection samples within the domain and 210 = 1024 samples on
the boundary. The training dataset is evenly split into 8 mini-batches. In the loss function,
λic = 1000 and λbc = 100 are applied to penalize ICs and BCs. Same as before, the ADAM
method is then used to train the SGNN, followed by the refinement by L-BFGS.

Figure 12. A peakon in the ab-family with b = 2.0, a = 1/3. The wave speed is c = 1. (a): ū(x, t)
inferred by SGNN; (b) e(x, t) = u(x, t)− ū(x, t); (c) u(x, t) at two time instants. In (c), “x” markers
represent the exact solution while lines depict the prediction by SGNN. The training loss is 0.0141,
with λic = 1000, λbc = 100. Validation loss: ∥e∥∞ = 3.70e − 2, ∥e∥2 = 8.63e − 6.

Distinct from the members of the b-family, both peakons and anti-peakons of the
ab-family propagate in the same direction. This behavior is confirmed using parameters
b = 2.0, a = 1/3, and c = 1, as illustrated in Figures 12 and 13. The training losses for the
peakon and anti-peakon solutions are recorded at 0.0141 and 0.0138, respectively. For the
peakon solution, the mean-squared error across the validation set is measured at 8.63e − 6,
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with the maximum absolute error reaching 3.7e − 2. Similarly, the anti-peakon solution
exhibits a mean-squared error of 8.24e− 6 over the validation set, and its maximum absolute
error is noted as 4.5e − 2.

Figure 13. Same as in Figure 12, but for an anti-peakon in the ab-family with b = 2.0, a = 1/3, and
wave speed c = −1. (a): ū(x, t) inferred by SGNN; (b) e(x, t) = u(x, t)− ū(x, t); (c) u(x, t) at two
time instants. The format of panel (c) is the same as the one in Figure 12. Here, the training loss is
0.0138, with λic = 1000, λbc = 100. Validation error: ∥e∥∞ = 4.05e − 2, ∥e∥2 = 8.24e − 6.

5. 2D Compactons

In this section, we depart from the previous one-dimensional (in space) studies, and
apply SGNN in order to predict TWs in two-dimensional nonlinear wave equations. More
specifically, we focus on TWs that have compact support which are referred to as com-
pactons, and introduced in [24]. Following the notation in [24], there exists a family of PDEs
denoted as CN(m, a + b) given by

ut + (um)x +
1
b
[ua(▽2ub)]x = 0, (20)

that possesses compacton TWs with m ≥ max(1, a− 1), b > 0. Here, CN(m, a+ b) represents
a N-dimensional compacton (with N = 1, 2, 3) with a parameter set {m, a, b}. In the
following, we restrict ourselves to N = 2, and concentrate on the single compacton case. In
other words, the network structure of Figure 2 will be used. According to [23], Equation (20)
supports traveling compactons traversing in the x direction. In this case, we have

s = x − λt, (21)

where λ is the velocity of the compacton. The case with C2(m = 1 + b, 1 + b) yields an
explicit solution in the form

u = λ1/b
[

1 − F(R)
F(R∗)

]1/b
, 0 < R ≤ R∗, (22)

where u vanishes elsewhere (i.e., compact support). In Equation (22), R =
√

s2 + y2, and
F(R) = J0(

√
bR) where J0 is the zeroth-order Bessel function, and

√
bR∗ is the root of the

first-order Bessel function.



Entropy 2024, 26, 396 14 of 19

Figure 14. A 2D compacton C2(3, 1 + 2) of Equation (22) with λ = 1. Left panel: SGNN prediction;
right panel: ground truth. Top panel: t = 0; middle panel: t = 5; bottom panel: t = 10. The training
loss:9.97e − 3:λic = 100, λbc = 10. Validation error: ∥e∥∞ = 0.371, ∥e∥2 = 1.58e − 4.

Figure 15. Same as Figure 14 but for the 2D compacton C2(2, 0 + 3) of Equation (24) with λ = 1. Left
panel: SGNN prediction; right panel: ground truth. Top panel: t = 0; middle panel t = 5, bottom
panel: t = 10. The training loss:1.23e − 3:λic = 100, λbc = 10. Validation error: ∥e∥∞ = 0.135,
∥e∥2 = 8.28e − 5.

We use a SGNN to approximate the compacton C2(3, 1+ 2). The SGNN has two layers,
with 50 neurons per layer, and the approximation is performed in the spatial domain
x ∈ [−10, 30] and time domain t ∈ [0, 10]. To generate the training dataset, we randomly
sampled 216 = 65, 536 collocation points within the domain, along with 212 = 4096 points
on the boundary. The dataset is then evenly split into 8 mini-batches. The mini-batch
ADAM is used to SGNN, with loss functions to minimize the residual error of the PDE, ICs,
and BCs.

In Figure 14, the SGNN’s prediction (left column) is presented against the exact (right
column) compacton solution C2(3, 1 + 2). The training loss is stopped at 9.97e − 3, with
λic = 100, and λbc = 10. The mean-squared validation error is 1.58e− 4 while the maximum
absolute error is 0.371. The compacton travels along x-axis with a velocity of λ = 1. At
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t = 0 (top panel), the compacton commences with a center placed at x = 0. Middle and
bottom panels present snapshots of compactons at t = 5, and t = 10, respectively. We
report that the SGNN’s prediction captures the main characteristics of the exact solution
although minor errors appear around the edges of compacton.

As a last case, we consider the compacton C2(m = 2, a+ b = 3) whose explicit solution
is given by

u = κN [λAN − bR2], 0 < R ≤ R∗ ≡
√

λAN/b (23)

with u vanishing elsewhere. According to Ref. [23], we pick N = 2, m = 0, a = 0, and b = 3,
and thus we have

CN(2, 0 + 3) : A2 =
3
2
(4 + 2)2, κ−1

2 = 6(4 + 2). (24)

The SGNN’s prediction and exact solution of C2(2, 0+ 3) compacton solutions are presented
in the left and right columns of Figure 15. Snapshots of the solutions are shown at t = 0
(top), t = 5 (middle), and t = 10 (bottom) therein. In this case, we report that the predictions
precisely match the exact solution at these times. The scaling factors in the loss function are
λic = 100 and λbc = 10, and the training loss is stopped at 1.23e − 3 after 300 epochs. The
mean-squared validation error is 8.28e − 5, while the maximum absolute error is 0.135.

In summary, we present the training losses and validation errors of all previous results
(see, also the reference Figure in the left column) in Table 1.

Table 1. The training losses and validation errors of the presented results in Sections 2–5.

Figure Training loss
Validation error

∥e∥2 ∥e∥∞

3 8.43e − 3 7.21e − 6 3.90e − 2
4 1.94e − 11 9.59e − 13 1.02e − 5
5 9.18e − 2 4.09e − 6 2.74e − 2
6 3.10e − 2 3.50e − 5 5.92e − 3
8 4.27e − 3 2.99e − 5 5.22e − 2
9 1.88e − 2 9.12e − 5 9.00e − 2

10 6.12e − 3 2.11e − 5 5.54e − 2
11 5.40e − 2 4.62e − 6 1.12e − 2
12 1.40e − 2 8.63e − 6 3.70e − 2
13 1.38e − 2 8.24e − 6 4.05e − 2
14 9.97e − 3 1.58e − 4 3.71e − 1
15 1.23e − 3 8.28e − 5 1.35e − 1

6. Comparison and Discussion

To compare the performance of the traditional and new structures of PINNs, we use
them to approximate a peakon solution in the CH equation with c = 1. The spatial domain
employed is [−20, 20], while the temporal domain is [0, 10]. The size of the training set is
212 = 4096, with 29 = 512 samples for the ICs and BCs. The selection of width and depth
for models is informed by the configurations reported in existing literature. Additionally,
we also compare the performance of SGNN vs MLP. As shown in Table 2, in the traditional
PINN framework, neither SGNN nor MLP can successfully converge to a TW on a large
spatial and temporal domain. Despite small training losses, all NN structures get stuck
at the trivial solution as it is very difficult to overcome propagation failure when dealing
with enlarged domains. By introducing a training method that respects causality [17] or
performs adaptive sampling [16], one may be able to address this failure.

On the other hand, as illustrated in Table 3, with the TW coordinate transformation,
identical NN structures of SGNN and MLP with ReLu function all converge to the cor-
rect solution. Although the training losses of MLP with hyperbolic tangent and sigmoid
functions are relatively large, they all capture the characteristics of the TW. Sigmoid and
hyperbolic functions have difficulties approximating the non-differentiable peak of the
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peakon, with about 0.3 error in the peak value. Notably, these results can be improved by
modifying the sampling method, training scheme, and loss functions. With the increase
of depth and width, MLP with ReLU and sigmoid functions can further reduce loss val-
ues. The loss values with SGNN also gradually drop as width increases. SGNN excels at
the compact structure that only requires less than 1/10 of training parameters. In addition,
SGNN can give an explicit solution form of the PDEs in the sense of Gaussian radial-basis
functions. However, increasing further the number of neurons in SGNN does not dramati-
cally result in loss-value reduction. This could be remedied by modifying the training and
sampling schemes.

Table 2. Comparison of SGNN and MLP with the traditional PINNs. Despite small loss values,
no network structure can converge to the correct solution. Spatial domain: [−30, 30], time domain:
[0, 10]. GRB: generalized Gaussian radial-basis function.

Network Activation Depth Width Loss Trivial solution?

SGNN GRBF 1 40 (2.69 ± 5.47)e − 7 Yes

MLP

ReLu 2 40 (1.13 ± 0.60)e − 3 Yes

ReLu 4 40 (6.11 ± 4.10)e − 4 Yes

ReLu 6 40 (1.05 ± 0.66)e − 3 Yes

ReLu 8 20 (1.06 ± 0.77)e − 3 Yes

sigmoid 2 40 (7.37 ± 2.10)e − 6 Yes

sigmoid 4 40 (1.28 ± 0.62)e − 5 Yes

sigmoid 6 40 (1.08 ± 0.82)e − 6 Yes

sigmoid 8 20 (1.91 ± 0.91)e − 5 Yes

tanh 2 40 (1.26 ± 0.24)e − 6 Yes

tanh 4 40 (2.11 ± 0.54)e − 6 Yes

tanh 6 40 (2.24 ± 0.69)e − 6 Yes

tanh 8 20 (3.59 ± 1.46)e − 6 Yes

Table 3. Comparison of SGNN and MLP with PINNs incorporating with traveling frame. Spatial
domain: [−30, 30], time domain: [0, 10]. GRB: generalized Gaussian radial-basis function.

Network Activation Depth Width Parameters Loss Trivial solution?

GRBF 1 20 60 (1.42 ± 0.08)e − 2 No

SGNN GRBF 1 40 120 (1.02 ± 0.17)e − 2 No

GRBF 1 60 180 (8.65 ± 1.22)e − 3 No

MLP

ReLu 2 40 1640 (2.95 ± 0.12)e − 2 No

ReLu 4 40 4840 (2.93 ± 0.11)e − 2 No

ReLu 6 40 8040 (5.34 ± 2.10)e − 4 No

ReLu 8 20 2820 (8.60 ± 2.93)e − 4 No

sigmoid 2 40 1640 0.72 ± 5.62e − 4 No

sigmoid 4 40 4840 0.72 ± 6.80e − 3 No

sigmoid 6 40 8040 0.71 ± 7.61e − 3 No

sigmoid 8 20 2820 0.72 ± 5.33e − 3 No

tanh 2 40 1640 0.72 ± 7.00e − 3 No

tanh 4 40 4840 0.71 ± 4.65e − 3 No

tanh 6 40 8040 0.70 ± 0.05 No

tanh 8 20 2820 0.56 ± 0.15 No

Why can the modified structure of PINNs avoid propagation failure and lead to better
results? We attempt to answer this question next. By mathematically transforming the NN
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input to the traveling coordinate x − ct, we inherently produce an output in the form of
u(x − ct). This representation naturally aligns with the solution form of TWs, maintaining
the integrity of the solution’s structure. From a physical perspective, this transformation
converts a dynamic problem into a static one (i.e., a TW becomes stationary in a frame that
co-moves with the solution), thus simplifying the problem considerably. Algorithmically,
this transformation effectively reduces the input dimension by one, which can lead to a
decrease in the required data size for training. Furthermore, the functional form of TWs
of u(x − ct) ensures that any combination of spatial and temporal coordinates resulting in
the same traveling frame coordinate will produce identical outcomes. This characteristic
automatically propagates initial and/or boundary conditions along the characteristic path
x − ct, significantly reducing the challenge of extending solutions from ICs and BCs to
interior points.

7. Conclusions

In this work, we introduce a modified structure of PINNs that incorporates the math-
ematical description of TWs to nonlinear PDEs. In particular, we integrated a novel
neural network architecture, called SGNN, into the PINNs framework. Our approach
demonstrated a significant improvement in overcoming the propagation failure of PINNs,
particularly in large-domain applications. Utilizing this enhanced network, we successfully
generated interpretable predictions for TWs across various PDE families including the b-
and ab-families of peakon equations. To the authors’ best knowledge, this is also the first
study on applying PINNs to identify 2D TWs, such as compactons, as well as to study the
collisions of 1D multiple peakons. This work opens up new directions for future studies
that we plan to undertake herein. Specifically, and on the one hand, there exist solutions to
nonlinear dispersive PDEs that self-similarly blow-up in finite (or infinite) time [33]. Under
a stretching transformation [33], such solutions can appear as steady ones in a frame that
“co-explodes” with the solution [34,35], thus enabling the applicability of the present NN
architecture for the identification and prediction of self-similar collapse. On the other hand,
the present NN structure could be expanded in order to model and predict the transient
behavior of TWs. In addition, regularization techniques can be incorporated to refine the
model to capture the essential features of the solutions more succinctly.
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