
Citation: Sionkowski, P.; Kruszewska,

N.; Kreitschitz, A.; Gorb, S.N.;

Domino, K. Application of Recurrence

Plot Analysis to Examine Dynamics of

Biological Molecules on the Example

of Aggregation of Seed Mucilage

Components. Entropy 2024, 26, 380.

https://doi.org/10.3390/e26050380

Academic Editor: Antonio M.

Scarfone

Received: 25 March 2024

Revised: 24 April 2024

Accepted: 26 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Application of Recurrence Plot Analysis to Examine Dynamics
of Biological Molecules on the Example of Aggregation of Seed
Mucilage Components
Piotr Sionkowski 1 , Natalia Kruszewska 2,* , Agnieszka Kreitschitz 3 , Stanislav N. Gorb 4

and Krzysztof Domino 1

1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, ul. Bałtycka 5,
44-100 Gliwice, Poland; piotr.sionkowski@gmail.com (P.S.); kdomino@iitis.pl (K.D.)

2 Group of Modeling of Physicochemical Processes, Faculty of Chemical Technology and Engineering,
Bydgoszcz University of Science and Technology, 85-796 Bydgoszcz, Poland

3 Department of Plant Developmental Biology, University of Wrocław, ul. Kanonia 6/8,
50-328 Wrocław, Poland; agnieszka.kreitschitz@uwr.edu.pl

4 Department of Functional Morphology and Biomechanics, Kiel University, Am Botanischen Garten 1-9,
D-24098 Kiel, Germany; sgorb@zoologie.uni-kiel.de

* Correspondence: nkruszewska@pbs.edu.pl

Abstract: The goal of the research is to describe the aggregation process inside the mucilage produced
by plant seeds using molecular dynamics (MD) combined with time series algorithmic analysis based
on the recurrence plots. The studied biological molecules model is seed mucilage composed of three
main polysaccharides, i.e. pectins, hemicellulose, and cellulose. The modeling of biological molecules
is based on the assumption that a classical–quantum passage underlies the aggregation process in
the mucilage, resulting from non-covalent interactions, as they affect the macroscopic properties of
the system. The applied recurrence plot approach is an important tool for time series analysis and
data mining dedicated to analyzing time series data originating from complex, chaotic systems. In
the current research, we demonstrated that advanced algorithmic analysis of seed mucilage data can
reveal some features of the dynamics of the system, namely temperature-dependent regions with
different dynamics of increments of a number of hydrogen bonds and regions of stable oscillation
of increments of a number of hydrophobic–polar interactions. Henceforth, we pave the path for
automatic data-mining methods for the analysis of biological molecules with the intermediate step of
the application of recurrence plot analysis, as the generalization of recurrence plot applications to
other (biological molecules) datasets is straightforward.

Keywords: time series analysis; recurrence plot; aggregation; molecular dynamics; seed mucilage;
classical–quantum passage

1. Introduction

Seeds and fruits of many plants produce a natural hydrogel substance—mucilage [1].
We can observe it in our daily life during food preparation of seeds such as flax, basil, chia,
or plantain. Seeds of those plants, when we put them in the water, form gel-like, sticky,
transparent capsules called mucilage envelopes [2]. Seed mucilage is a very soft material
of great importance due to both its biological functions and promising applications in the
design of new functional materials. Already utilized across various industries, such as
food, pharmaceuticals, and cosmetics, its appeal lies in its non-toxic and biodegradable
nature. It is also odorless, colorless, and tasteless. Some of its key benefits for industrial
applications are its viscoelasticity and plasticity thanks to the distinct structural properties
of its components and their interactions [3,4].

Regarding its biological origin, mucilage represents a modified cell wall [5]. Every
plant cell is surrounded by the cell wall, which determines the cell shape and protects the
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cell against mechanical or chemical damage and pathogens [6]. Typical, main components
of the cell wall are polysaccharides, such as cellulose, hemicellulose, and pectins [7]. The
same composition can be found in the mucilage envelope, but the polysaccharides occur
here in different proportions. The dominating component of the mucilage can be pectins or
hemicelluloses, which are responsible for water accumulation in the envelope. Cellulose
can be an additional element of the mucilage and forms long fibrils that build a kind
of scaffold for pectins and hemicelluloses. All the components form a net-like structure,
where diverse interactions (ionic and hydrogen bonds and van der Waals forces) keep
them together [8]. Mucilage is produced by mucilaginous cells building a single-layer seed
coat on the seed surface. The mucilage material in the dry state is visible as a deposited,
thick layer in the mucilaginous cells (cf., Figure 1a). The mucilage envelope rapidly
forms after hydration (cf., Figure 1b) and can be divided into two main layers (based on
the Arabidopsis thaliana model plant), namely (i) the outer layer, which is mainly built of
unbranched rhamnogalacturonan I (RG1) pectin, which can be easily lost (washed out) from
the mucilage and (ii) the inner layer, which composed of pectic polysaccharides like long,
unbranched chains of homogalacturonan (HG), branched RG1, and cellulose fibrils [5,9].

Figure 1. The seed mucilage structure before and after hydration with water. (a) Cross section of the
mucilaginous cell showing pressed mucilaginous material in a dry state (mu) (SEM); (b) mucilage
envelope (mu) formed after hydration around the seed (se) (here, mucilage stained with Ruthenium
Red); (c) Critical point drying and subsequent SEM visualization of the spatial structure of the mu-
cilage envelope. cf—cellulose fibrils; csp—cross-linking polysaccharides (pectins and hemicelluloses).
For the details of the techniques, see [8].

Various biochemical studies revealed that hemicellulose chains (xylan) are linked to
RG1 chains, facilitating the attachment of mucilage to cellulose microfibrils [3]. In the case
of hemicellulose, xylan, xyloglucan, and arabinoxylan are often presented in plants with
cellulose-based mucilage [10].

Using Critical Point Drying (CPD) and Scanning Electron Microscopy (SEM), the 3D
net-like architecture of mucilage has been previously observed [8,10], namely the size,
structure, and distribution of polysaccharides within the mucilage envelope (see Figure 1c).
From CPD+SEM visualizations, the probable localization of specific mucilage components
based on chain thickness and location has been deduced [8]. It remains challenging for
experimentalists to precisely describe the intra- and intermolecular interactions within the
entire network structure, which induce aggregation through non-covalent bonds such as
hydrogen bonds (HBos) and hydrophobic–polar (HP) interactions. What is most important
is that it is hard to observe the evolution of the network in various physicochemical
conditions. Such information can be important, for example, in designing new materials
according to the structure–property paradigm [11]. A recent publication [12] highlights the
significance and ongoing relevance of this issue. The authors elucidated the stress–strain
behavior of the plant epidermal cell wall based on a coarse-grained molecular dynamics
model. This approach appears to be one of the most realistic models of the cell wall, as
it encompasses the length scale necessary for investigating the origins of wall mechanics
or cellulose-based networks. However, the use of coarse-grained models leads to the loss
of certain system details, such as interactions with water, which is a crucial component
in our study. There are also several studies describing interactions between cellulose and
pectin or cellulose and hemicellulose as two-component systems [13–17]. However, there
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is still a need to explore the interactions within three-component systems simultaneously
and examine the interaction preferences of the components. The models employed by
experimentalists often tend to be overly simplistic and inadequately linked to quantum
physical reality. Here, computer simulation methods such as molecular dynamics (MD) are
helpful, as they can be supplemented by quantum mechanical methods.

Classical MD is a computer simulation technique in which the trajectories of atoms and
molecules are established through numerical solutions of Newton’s equations of motion for
a set of interacting particles. These forces, along with their potential energies, are frequently
computed using interatomic potentials or molecular force fields (FFs). Also, novel neural
networks and machine learning potentials have been developed recently [18–20]. In simu-
lations of environments with a large number of atoms, classical mechanics force fields (FFs)
such as AMBER or CHARMM are typically used. Even in these classical FFs, corrections to
their parameters resulting from quantum mechanics calculations are introduced [21,22].
Namely, the corrections are based on obtained experimental or quantum mechanical data of
small model systems [23] to improve parameters of the FF’s intermolecular terms, namely
electrostatic forces and van der Waals interactions. The use of a parameter-rich classical FF
allows for less computer-power use with the cost of loss of accuracy of the simulations. One
should take into account that the quantum-based weakening or strengthening of the HBo
is not considered in these classical FFs [24] (cf., Section 2.1). There are also quantum me-
chanics FFs, e.g., FFLUX [20], which is based on the quantum chemical topology approach,
but such FFs are designed for small systems.

Another newer approach is ab initio molecular dynamics (AIMD) [23,25]. In this
methodology, trajectories are generated by using forces computed directly from electronic
structure (quantum mechanical) calculations just during the simulation process. In contrast
to classical MD, this method allows for the breaking and formation of chemical bonds
and considers electronic polarization effects. The AIMD method with a linear-scaling
electronic structure theory overcomes the barrier of available computing power for such
calculations because it scales very favorably to massively parallel computing systems and
translates large, sparse matrix operations into highly parallel operations. Thus, strong
GPUs allow this method to compute more than 100 million atoms (see, e.g., the CP2K
simulation package [23]). It is worth mentioning that the FFLUX FF also uses AIMD results
to compute many-body potential energy surfaces [20].

In the present study, the number of HBo and HP interactions was quantified for the
model mucilage system undergoing an aggregation process at five temperatures ranging
from 290 to 310 K. For such a relatively simple system, classical MD simulations with the
AMBER FF (with the quantum corrections described above) were considered adequate, as
we focused solely on standard, non-covalent interactions within the system immersed in
water, which are well predicted by this semi-classical FF [22]. Time series data containing
changes in intermolecular HBos; HBos between mucilage components, polysaccharides,
and water (polysaccharides–water HBos; PW HBos); and intermolecular HP interactions as
a function of time were obtained from these simulations and subsequently analyzed using
the recurrence plot method.

We investigated the impact of small temperature changes on the aggregation of model
mucilage components and assessed the utility of recurrence plot analysis for this purpose.
The mentioned recurrence plot analysis is a dedicated tool used to analyze time series
data from complex, chaotic systems [26]. A variety of automatic methods derived from
recurrence plot analysis are available (see [27–29]); however, these methods are rather
simple. The development of more advanced methods of data mining tied to recurrence
plots is the new take from a data mining point of view. As such, recurrence plots have the
potential to explore new methods for handling data from chaotic systems. We intend to
pave the way for such an approach with the example of biological molecules data of plant
seed mucilage. Thus, the main question addressed in this study is whether the assessment
of recurrence plots can yield meaningful information on the rate of the aggregation process
in biological systems and the stability of the network structure. This could have significant
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implications in the field of biology, as this information could provide insights into the
mechanical properties of the structure.

2. Materials and Methods

The number of non-covalent interactions can be a quantitative measure of the aggrega-
tion of the macromolecules (polysaccharides) in the mucilage. Non-covalent interactions
encompass various scales, from noble gas dimers to proteins (or other macromolecules) in
aqueous solution and beyond. Diverse methods, such as first principles and force fields,
have been successfully applied in this exploration. However, there is presently a lack of a
fully integrated and consistent quantitative prediction method for non-covalent interactions
across all system scales and research domains [20]. Please, keep in mind how important it is
to consider the tight packing of biomolecules within living cells. For example, non-covalent
interactions govern the entire structure and functioning of molecular machines. Such
interactions aid also the matter self-organization process [30–32]. The structure of cellulose
aggregates has also been theoretically revealed by the well-known fringed micelle model
proposed by Herrmann et al. [33,34]. This model is consistent with [32], suggesting that
cellulose molecules aggregate to form fringed micelles, which further aggregate to form
larger, virtually fractal, and partially crystallized structures [35,36]. A quantum-based ex-
perimental method used for structure recognition in fringed-micelle polymers was reported
in [37].

2.1. Physical Model with Reference to Quantum Mechanics

Since the present study was inspired by [38], a brief description of aggregation in
biological systems as a passage between quantum and classical mechanics is introduced in
this section, building upon the groundwork presented in the Introduction.

Scientists studying mucilage emphasize that the nature of interactions among its com-
ponents is still not fully explored [3,10]. Nevertheless, the importance of intermolecular
non-covalent bonds, such as ionic or HBos, is often emphasized, as they influence many
physicochemical and rheological properties of the mucilage [10,39]. Both types of interac-
tion strictly result from quantum mechanics. In the first type, an electron is transferred from
one atom to another, thus achieving a more energetically favorable state. This typically
occurs when one atom has a significantly higher electron affinity, while the other has a
much lower ionization energy (the energy required to remove an electron) [40]. However,
HBos classically treated as interactions dominated by electrostatic forces are modified
by quantum effects, which diminish weak HBos and strengthen relatively strong ones.
This arises from a competition between anharmonic intermolecular bond bending and
intramolecular bond stretching [24,41]. In various studies, the importance of HBos has been
overstated due to their weak and environmentally sensitive nature [42]. Moreover, intra- or
intermolecular HBos always have to compete with HBos originating from water. Thus, it
should be noted that in addition to HBos, there is another important (and stronger) type of
interaction present within such mucilage, namely hydrophobic–polar (HP) interactions [42].
The importance of the hydrophobic effect in cellulose-based mucilage has been highlighted,
for example, by Lindman, who has stated that this is a major reason why cellulose is
resistant to most solvents [43]. Whether HP interactions can also be explained by quantum
mechanics was studied in [44], where hydrophobicity was investigated at the molecular
level. The authors deduced that solute and water molecules tend to cluster independently
rather than together. These intermolecular associations represent a substantial portion of
the enthalpic contribution to phase separation, which reveals the relevance of solute–solute
interactions as hydrophobic.

All those non-covalent bonds support adhesion, which is crucial for mucilage func-
tions, such as enabling seeds to attach to various natural surfaces (e.g., soil), preventing
seed dispersal or, on the contrary, to attach to animals (e.g., birds), allowing for seed
dispersal [3,10,45]. Another key factor underpinning the distinct rheological properties of
mucilage is side-chain distribution in hemicelluloses [39] and pectins and the degree of
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esterification of pectins [46,47]. Other important factors include the pH of the solvent and
the content of cross-linking agents, such as calcium ions, which (quantum-based) interact
with pectins [46], as well as with cellulose [48]. To be more specific, pectin molecules
contain carboxylic acid groups, which can undergo ionization depending on the pH of the
surrounding environment. Decreasing the pH results in a reduction in electrostatic repul-
sion among the pectin chains, which primarily facilitates chain association via hydrogen
bonding [49]. Additionally, carboxyl groups in pectins can form bonds with Ca2+ ions,
and the number of these groups depends on the degree of methylation of pectin [47]. Ionic
bridges between pectins can also make the entangled chain network stronger [47].

Accordingly, a classical–quantum passage arises from the scenario depicted above,
wherein the quantum nature of the interactions strongly influences the structure and prop-
erties of meso- or even macroscopic objects, such as mucilage. This passage has also
been observed in many other biological systems, e.g., in [50], where quantum mechanics
calculations incorporating solvent effects successfully identified the preferred molecular
structure of topotecan, an anticancer drug, in solution at various pH levels. Another inter-
esting example of this phenomenon was studied by Wybranowski et al. [51], who studied
the determination of the affinity of drugs (warfarin and flurbiprofen) for human serum
albumin (the most abundant protein in blood plasma) through fluorescence anisotropy
measurements. In this example, the (quantum-based) interactions between the drug and
protein play a crucial role in transporting bound drugs to the tissues. More extensive dis-
course on the classical–quantum crossover is available in [52]. A problem of the boundary
between classical stochastic and a quantum stochastic description within a mesoscopic
matter-aggregating system was addressed by Gadomski and Kruszewska [53], employing
Nelson’s quantum–stochastic approach [54].

2.2. Molecular Dynamics Simulation

We performed all-atom classical MD simulations of the model system consisting of
two cellulose fibrils, two chains of xylan (hemicellulose), one RG1, and one HG chain
(two different pectins) in an explicit water solution (see Figure 2). All these components
are representative here for only one seed mucilage type—cellulose mucilage [2]. Scenes
and molecule simulations were prepared and performed using YASARA software (version
22.8). The system components’ lengths were chosen specifically to give them a chance to
build a network of non-covalent bonds. Such an entangled system allowed us to observe
interactions between all three polysaccharide types at once.

The main components of the model system are the cellulose fibrils—bundles of 36 lin-
ear polymer microfibrils, each with a degree of polymerization of 40. They were created by
Cellulose Builder software [55], which is based on the model proposed by Ding and Him-
mel [55,56]. The chemical structure of xylan was obtained from PubChem (ID 129539666);
modified to obtain chains with a degree of polymerization equal to 128; and branched
with arabinose, ferulic acid, and glucuronic acid according to Oliveira et al. [57]. In the
case of pectins, CHARMM-GUI software (version 3.8) [58,59] was used to generate pectin
chains (HG and RG1) with a backbone length of 80 saccharides, as described in [60]. For
HG, the backbone was modified by 32 methyl esterifications at the C-6 carboxyl position
(low-methyl esterified HGs) and by 32 O-acetylations at the O-2 or O-3 position [60,61].
In this study, an RG1 model similar to the one presented in Figure 3.19 of [62] was used.
Its backbone had 24 branches, namely eight arabinofuranoses, eight galactoses, and eight
mixes of these two.

After necessary minimization of the model system to remove clashes, the simulation
was run for 100 ns using the AMBER14 force field [22], which uses parameters appropri-
ate for most known molecules (e.g., GLYCAM06 [63] for carbohydrates), and TIP3P for
water. The van der Waals force cut-off distance was 10 Å [64]. The particle mesh Ewald
algorithm was used to compute long-range interactions (e.g., electrostatic interactions) [65].
Simulations were performed under the following conditions: five temperatures of 290,
295, 300, 305, and 310 K, and a pressure of 1 atm (NPT ensemble) [66]. The complex was
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immersed in aqueous solutions with pH = 7.4. Periodic boundary conditions were applied
to a box with dimensions roughly equal to 431 × 158 × 69 Å3. The number of atoms in
the model system was about 500,000 (ca. 120,000 H2O molecules). A Berendsen barostat
and thermostat were used to maintain constant pressure and temperature, respectively
(relaxation time of 1 fs) [67]. The equations of motion were integrated with multiple time
steps of 1.25 fs for bonded interactions and 2.5 fs for non-bonded interactions. In the
considered simulations, the time step between saved states of the system equaled 100 ps.
Thus, the time series for 100 ns of simulations corresponded to 1000 save points. Snapshots
of the model system before, in the middle, and after 100 ns of MD simulation are presented
in Figure 2. All simulations were duplicated with different seeds of a random number
generator to verify whether similar and reproducible results were obtained (results are
presented in Supplementary Materials Figures S1–S3).

The numbers of HBos and HP interactions were calculated using the standard algo-
rithms for the MD simulations described previously in [68,69] and in the YASARA manual.

Figure 2. Structures of a cellulose, hemicellulose, and pectins complex in explicit water solution at a
temperature equal to 300 K (solution is transparent in the image). Components are colored as follows:
celluloses, blue; hemicelluloses, red; RG1 pectin, green; HG pectin, yellow. Snapshots come from
YASARA and show three stages of simulations: at t = 0 ns (upper), at t = 50 ns (middle), and at
t = 100 ns (bottom) of MD simulations [70].
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2.3. Recurrence Plot Method

For recurrence plot analysis, we selected datasets from simulations of molecular
dynamics increments of the number of intermolecular HBos, HBos between mucilage
components and water (PW BHos), and intermolecular HP interactions (taken as ∆N/∆t to
obtain a non-monotonic function, where N is the number of specific interactions). Through
this method, we aimed to observe alterations in the dynamics of aggregation in the model
mucilage. This analysis was performed by an in-house-written data processing program
in Python 3.9, a developed version of the one used in [71]. Together with systematic
description, we illustrate the recurrence plot procedure on the toy example of the following
artificial input vector :

x⃗ =

(
1,

1
2

, 1,
1
2

, 1
)

. (1)

Recurrence plot analysis can be summarized by the following algorithm.

2.3.1. Input

The input is an L-long univariate (equally time-spaced) time series (⃗x) with elements
(xi) that, in our case, represent increments of the number of intermolecular bonds/interac-
tions at given timestamps represented by is.

2.3.2. Proceeding

1. Data compression . In the first step, we perform a compression of time series into the
following sub-series:

y⃗(d,τ)
i = (xi, xi+τ , xi+2τ , . . . , xi+dτ), (2)

i.e., by putting xi at the beginning, spacing by τ, and keeping xi+dτ at the end.
Such series (of length d + 1) are numbered by i, where i ∈ {1, 2, . . . L − dτ} (⃗y(d,τ)

i=1 )

corresponds to the initial part of x⃗, while y⃗(d,τ)
i=L−dτ corresponds to the rear part of x⃗,

etc.
Henceforth, the procedure is parameterized as follows:

• parameter τ—delay time;
• parameter d—embedding dimension of the system.

In our approach, the particular value of each of these parameters was computed by
algorithmic methods discussed in [71], namely time delay was computed by the first
non-significant auto-correlation introduced therein, and dimensional embedding was
computed by the Cao method [72]. . If we compare more time series, majority voting
among data inputs is performed to determine one value of each parameter for a fair
comparison. Generally, the recurrence plot method is dedicated to data originating
from a chaotic physical system. Hence, subsequent elements of the data series are
supposed to carry similar information. Besides, after a long enough evolution, a
chaotic system is supposed to return to the neighborhood of the starting point, and
the corresponding data record is supposed to reflect repeating information.
Referring to the toy example of the artificial input vector in Equation (1) and assuming
τ = 2 and d = 1 (and L = 5), we have L − dτ = 3 in the following sub-series:

y⃗(d,τ)
1 = (x1, x3) = (1, 1)

y⃗(d,τ)
2 = (x2, x4) = (1/2, 1/2)

y⃗(d,τ)
3 = (x3, x5) = (1, 1)

. (3)
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2. Sub-series transformation. From L − dτ sub-series (⃗y(d,τ)
i ), one creates a (L − dτ)×

(L − dτ) matrix (M(λ)) with zero and ones entries as follows:

mi,i′(λ) =

{
0 if ∥y⃗(d,τ)

i − y⃗(d,τ)
i′ ∥ ≤ λ

1 elsewhere
(4)

The idea beyond this representation relies on the comparison of subsequently com-
pressed series (⃗y(d,τ)

i and y⃗(d,τ)
i′ ) [73] with the norm ∥y⃗(d,τ)

i − y⃗(d,τ)
i′ ∥. Ideally, such a

distance should be smaller than the threshold value (λ) determining the accuracy of
compression in the previous step. In practice, the particular value of ∥y⃗(d,τ)

i − y⃗(d,τ)
i′ ∥

reveals the local dynamics of data. In detail, maps as in Equation (4) display interest-
ing patterns that can be analyzed later on by sophisticated methods (see [74]). The
fraction of zeros in M(λ) from Equation (4) is the recurrence rate in the literature, and
there is no single broadly accepted method concerning its determination.
Referring to the toy example in Equations (1)–(3), we present two examples of an
M(λ) ∈ {0, 1}3×3 matrix, given the following two distinct λ parameters:

M(λ = 0.1) =

i′=1 2 3 0 1 0 i=1
1 0 1 2
0 1 0 3

M(λ = 0.9) =

1 2 3 0 0 0 1
0 0 0 2
0 0 0 3

(5)

Recall, that the recurrence rate is 5
9 in the λ = 0.1 case and 1 in the λ = 0.9 case.

3. Recurrence plot creation. A recurrence plot is created by turning the zeros and ones in
Equation (4) into white and black pixels (dots). The recurrence plot naturally visualizes
data in a time window with a length of d and spacing of τ. Such recurrence plots can
be analyzed either manually (the state-of-the-art approach) or in an automatic manner
(a new approach if advanced tools of image processing are applied). Here, we are left
with the open question as to what particular information is tied to the recurrence plot
and how it depends on parameters (and the recurrence rate in particular).

4. Entropy. To assess information tied to the recurrence plots, we first use the most
straightforward approach, namely the entropy approach as proposed in [27] and by
us in [71]. Following this, we compute the Shannon entropy from the distribution
of specific features of the recurrence plot. Following [27], we estimate topological
entropy, which measures the total complexity of the orbit structure of the chaotic
system, as the Shannon entropy of the distribution of parallel-to-diagonal lines. In
detail, a histogram is made for the lengths of zero sequences along the diagonal
direction. Normalizing the histogram and thinking of it as a probability distribution
(pj), a Shannon entropy can be derived through the following equation:

S = −∑
j
(pj log pj), (6)

where pj is the probability of a sequence of length j and the summation is over all
sequence lengths. Then, we analyze such entropy for the entire range of the recurrence
rate (from 0 to 1) to assess whether the information tied to the recurrence plot varies
with the recurrence rate and select its most suitable value.
Concerning the toy example in Equations (1), (3), and (5),

• For λ = 0.1, we have j ∈ {1}, p1 = 1, and S = 0; and
• For λ = 0.9, we have j ∈ {1, 2}, p1 = p2 = 1/2, and S = 0.693.

5. Recurrence plot analysis and automatic pattern recognition. If we refer in more detail
to the recurrence plot layout, we can conclude that in regions close to its diagonal
(i close to i′ in Equation (4)) sub-series from close time instants are analyzed, while



Entropy 2024, 26, 380 9 of 17

in the regions away from the diagonal (i is far from i′), series from distinct time
instants are analyzed. Furthermore, if we observe the dark cross hitting the diagonal
at certain subsequent sub-series (i.e., i ∈ Icross), the dynamics are tied to y⃗(d,τ)

i such
that i ∈ Icross should differ from the dynamics of the rest of the data series. Such
Icross is interesting from the point of view of pattern recognition and data analysis. To
search for Icross automatically, we introduce the following cross-detection procedure:

(a) Compute the column-wise weight of the recurrence plot in Equation (4)
(wi = ∑i′ mi,i′ ), and create weight vector w⃗;

(b) Smooth w⃗ to w⃗SMA(k) by applying the simple moving average (SMA) of size k,
where k is the parameter;

(c) Normalize w⃗SMA(k) to ˜⃗wSMA(k) by subtracting the mean and dividing by the
standard deviation;

(d) Determine the k parameter for SMA to maximize the highest value of the
normalized vector, namely

k = argmax
(
max ˜⃗wSMA(k)

)
; (7)

(e) Save a k value equal to the width of dark crosses;
(f) Determine cross centers as local maxima of the smoothed SMAk(w⃗) that are

greater than the threshold standard score (number of standard deviations).

Converting SMAk(w⃗) into a standard score enables us to work with a vector of
unitless, standardized values. This facilitates comparison across different datasets
and enhances the method’s versatility. With standard scores established, it becomes
feasible to suggest a default threshold value for cross-detection, such as 2σ or 3σ (σ
denotes standard deviation). An alternative solution would require the inspection of
each dataset individually and would be more challenging to automate. Please, keep
in mind that this method can be easily generalized for white cross-detection.

2.3.3. Output

The output is a recurrence plot with detected patterns (crosses).
Concerning the toy example in Equations (1), (3), and (5), for λ = 0.1, we expect a

dark cross with a width of 1, hitting the diagonal at i = 2. From this cross analysis, the
sub-series starting at i = 2, namely y⃗(d,τ)

2 = (x2, x4) = (1/2, 1/2), is expected to differ from

the other sub-series, namely y⃗(d,τ)
1 = (x1, x3) = (1, 1) and y⃗(d,τ)

3 = (x3, x5) = (1, 1).

3. Results and Discussion

Examples of simulation snapshots for a system at a temperature of 300 K are presented
in Figure 2. When comparing the systems before and after simulation, one can observe
a twist in both celluloses and a change in their orientations. This ability of cellulose to
twist has been observed very rarely in plants, e.g., in the cell wall of green alga Micrasterias
denticulate [75]. Twisting of microfibrils was observed in different model simulations of
cellulose in the presence of water and was attributed to trans-glycosidic linkages due to
hydrogen bonds [76,77]. The ability to twist can have an important effect, e.g., on the
structural and mechanical properties of diverse polymers including cellulose [76].

Nevertheless, the positions of the celluloses relative to each other remain stable due to
the two hemicellulose chains, which, attached to both celluloses, create a kind of scaffold.
Many authors have postulated the strengthening role of xylan in the cell wall due to the
interaction with cellulose fibrils [78–80]. Xylan also plays an important role in maintaining
the cellulose architecture in the mucilage envelope [81]. In studies on the seed mucilageof
model plant Arabidopsis thaliana, it has also been suggested that xylan may link RG1 to
cellulose fibrils [3]. Many mucilage polysaccharides demonstrate the presence of side
chains. Due to this property, it is also possible to create diverse interactions between
mucilage polysaccharides. This is presumably important for keeping this special (spatial)
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structure of mucilage, for maintaining the mucilage at the seed surface, and for water
accumulation [5,8,81].

Initially arranged parallel to the celluloses and placed near them, hemicelluloses
aggregated via non-covalent bonds, namely HBos and HP interactions. In this stage of
preliminary studies, there were no ionic interactions in the system, as it was immersed in
water without the addition of any ions. Investigating a system with various added ions
will be the subject of further study.

The time evolution of the number of intermolecular HBos and the changes in this
number at subsequent time points (time series) are presented in Figure 3. Figure 4 depicts
the time evolution of the number of intermolecular HP interactions, as well as the number
of PW HBos.

Figure 3. Total number of intermolecular HBos as a function of simulation time at five
temperatures (a). Example of analyzed time series (b). The time series consists of increments in
the number of intermolecular HBos at a temperature of 290 K (computed from the blue line in (a)).

Figure 4. Total number of HBos between model polysaccharides and water molecules (PW HBo) as a
function of simulation time at five temperatures (a). Total number of intermolecular HP interactions
as a function of simulation time at five temperatures (b).

The primary observations from Figures 3 and 4 indicate that the temperature depen-
dence of the number of intermolecular HP interactions is negligible, and a very small
dependence on the number of intermolecular HBos is observed. Nevertheless, the tem-
perature dependence of HP interactions. without a doubt, does exist, as described in [82],
where it was demonstrated that the temperature dependency of the Gibbs free energy
of hydrophobic and directly hydrogen-bonded solutes was opposite to that of bridged
hydrophilic solutes. Therefore, a possible explanation for the temperature independence
observed in our HP interactions (at least in the small temperature range tested) could
be attributed to the presence of a large molecular system with a multitude of diverse
hydrophobic and polar interactions (celluloses and pectins are amphiphilic, so have some
hydrophobic regions and some hydrophilic ones), resulting in various local dependencies
on temperature, both positive and negative, which may cancel each other out. However,
a discernible dependence is noticed in the case of PW HBos. The reason for this is that
at higher temperatures, water molecules possess greater thermal energy, and water has a
lower density. These factors affect the mobility of water molecules, facilitating the detach-
ment of hydrogen atoms from water molecules bound to polysaccharide atoms, thereby
enabling their return to the bulk solution. This, in turn, liberates space for HBos originating
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from the polysaccharides. Figure 3b illustrates the chaotic, noise-like fluctuations in the
number of intermolecular HBos at 290 K. Comparable patterns are observed in the plots for
the remaining interactions; therefore, only one example is presented here. The potential
inclusion of information within this noise can be explored through recurrence plot analysis.

From all input data in the form of Equation (2), we algorithmically computed the delay
time (τ) and embedding dimension (d) as discussed in Section 2.3. For a fair comparison,
single values of these parameters (d = 1 and τ = 2) were selected by majority voting among
all datasets. Henceforth, each series can be compressed to many two-point sub-series (see
Equation (2), where d = 1), each still carrying meaningful information about the dynamics
of the system. Given values of the d and τ parameters, for sound analysis of recurrence
plots, the recurrence rate parameter (the same best value for all data series) also has to be
determined. The theoretical evaluation of the recurrence threshold is tied to the size of
the attractor of the chaotic system under investigation. Here, we are motivated by [83],
according to which one expects the recurrence rate to be in the region where scaling between
log(λ) (see Equation (4)) and the logarithm of the recurrence rate is still linear. To extend this
approach, we examined analogous scaling but with reference to Shannon entropy computed
for the recurrence plot [27], which is meant to assess information tied to the orbit structure
and its size in particular. Referring to Figure 5, this entropy decreases monotonically with
the recurrence rate. This is most probably due to the observation that the higher the recurrence
rate, the less sensitive the plot is to small details of the dynamics and the more it reflects
the average behavior of the system. In this sense, we are moving from a regime of detailed
analysis to a regime of averaged analysis of the system. In our approach, we intend to
assess both regimes. Henceforth, we select a recurrence rate on the edge between linear and
non-linear relation. Such an approach is expected to assess the phase transition-like behavior
and, hence, interesting features of the system. In the current approach, we selected this point
manually, but algorithmic generalization is possible. In detail, algorithmic detection of such
a point would involve testing linear vs. non-linear models of data sub-series in observation
windows, searching for the changing point between these two models and finally applying
majority voting among datasets. Alternatively, one could use a single line fit that minimizes
the quadratic error of the fit towards all the curves in scope.

Selected entropy values (computed from the recurrence plot of the recurrence rate selected
in Figure 5) in comparison with a number of particular bonds are presented in Table 1. Bear
in mind that in the HBo case, we have an order of magnitude fewer bonds (approximately a
hundred) than in the PW HBo case (approx 9 thousand). In the HP interaction case, there is
an even smaller number of interactions (half of that for HBos). The entropy value was highest
for the the PW HBo case, which was expected, as this one is the largest and most chaotic
system. As mentioned before, each of the analyzed data series was compressed to two-point
sub-series (see Equation (2), where d = 1). The stability of the compression can be deduced
from the stable (between time series) plots of information entropy presented in Figure 5. The
above observation is positive from the point of view of data compression.

Recurrence plots are presented in Figure 6, which shoes the dark crosses detected by the
algorithm described in Section 2.3. In the HBo case (top panel), the cross moves toward the
bottom-left corner with the increase in temperature, except for at 305 K. Such a cross (while
crossing the diagonal) is expected to mark the time range where the system’s dynamics
differ from the general dynamics, and the system may be in some sort of transition. The
305 K case does not fit this pattern, suggesting some specific dynamics at this temperature.
This indicates the necessity of a deeper analysis of this case, focusing on factors such as
the degree of cellulose surface solvation or aggregation within the rest of the components.
These factors could potentially influence both intra- and intermolecular interaction strengths
across various temperatures [84]. For PW HBos, the cross locations look more random,
which can be tied to the high noise level of such a system; nevertheless, the dynamics
are similar. A deeper analysis of Figure 6 also emphasizes other (less significant) dark
crosses extended over the full length of the graph. Therefore, the entire time series may
display some form of anomalous dynamics. The presence of such dark crosses may be a
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manifestation of the local change of the phase space [27]. This may suggest that the phase
space is expanding in those regions, and there is almost no return to the original state of
simulations. We observed somewhat similar but more uniform patterns in the total van
der Waals energy data, namely data with meaningful random factors in their dynamics
(see Figures 6–9 in [71]). The discussed patterns were similar in different simulation runs
with different seeds of the random generator, as presented in Supplementary Materials (cf.,
Figure S3).
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Figure 5. Entropy computed from recurrence plots according to point 4 in Section 2.3 for various
temperatures and inter-molecular bonds: HP (a), HBo (b), PW HBo (c). A linear relation between
the logarithm of entropy and the logarithm of the recurrence rate can be observed to the left of the
dashed line. The following parameters were used for all data series (see Equation (2)): τ = 2 and
d = 1. Determination of these parameters was performed by the automatic method described in
point 1 in Section 2.3 for each data series, then by majority voting.

Recurrence Plots

HBo

PW
HBo

HP

290 K 295 K 300 K 305 K 310 K

Figure 6. Recurrence plots and cross detection: intermolecular HBo (upper panel), PW HBo (middle
panel), and intermolecular HP interaction (lower panel). Dark crosses detected by the algorithms are
bounded by green lines. Such dark crosses are meant to indicate simulation times (starting from the
upper left of the plot and following the diagonal downward) where dynamics are expected to differ
from the average. Notice the temperature-dependent pattern of such regions for HBos and random
behavior for other interactions. Additionally, notice the white regions in the case of HP contacts; these
also carry meaningful information about the system dynamics and, in particular, may be associated
with some form of oscillations. Parameters of the recurrence rate were determined by majority voting
as follows: τ = 2 , d = 1, and RR = 9%; the cross was detected with a threshold standard score equal
to 2.5 σ (standard deviations) (see the algorithm in Section 2.3).
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Concerning the lower panel of Figure 6, white regions can be observed, especially for
higher temperatures. This is also a meaningful observation tied to molecular dynamics. In
particular, if there is a recurrence plot of increments in a series of white regions separated
by dark ones, we may expect a stable oscillation (of a number of HP bonds in our case)
around the mean value. This interesting pattern was expected, as HP bonds are stronger
than the HBos, although they are fewer in number (cf., Table 1).

Table 1. The system characteristics for selected temperatures: 290 K (left) and 310 K (right). The
highest entropy is observed for the PW HBo case, which is meant to be the most chaotic because of
the high noise level included in those data. Furthermore, in the case of a PW HBo, entropy does not
depend on temperature meaningfully.

Interaction Type Entropy
n.o. Bonds

Entropy
n.o. Bonds

Mean σ Mean σ

Intermolecular HBo 3.15 114.8 9.9 3.08 118.7 17.4

PW HBo 3.20 9098.4 84.0 3.20 8855.3 69.4

Intermolecular HP 3.17 66.7 6.8 3.12 66.7 10.2

4. Conclusions

We have qualitatively analyzed the concept resembling fringed-micelle involvement
in the mucilage [35,36]. For the advanced analysis of the dynamics of the aggregation
process, we applied algorithmically created recurrence plots. Broadly speaking, these
images can be analyzed either manually (the state-of-the-art approach in the literature) or
automatically. Referring to the first approach, we observed two structures, namely dark
crosses and white squares. The former correspond to a time sub-sequence in which the
dynamics of the system differ from the average dynamics. The latter (white squares near
the diagonal in particular) correspond to the local stabilization of increments and were
observed for hydrophobic–polar interactions at higher temperatures. This coincides with
the observation that the temperature dependence of hydrophobic–polar interactions does
exist (in analogy to our temperature range), as described in [82], where it was demonstrated
that the temperature dependency of hydrophobic and directly hydrogen-bonded solutes
was opposite to that of bridged hydrophilic solutes.

Referring to the second approach, we proposed a simple automatic method for dark
cross detection, which points out the direction for automatic methods in the analysis of re-
currence plots. Inspired by this, more general automatic methods can be evolved. Through
this approach, we discovered that the number of HBos exhibited some unconventional
dynamics over the course of the simulation, which are temperature-dependent. Specifically,
as the temperature increases, the occurrence of these unusual regions is delayed. This sug-
gests that the system undergoes a slight change in its state within the time range indicated
by these dark crosses, becoming more aggregated and stable thereafter.

One line of future research will refer to the application of image segmentation meth-
ods [85] and object detection (see recent methods proposed in [86,87]) with reference to the
AI approach. An example of classification of time series (EEG in particular) via recurrence
plots classified by deep artificial neural networks was described in [88]. Analogous methods
can be potentially applied for the detection of particular patterns in recurrence plots.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/e26050380/s1, Figure S1: Number of all intermolecular HBos as
a function of simulation time in five temperatures (a). Example of analyzed time series (b). The time
series consists of increments in the number of intermolecular HBos at temperature 290K (computed
from the blue line from picture (a)); Figure S2: Number of all HBos between model polysaccharides
and water molecules (PW HBo) as a function of simulation time in five temperatures (a). Number of
all intermolecular HP interactions as a function of simulation time in five temperatures (b); Figure S3:
Recurrence plots for data with other initial seed, cross detection: intermolecular HBo (upper panel),

https://www.mdpi.com/article/10.3390/e26050380/s1
https://www.mdpi.com/article/10.3390/e26050380/s1
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PW HBo (middle panel), and intermolecular HP (lower panel). Temperatures from left (290K, 295K,
300K, 305K, 310K). By majority voting among the whole data set, we used constant τ = 2 and d = 1
and RR = 9%. The cross was detected with the threshold standard score equal to 2.5σ (standard
deviations).
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